(ÍêÕû°æ)2017Öп¼ÊýѧһÂÖ¸´Ï°½Ì°¸(ÍêÕû°æ) ÏÂÔØ±¾ÎÄ

(A) 3 (B)

2 3 (C) (D) 2 22

3£®¾ØÐÎABCDÖУ¬AD£½5£¬AB£½12£¬OΪ¶Ô½ÇÏßAC,BDµÄ½»µã£¬EΪBCÑÓ³¤ÏßÉÏÒ»µã£¬

ÇÒCE£½AC£¬ÔòS¡÷OCE£½____________.

4. ÒÑÖª¡ÏPOQÄÚÓÐÒ»µãA£¬Çó×÷¡÷ABC£¬Ê¹¡÷ABCµÄÖܳ¤×îС£¬ÇÒ¶¥µãB,C·Ö±ðÔÚOP,OQ

QÉÏ¡£

A

OP 5.Èçͼ£¬AB£½DE£¬Ö±ÏßAE,BDÏཻÓÚµãO£¬¡ÏBÓë¡ÏDÏàµÈ£¬ ADÇóÖ¤£ºAO£½EO.

O

BE

6£®Èçͼ£¬ABCDΪÕý·½ÐΣ¬EΪCDµÄÖе㣬¹ýE×÷EF£¬Ê¹¡ÏAEF£½¡ÏBAE£¬EF½»BCÓÚ£¬

ECDÇóÖ¤£ºCF£½2BF.

F

AB

7£®Èçͼ£¬ÔÚÆ½ÐÐËıßÐÎABCDÖÐ,EÊÇBCµÄÖе㣬DE,ABµÄÑÓ³¤Ïß½»ÓÚµãF£¬ÇóÖ¤£ºS¡÷

ABE£½S¡÷EFC.

AD

BCE

F

µÚ25¿Î ±ÈÀýÏß¶Î

¡¼ÖªÊ¶µã¡½

±ÈÓë±ÈÀý¡¢±ÈÀýµÄ»ù±¾ÐÔÖÊ¡¢ºÏ±ÈÐÔÖÊ¡¢µÈ±ÈÐÔÖÊ¡¢Á½Ï߶εıȡ¢³É±ÈÀýÏ߶Ρ¢Æ½ÐÐÏß·ÖÏ߶γɱÈÀý¡¢½ØÈý½ÇÐÎÁ½±ß»òÆäÑÓ³¤ÏßµÄÖ±Ï߯½ÐÐÓÚµÚÈý±ßµÄÅж¨¡¢»Æ½ð·Ö¸î ¡¼´ó¸ÙÒªÇó¡½

1£®Àí½â±ÈÓë±ÈÀý¼°±ÈÀýÖÐÏîµÈ¸ÅÄî£¬ÕÆÎÕ±ÈÀýµÄ»ù±¾ÐÔÖÊ¡¢ºÏ±È¶¨ÀíºÍ¸ü±È¶¨Àí£¬»áÓÃËüÃǽøÐмòµ¥µÄ±ÈÀý±äÐΣ»

2£®Àí½â±ÈÀýÏ߶μ°»Æ½ð·Ö¸îµÄ¸ÅÄÀí½âƽÐÐÏß·ÖÏ߶γɱÈÀý¶¨Àí£¬»á×÷µÚËıÈÀýÏî ¡¼¿¼²éÖØµãÓë³£¼ûÌâÐÍ¡½

1£® ¿¼²é±ÈÀýµÄÐÔÖÊ£¬³£ÒÔÑ¡ÔñÌâ»òÌî¿ÕÌâ³öÏÖ£¬È磺 (1) ÒÑÖªa£½4£¬b£½9£¬Ôòa¡¢bµÄ±ÈÀýÖÐÏîÊÇ

(2) ÒÑÖªÏß¶Îa£½4cm£¬b£½9cm£¬Ïß¶ÎcÊÇa¡¢bµÄ±ÈÀýÖÐÏÔòÏß¶ÎcµÄ³¤Îª 2£® ÇóÏ߶εıȡ¢Ãæ»ýµÄ±È£¬ÔÚÖп¼ÌâÖг£ÒÔÑ¡ÔñÌâ¡¢Ìî¿ÕÌâ»òÇó½âÌâÐͳöÏÖ£¬Èçͼ£¬

ÒÑÖªDE¡ÎBC£¬CDºÍBEÏཻÓÚO£¬

S¡÷DOE£ºS¡÷COB £½4£º9£¬ÔòAE£ºECΪ£¨ £© ¡¼Ô¤Ï°Á·Ï°¡½

81

ac

1£® Èô»¥²»ÏàµÈµÄËÄÌõÏ߶εij¤a,b,c,dÂú×ãb £½d £¬mΪÈÎÒâʵÊý£¬ÔòÏÂÁи÷ʽÖУ¬Ïà

µÈ¹ØÏµÒ»¶¨³ÉÁ¢µÄÊÇ£¨ £©

a£«mc£«ma£«bc£«da£­bc£­dad£¨A£© £½ £¨B£©b £½c £¨C£©c £½b £¨D£© £½

b£«md£«ma£«bc£«d2£®Èçͼ£¬ÒÑÖª¡÷ABCÖУ¬DE¡ÎBC£¬ÔòÏÂÁеÈʽÖв»³ÉÁ¢µÄÊÇ£¨ £© £¨A£© AD£ºAB£½AE£ºAC £¨B£©AD£ºDB£½AE£ºEC

£¨C£©AD£ºDB£½DE£ºBC £¨D£©AD£ºAB£½DE£ºBC 3£® Èçͼ£¬¡÷ABCÖУ¬DE¡ÎFG¡ÎBC£¬AD£ºDF£ºFB£½3£º2£º1£¬ Ôò¡÷ADE£¬ËıßÐÎDFGE£¬ËıßÐÎFBCGµÄÃæ»ý±ÈÊÇ£¨ £© £¨A£©3£º2£º1£¨B£©9£º4£º1£¨C£©9£º16£º11£¨D£©9£º25£º36 4£®ÒÑÖª£¨£­3£©£º5£½£¨£­2£©£º£¨x£­1£©£¬Ôòx£½ 5£®ÈôxÊÇ3¡¢4¡¢9µÄµÚËıÈÀýÏÔòx£½ £¬ ÓÖxÊÇ6ºÍyµÄ±ÈÀýÖÐÏÔòy£½

ace3

6£®ÒÑÖªb £½d £½f £½5 £¬b£«d£«f£½50£¬ÄÇôa£«c£«e£½ x£­yx£«yx£«yx7

7£®Èç¹ûy £½3 £¬ÄÇôy = ,y = , £½

x£«y

¿¼µãѵÁ·£º

3x

1¡¢Èôx =4 £¬ÔòxµÈÓÚ£¨ £©

(A)12 (B)23 (C)- 23 (D)¡À23 2¡¢ÒÑÖªyÊÇ3£¬6£¬8µÄµÚËıÈÀýÏÔòyµÈÓÚ£¨ £© (A)43 (B)16 (C)12 (D)4 3¡¢Èô(m+n):n=5:2£¬Ôòm:nµÄÖµÊÇ£¨ £©

(A)5:2 (B)2:3 (C)3:2 (D)2:5 4¡¢Èçͼ£¬DF¡ÎAC,DE¡ÎBC,ÏÂÁи÷ʽÖÐÕýÈ·µÄÊÇ£¨ £©

ADBFAECEAEBDADAB(A) BD =CF (B) DE =BC (C) CE =CD (D) DE =BC

AC EDE ADBBCF (4) (8) ab

5¡¢°Ñm=c д³É±ÈÀýʽ£¬ÇÒʹmΪµÚËıÈÀýÏî ; 6¡¢ÈôÏß¶Îa=5cm£¬b=10cm,c=4dm,d=2cm,ËüÃÇÊÇ·ñ³É±ÈÀýÏß¶Î ; x5

7¡¢ÒÑÖªy =3 £¬Ôò(x+y):(x-y)= ;

8¡¢Èçͼ£¬ÒÑÖª¦¤ABCÖУ¬DE¡ÎBC,AC=7cm,CE=3cm,AB=6cm,ÔòAD= ;

9¡¢Èçͼ£¬ÒÑÖªÌÝÐÎABCDÖУ¬AD¡ÎBC,AC,BD½»ÓÚO£¬¹ýO×÷ADµÄƽÐÐÏß½»ABÓÚM£¬½»

DACDÓÚN£¬ÈôAD=3cm£¬BC=5cm,ÇóON.

MN O

BC82

10¡¢Èçͼ£¬ÒÑ֪ƽÐÐËıßÐÎABCDÖÐ,GÊÇDCÑÓ³¤ÏßÉÏÒ»µã£¬AG½»BDºÍBCÓÚE,F£¬ÇóÖ¤£ºAEEGEF =AE

½âÌâÖ¸µ¼ 1¡¢£¨1£©ÒÑÖªa:b:c=2:3:7£¬ÇÒa-b+c=12£¬Çó2a+b-3cµÄÖµ£» b+cc+aa+ba+b

£¨2£©ÒÑÖªa =b =c £¬Çóc µÄÖµ¡£

2¡¢Èçͼ£¬ÒÑÖª¦¤ABCÖУ¬DE¡ÎBC,AD2=AB?AF,ÇóÖ¤¡Ï1=¡Ï2

B3¡¢ÒÑÖª¦¤ABCÖÐ,ADΪ¡ÏBACµÄÍâ½Ç¡ÏEACµÄƽ·ÖÏߣ¬DΪƽ·ÖÏßÓëBC ABBD

ÑÓ³¤Ïß½»µã£¬ÇóÖ¤:AC = DC

BCAAF1D2CEEDBDBF

4¡¢ÒÑÖª£¬Èçͼ£¬¦¤ABCÖÐ,Ö±ÏßDEF·Ö±ð½»BC,ADÓÚD,E£¬½»BAµÄÑÓ³¤ÏßÓÚµãF£¬ÇÒCD = CE £¬ÇóÖ¤AF=AE

5¡¢ÒÑÖª£¬ÔÚÌÝÐÎABCDÖУ¬AD¡ÎBC,µãE,F·Ö±ðÔÚAB,ACÉÏ£¬EF¡ÎBC, GF

EF½»ACÓÚG£¬ÈôEB=DF£¬AE=9,CF=4,ÇóBE,CD, AD µÄÖµ¡£ ¶ÀÁ¢ÑµÁ·

ac

1¡¢Èôb =d £¬ÏÂÁи÷ʽÖÐÕýÈ·µÄ¸öÊýÓУ¨ £©

acaa2ac+5aa+ccma = , d:c=b:a, = , = , = , ddbb2bd+5ba+dd =mb (m¡Ù0) (A)1 (B)2 (C)3 (D)4

2¡¢ÒÑÖªÏß¶Îa,m,n£¬ÇÒax=mn£¬Çó×÷x£¬Í¼ÖÐ×÷·¨ÕýÈ·µÄÊÇ£¨ £©

nnmx

nxnm

x aaaamm (A) (B) (C) (D)

3¡¢Èç¹ûD,E·Ö±ðÔÚ¦¤ABCµÄÁ½±ßAB,ACÉÏ£¬ÓÉÏÂÁÐÄÄÒ»×éÌõ¼þ¿ÉÒÔÍÆ³ö DE¡ÎBC (A) (B)

AD2CE2AD2DE2

= , = (B) = , = BD3AE3AB3BC3AB3EC1AB3AE4 = , = (D) = , = AD2AE2AD4EC3

BFAEADBEDGCFCx4¡¢ÒÑÖªSÕý·½ÐÎ=S¾ØÐΣ¬¾ØÐεij¤ºÍ¿í·Ö±ðΪ10cmºÍ6cm£¬ÔòÕý·½Ðεı߳¤Îª

83

5¡¢ÔÚRt¦¤ABCÖУ¬¡ÏC=90¡ã, ¡ÏA=30¡ãÔòa:b:c= 6¡¢ÒÑÖªx:y=2:3£¬Ôò£¨3x+2y£©:(2x-3y)= x+yxyz2x+y-z

7¡¢ÒÑÖª5x-8y=0£¬Ôòx = 8¡¢ÒÑÖª5 =3 =4 £¬Ôòx+3y+z = 5x+y1xx+y

9¡¢ÒÑÖª3x-2y =2 £¬Ôòy = , x-y = ;

10¡¢ÒÑÖªÏß¶ÎAB³¤Îª1cm£¬PÊÇABµÄ»Æ½ð·Ö¸îµã£¬Ôò½Ï³¤Ïß¶ÎPA= ; PB= ;

11¡¢ÉèµãFÔÚÆ½ÐÐËıßÐÎABCDµÄ±ßCBµÄÑÓ³¤ÏßÉÏ£¬DF½»ABÓÚµãE£¬ÇóÖ¤, AE:AD=AB:CF

12¡¢ÔÚÌÝÐÎABCDÖУ¬AD¡ÎBC,µãEÔÚBDµÄÑÓ³¤ÏßÉÏ£¬ÇÒCE¡ÎAB£¬ACÓëBDÏཻÓÚµãO£¬ÇóÖ¤£ºOB2=OD?OE

µÚ26¿Î ÏàËÆÈý½ÇÐÎ

¡¼ÖªÊ¶µã¡½

ÏàËÆÈý½ÇÐΡ¢ÏàËÆÈý½ÇÐεÄÅж¨¡¢Ö±½ÇÈý½ÇÐÎÏàËÆµÄÅж¨ ¡¼´ó¸ÙÒªÇó¡½

1£® Á˽âÏàËÆÈý½ÇÐεĸÅÄî£¬ÕÆÎÕÏàËÆÈý½ÇÐεÄÅж¨¼°Ö±½ÇÈý½ÇÐÎÏàËÆµÄÅж¨£» 2£® »áÓÃÏàËÆÈý½ÇÐÎÖ¤Ã÷½ÇÏàµÈ»òÏ߶γɱÈÀý£¬»ò½øÐнǵĶÈÊýºÍÏ߶γ¤¶ÈµÄ¼ÆËãµÈ ¡¼¿¼²éÖØµãÓë³£¼ûÌâÐÍ¡½

1£® ÂÛÖ¤Èý½ÇÐÎÏàËÆ£¬Ï߶εı¶·ÖÒÔ¼°µÈ»ýʽ£¬µÈ±Èʽ£¬³£ÒÔÂÛÖ¤ÌâÐÍ »ò¼ÆËãÌâÐͳöÏÖ£»

3£® ѰÕÒ¹¹³ÉÈý½ÇÐÎÏàËÆµÄÌõ¼þ£¬ÔÚÖп¼ÌâÖг£ÒÔ Ñ¡ÔñÌâ»òÌî¿ÕÌâÐÎʽ³öÏÖ£¬È磺ÏÂ

ÁÐËùÊöµÄËÄ×éͼÐÎÖУ¬ÊÇÏàËÆÈý½ÇÐεĸöÊýÊÇ£¨ £© ¢Ù ÓÐÒ»¸ö½ÇÊÇ45¡ãµÄÁ½¸öµÈÑüÈý½ÇÐΣ»¢ÚÁ½¸öÈ«µÈÈý½ÇÐΣ»¢ÛÓÐÒ»¸ö½ÇÊÇ100¡ãµÄÁ½¸öµÈÑüÈý½ÇÐΣ»¢ÜÁ½¸öµÈ±ßÈý½ÇÐΡ£ £¨A£©1¸ö £¨B£©2¸ö £¨C£©3¸ö £¨D£©4¸ö ¡¼Ô¤Ï°Á·Ï°¡½

1£® µãPΪ¡÷ABCµÄAB±ßÉÏÒ»µã£¨AB>AC£©£¬ÏÂÁÐÌõ¼þÖв»Ò»¶¨Äܱ£Ö¤¡÷ACP¡×¡÷ABC

µÄÊÇ£¨ £©

ACAPPCAC

£¨A£©¡ÏACP£½¡ÏB£¨B£©¡ÏAPC£½¡ÏACB£¨C£© = £¨D£© =

ABACBCAB

2.ÏÂÁи÷×éµÄÁ½¸öͼÐΣ¬Ò»¶¨ÏàËÆµÄÊÇ£¨ £©

£¨A£© Á½Ìõ¶Ô½ÇÏß·Ö±ð¶ÔÓ¦³É±ÈÀýµÄÁ½¸öƽÐÐËıßÐÎ £¨B£© µÈÑüÌÝÐεÄÖÐλÏß°ÑËü·Ö³ÉµÄÁ½¸öµÈÑüÌÝÐÎ £¨C£© ÓÐÒ»¸ö½Ç¶ÔÓ¦ÏàµÈµÄÁ½¸öÁâÐÎ £¨D£© ¶ÔÓ¦±ß³É±ÈÀýµÄÁ½¸ö¶à±ßÐÎ

3£® Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏBAC£½90¡ã£¬AD¡ÍBC£¬´¹×ã

ΪD£¬DE¡ÍBC£¬´¹×ãΪE£¬ÔòͼÖÐÓë¡÷ADEÏàËÆµÄÈý½Ç A ÐθöÊýΪ£¨ £©

£¨A£©1 £¨B£©2 £¨C£©3 £¨D£©4 E

4£® MÔÚABÉÏ£¬ÇÒMB£½4£¬AB£½12£¬AC£½16£¬ B D C ÔÚACÉÏÓÐÒ»¶¨N£¬Ê¹¡÷AMNÓëÔ­Èý½ÇÐÎÏàËÆ£¬ÔòANµÄ³¤Îª 5£® Èçͼ£¬¡÷ABCÖУ¬DE¡ÎAC£¬BD£½10£¬DA£½15£¬ A BE£½12£¬ÔòEC£½ £¬DE:AC£½ £¬ D 84