(A) 3 (B)
2 3 (C) (D) 2 22
3£®¾ØÐÎABCDÖУ¬AD£½5£¬AB£½12£¬OΪ¶Ô½ÇÏßAC,BDµÄ½»µã£¬EΪBCÑÓ³¤ÏßÉÏÒ»µã£¬
ÇÒCE£½AC£¬ÔòS¡÷OCE£½____________.
4. ÒÑÖª¡ÏPOQÄÚÓÐÒ»µãA£¬Çó×÷¡÷ABC£¬Ê¹¡÷ABCµÄÖܳ¤×îС£¬ÇÒ¶¥µãB,C·Ö±ðÔÚOP,OQ
QÉÏ¡£
A
OP 5.Èçͼ£¬AB£½DE£¬Ö±ÏßAE,BDÏཻÓÚµãO£¬¡ÏBÓë¡ÏDÏàµÈ£¬ ADÇóÖ¤£ºAO£½EO.
O
BE
6£®Èçͼ£¬ABCDΪÕý·½ÐΣ¬EΪCDµÄÖе㣬¹ýE×÷EF£¬Ê¹¡ÏAEF£½¡ÏBAE£¬EF½»BCÓÚ£¬
ECDÇóÖ¤£ºCF£½2BF.
F
AB
7£®Èçͼ£¬ÔÚÆ½ÐÐËıßÐÎABCDÖÐ,EÊÇBCµÄÖе㣬DE,ABµÄÑÓ³¤Ïß½»ÓÚµãF£¬ÇóÖ¤£ºS¡÷
ABE£½S¡÷EFC.
AD
BCE
F
µÚ25¿Î ±ÈÀýÏß¶Î
¡¼ÖªÊ¶µã¡½
±ÈÓë±ÈÀý¡¢±ÈÀýµÄ»ù±¾ÐÔÖÊ¡¢ºÏ±ÈÐÔÖÊ¡¢µÈ±ÈÐÔÖÊ¡¢Á½Ï߶εıȡ¢³É±ÈÀýÏ߶Ρ¢Æ½ÐÐÏß·ÖÏ߶γɱÈÀý¡¢½ØÈý½ÇÐÎÁ½±ß»òÆäÑÓ³¤ÏßµÄÖ±Ï߯½ÐÐÓÚµÚÈý±ßµÄÅж¨¡¢»Æ½ð·Ö¸î ¡¼´ó¸ÙÒªÇó¡½
1£®Àí½â±ÈÓë±ÈÀý¼°±ÈÀýÖÐÏîµÈ¸ÅÄî£¬ÕÆÎÕ±ÈÀýµÄ»ù±¾ÐÔÖÊ¡¢ºÏ±È¶¨ÀíºÍ¸ü±È¶¨Àí£¬»áÓÃËüÃǽøÐмòµ¥µÄ±ÈÀý±äÐΣ»
2£®Àí½â±ÈÀýÏ߶μ°»Æ½ð·Ö¸îµÄ¸ÅÄÀí½âƽÐÐÏß·ÖÏ߶γɱÈÀý¶¨Àí£¬»á×÷µÚËıÈÀýÏî ¡¼¿¼²éÖØµãÓë³£¼ûÌâÐÍ¡½
1£® ¿¼²é±ÈÀýµÄÐÔÖÊ£¬³£ÒÔÑ¡ÔñÌâ»òÌî¿ÕÌâ³öÏÖ£¬È磺 (1) ÒÑÖªa£½4£¬b£½9£¬Ôòa¡¢bµÄ±ÈÀýÖÐÏîÊÇ
(2) ÒÑÖªÏß¶Îa£½4cm£¬b£½9cm£¬Ïß¶ÎcÊÇa¡¢bµÄ±ÈÀýÖÐÏÔòÏß¶ÎcµÄ³¤Îª 2£® ÇóÏ߶εıȡ¢Ãæ»ýµÄ±È£¬ÔÚÖп¼ÌâÖг£ÒÔÑ¡ÔñÌâ¡¢Ìî¿ÕÌâ»òÇó½âÌâÐͳöÏÖ£¬Èçͼ£¬
ÒÑÖªDE¡ÎBC£¬CDºÍBEÏཻÓÚO£¬
S¡÷DOE£ºS¡÷COB £½4£º9£¬ÔòAE£ºECΪ£¨ £© ¡¼Ô¤Ï°Á·Ï°¡½
81
ac
1£® Èô»¥²»ÏàµÈµÄËÄÌõÏ߶εij¤a,b,c,dÂú×ãb £½d £¬mΪÈÎÒâʵÊý£¬ÔòÏÂÁи÷ʽÖУ¬Ïà
µÈ¹ØÏµÒ»¶¨³ÉÁ¢µÄÊÇ£¨ £©
a£«mc£«ma£«bc£«da£bc£dad£¨A£© £½ £¨B£©b £½c £¨C£©c £½b £¨D£© £½
b£«md£«ma£«bc£«d2£®Èçͼ£¬ÒÑÖª¡÷ABCÖУ¬DE¡ÎBC£¬ÔòÏÂÁеÈʽÖв»³ÉÁ¢µÄÊÇ£¨ £© £¨A£© AD£ºAB£½AE£ºAC £¨B£©AD£ºDB£½AE£ºEC
£¨C£©AD£ºDB£½DE£ºBC £¨D£©AD£ºAB£½DE£ºBC 3£® Èçͼ£¬¡÷ABCÖУ¬DE¡ÎFG¡ÎBC£¬AD£ºDF£ºFB£½3£º2£º1£¬ Ôò¡÷ADE£¬ËıßÐÎDFGE£¬ËıßÐÎFBCGµÄÃæ»ý±ÈÊÇ£¨ £© £¨A£©3£º2£º1£¨B£©9£º4£º1£¨C£©9£º16£º11£¨D£©9£º25£º36 4£®ÒÑÖª£¨£3£©£º5£½£¨£2£©£º£¨x£1£©£¬Ôòx£½ 5£®ÈôxÊÇ3¡¢4¡¢9µÄµÚËıÈÀýÏÔòx£½ £¬ ÓÖxÊÇ6ºÍyµÄ±ÈÀýÖÐÏÔòy£½
ace3
6£®ÒÑÖªb £½d £½f £½5 £¬b£«d£«f£½50£¬ÄÇôa£«c£«e£½ x£yx£«yx£«yx7
7£®Èç¹ûy £½3 £¬ÄÇôy = ,y = , £½
x£«y
¿¼µãѵÁ·£º
3x
1¡¢Èôx =4 £¬ÔòxµÈÓÚ£¨ £©
(A)12 (B)23 (C)- 23 (D)¡À23 2¡¢ÒÑÖªyÊÇ3£¬6£¬8µÄµÚËıÈÀýÏÔòyµÈÓÚ£¨ £© (A)43 (B)16 (C)12 (D)4 3¡¢Èô(m+n):n=5:2£¬Ôòm:nµÄÖµÊÇ£¨ £©
(A)5:2 (B)2:3 (C)3:2 (D)2:5 4¡¢Èçͼ£¬DF¡ÎAC,DE¡ÎBC,ÏÂÁи÷ʽÖÐÕýÈ·µÄÊÇ£¨ £©
ADBFAECEAEBDADAB(A) BD =CF (B) DE =BC (C) CE =CD (D) DE =BC
AC EDE ADBBCF (4) (8) ab
5¡¢°Ñm=c д³É±ÈÀýʽ£¬ÇÒʹmΪµÚËıÈÀýÏî ; 6¡¢ÈôÏß¶Îa=5cm£¬b=10cm,c=4dm,d=2cm,ËüÃÇÊÇ·ñ³É±ÈÀýÏß¶Î ; x5
7¡¢ÒÑÖªy =3 £¬Ôò(x+y):(x-y)= ;
8¡¢Èçͼ£¬ÒÑÖª¦¤ABCÖУ¬DE¡ÎBC,AC=7cm,CE=3cm,AB=6cm,ÔòAD= ;
9¡¢Èçͼ£¬ÒÑÖªÌÝÐÎABCDÖУ¬AD¡ÎBC,AC,BD½»ÓÚO£¬¹ýO×÷ADµÄƽÐÐÏß½»ABÓÚM£¬½»
DACDÓÚN£¬ÈôAD=3cm£¬BC=5cm,ÇóON.
MN O
BC82
10¡¢Èçͼ£¬ÒÑ֪ƽÐÐËıßÐÎABCDÖÐ,GÊÇDCÑÓ³¤ÏßÉÏÒ»µã£¬AG½»BDºÍBCÓÚE,F£¬ÇóÖ¤£ºAEEGEF =AE
½âÌâÖ¸µ¼ 1¡¢£¨1£©ÒÑÖªa:b:c=2:3:7£¬ÇÒa-b+c=12£¬Çó2a+b-3cµÄÖµ£» b+cc+aa+ba+b
£¨2£©ÒÑÖªa =b =c £¬Çóc µÄÖµ¡£
2¡¢Èçͼ£¬ÒÑÖª¦¤ABCÖУ¬DE¡ÎBC,AD2=AB?AF,ÇóÖ¤¡Ï1=¡Ï2
B3¡¢ÒÑÖª¦¤ABCÖÐ,ADΪ¡ÏBACµÄÍâ½Ç¡ÏEACµÄƽ·ÖÏߣ¬DΪƽ·ÖÏßÓëBC ABBD
ÑÓ³¤Ïß½»µã£¬ÇóÖ¤:AC = DC
BCAAF1D2CEEDBDBF
4¡¢ÒÑÖª£¬Èçͼ£¬¦¤ABCÖÐ,Ö±ÏßDEF·Ö±ð½»BC,ADÓÚD,E£¬½»BAµÄÑÓ³¤ÏßÓÚµãF£¬ÇÒCD = CE £¬ÇóÖ¤AF=AE
5¡¢ÒÑÖª£¬ÔÚÌÝÐÎABCDÖУ¬AD¡ÎBC,µãE,F·Ö±ðÔÚAB,ACÉÏ£¬EF¡ÎBC, GF
EF½»ACÓÚG£¬ÈôEB=DF£¬AE=9,CF=4,ÇóBE,CD, AD µÄÖµ¡£ ¶ÀÁ¢ÑµÁ·
ac
1¡¢Èôb =d £¬ÏÂÁи÷ʽÖÐÕýÈ·µÄ¸öÊýÓУ¨ £©
acaa2ac+5aa+ccma = , d:c=b:a, = , = , = , ddbb2bd+5ba+dd =mb (m¡Ù0) (A)1 (B)2 (C)3 (D)4
2¡¢ÒÑÖªÏß¶Îa,m,n£¬ÇÒax=mn£¬Çó×÷x£¬Í¼ÖÐ×÷·¨ÕýÈ·µÄÊÇ£¨ £©
nnmx
nxnm
x aaaamm (A) (B) (C) (D)
3¡¢Èç¹ûD,E·Ö±ðÔÚ¦¤ABCµÄÁ½±ßAB,ACÉÏ£¬ÓÉÏÂÁÐÄÄÒ»×éÌõ¼þ¿ÉÒÔÍÆ³ö DE¡ÎBC (A) (B)
AD2CE2AD2DE2
= , = (B) = , = BD3AE3AB3BC3AB3EC1AB3AE4 = , = (D) = , = AD2AE2AD4EC3
BFAEADBEDGCFCx4¡¢ÒÑÖªSÕý·½ÐÎ=S¾ØÐΣ¬¾ØÐεij¤ºÍ¿í·Ö±ðΪ10cmºÍ6cm£¬ÔòÕý·½Ðεı߳¤Îª
83
5¡¢ÔÚRt¦¤ABCÖУ¬¡ÏC=90¡ã, ¡ÏA=30¡ãÔòa:b:c= 6¡¢ÒÑÖªx:y=2:3£¬Ôò£¨3x+2y£©:(2x-3y)= x+yxyz2x+y-z
7¡¢ÒÑÖª5x-8y=0£¬Ôòx = 8¡¢ÒÑÖª5 =3 =4 £¬Ôòx+3y+z = 5x+y1xx+y
9¡¢ÒÑÖª3x-2y =2 £¬Ôòy = , x-y = ;
10¡¢ÒÑÖªÏß¶ÎAB³¤Îª1cm£¬PÊÇABµÄ»Æ½ð·Ö¸îµã£¬Ôò½Ï³¤Ïß¶ÎPA= ; PB= ;
11¡¢ÉèµãFÔÚÆ½ÐÐËıßÐÎABCDµÄ±ßCBµÄÑÓ³¤ÏßÉÏ£¬DF½»ABÓÚµãE£¬ÇóÖ¤, AE:AD=AB:CF
12¡¢ÔÚÌÝÐÎABCDÖУ¬AD¡ÎBC,µãEÔÚBDµÄÑÓ³¤ÏßÉÏ£¬ÇÒCE¡ÎAB£¬ACÓëBDÏཻÓÚµãO£¬ÇóÖ¤£ºOB2=OD?OE
µÚ26¿Î ÏàËÆÈý½ÇÐÎ
¡¼ÖªÊ¶µã¡½
ÏàËÆÈý½ÇÐΡ¢ÏàËÆÈý½ÇÐεÄÅж¨¡¢Ö±½ÇÈý½ÇÐÎÏàËÆµÄÅж¨ ¡¼´ó¸ÙÒªÇó¡½
1£® Á˽âÏàËÆÈý½ÇÐεĸÅÄî£¬ÕÆÎÕÏàËÆÈý½ÇÐεÄÅж¨¼°Ö±½ÇÈý½ÇÐÎÏàËÆµÄÅж¨£» 2£® »áÓÃÏàËÆÈý½ÇÐÎÖ¤Ã÷½ÇÏàµÈ»òÏ߶γɱÈÀý£¬»ò½øÐнǵĶÈÊýºÍÏ߶γ¤¶ÈµÄ¼ÆËãµÈ ¡¼¿¼²éÖØµãÓë³£¼ûÌâÐÍ¡½
1£® ÂÛÖ¤Èý½ÇÐÎÏàËÆ£¬Ï߶εı¶·ÖÒÔ¼°µÈ»ýʽ£¬µÈ±Èʽ£¬³£ÒÔÂÛÖ¤ÌâÐÍ »ò¼ÆËãÌâÐͳöÏÖ£»
3£® ѰÕÒ¹¹³ÉÈý½ÇÐÎÏàËÆµÄÌõ¼þ£¬ÔÚÖп¼ÌâÖг£ÒÔ Ñ¡ÔñÌâ»òÌî¿ÕÌâÐÎʽ³öÏÖ£¬È磺ÏÂ
ÁÐËùÊöµÄËÄ×éͼÐÎÖУ¬ÊÇÏàËÆÈý½ÇÐεĸöÊýÊÇ£¨ £© ¢Ù ÓÐÒ»¸ö½ÇÊÇ45¡ãµÄÁ½¸öµÈÑüÈý½ÇÐΣ»¢ÚÁ½¸öÈ«µÈÈý½ÇÐΣ»¢ÛÓÐÒ»¸ö½ÇÊÇ100¡ãµÄÁ½¸öµÈÑüÈý½ÇÐΣ»¢ÜÁ½¸öµÈ±ßÈý½ÇÐΡ£ £¨A£©1¸ö £¨B£©2¸ö £¨C£©3¸ö £¨D£©4¸ö ¡¼Ô¤Ï°Á·Ï°¡½
1£® µãPΪ¡÷ABCµÄAB±ßÉÏÒ»µã£¨AB>AC£©£¬ÏÂÁÐÌõ¼þÖв»Ò»¶¨Äܱ£Ö¤¡÷ACP¡×¡÷ABC
µÄÊÇ£¨ £©
ACAPPCAC
£¨A£©¡ÏACP£½¡ÏB£¨B£©¡ÏAPC£½¡ÏACB£¨C£© = £¨D£© =
ABACBCAB
2.ÏÂÁи÷×éµÄÁ½¸öͼÐΣ¬Ò»¶¨ÏàËÆµÄÊÇ£¨ £©
£¨A£© Á½Ìõ¶Ô½ÇÏß·Ö±ð¶ÔÓ¦³É±ÈÀýµÄÁ½¸öƽÐÐËıßÐÎ £¨B£© µÈÑüÌÝÐεÄÖÐλÏß°ÑËü·Ö³ÉµÄÁ½¸öµÈÑüÌÝÐÎ £¨C£© ÓÐÒ»¸ö½Ç¶ÔÓ¦ÏàµÈµÄÁ½¸öÁâÐÎ £¨D£© ¶ÔÓ¦±ß³É±ÈÀýµÄÁ½¸ö¶à±ßÐÎ
3£® Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏBAC£½90¡ã£¬AD¡ÍBC£¬´¹×ã
ΪD£¬DE¡ÍBC£¬´¹×ãΪE£¬ÔòͼÖÐÓë¡÷ADEÏàËÆµÄÈý½Ç A ÐθöÊýΪ£¨ £©
£¨A£©1 £¨B£©2 £¨C£©3 £¨D£©4 E
4£® MÔÚABÉÏ£¬ÇÒMB£½4£¬AB£½12£¬AC£½16£¬ B D C ÔÚACÉÏÓÐÒ»¶¨N£¬Ê¹¡÷AMNÓëÔÈý½ÇÐÎÏàËÆ£¬ÔòANµÄ³¤Îª 5£® Èçͼ£¬¡÷ABCÖУ¬DE¡ÎAC£¬BD£½10£¬DA£½15£¬ A BE£½12£¬ÔòEC£½ £¬DE:AC£½ £¬ D 84