Äѵã 4Ö±ÏßÓëÔ²×¶ÇúÏß
y2x|x|??1941£®Ö±Ïßy=x+3ÓëÇúÏߵĹ«¹²µãµÄ¸öÊýÊÇ £¨ £©
A£®1 B£®2 C£®3 D£®4
3x2MN?.?y2?12 2£®¹ýÍÖÔ²4µÄÓÒ½¹µãF×÷Ö±Ïßl½»ÍÖÔ²ÓÚM¡¢NÁ½µã£¬Éè
£¨¢ñ£©ÇóÖ±ÏßlµÄбÂÊk£»
£¨¢ò£©ÉèM¡¢NÔÚÍÖÔ²ÓÒ×¼ÏßÉϵÄÉäÓ°·Ö±ðΪM1¡¢N1£¬ÇóMN?M1N1µÄÖµ¡£
3£®ÒÑÖªÔ²M:x2+y2-6x+a=0(a<9)ÉÏÓÐËĸöµãA¡¢B¡¢C¡¢D£¨A¡¢B¡¢C¡¢D˳ʱÕëÅÅÁУ©£¬Âú×ã
AB?AD?AC,ÇÒAB?AC?AD?AC,¶øÖ±ÏßCDµÄÒ»¸ö·½ÏòÏòÁ¿µÄ×ø±êΪ£¨3£¬1£©¡£
ÇóÖ±ÏßAC¼°BDµÄбÂÊ£»
Èç¹ûÔÚxÖáÉÏ·½µÄA£¬BÁ½µãÔÚÒ»ÌõÒÔÔµãΪ¶¥µã£¬ÒÔxÖáΪ¶Ô³ÆÖáµÄÅ×ÎïÏßÉÏ£¬ÇóÅ×ÎïÏß·½³Ì¼°Ö±ÏßCDµÄ·½³Ì¡£
x2?y2b2?1(a?b?0)µÄ×ó1¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬ÀëÐÄÂÊe=2,P1ΪÍÖÔ²ÉÏÒ»µã£¬Âú×ã
4£®ÒÑÖªÍÖÔ²C£ºa
2F1F2?P1F2?0,P1F1?P1F2?4,9бÂÊΪkµÄÖ±Ïßl¹ý×ó½¹µãF1ÇÒÍÖÔ²µÄÁ½¸ö½»µãΪP¡¢Q£¬ÓëyÖá½»µãΪ
G£¬µãQ·ÖÓÐÏòÏß¶ÎGF1Ëù³ÉµÄ±ÈΪ¦Ë.
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì¡£
£¨¢ò£©ÉèÏß¶ÎPQÖеãRÔÚ×ó×¼ÏßÉϵÄÉäӰΪH£¬µ±1¡Ü¦Ë¡Ü2ʱ£¬Çó|RH|µÄȡֵ·¶Î§¡£
Äѵã 5¹ì¼£ÎÊÌâ
1£®ÉèF£¨2£¬0£©£¬¶¯µãPµ½yÖáµÄ¾àÀëΪd£¬ÔòÂú×ãµãPµÄ¹ì¼£·½³ÌÊÇy2=8xºÍy=0(x¡Ü0)µÄÒ»¸öÌõ¼þÊÇ £¨ £©
A.|PF|-d=-2 B.|PF|-d=2 C.|PF|-d=-3 D.|PF|-d=3
2£®ÒÑÖªÁ½µãM£¨-2£¬0£©£¬N£¨2£¬0£©¶¯µãPÔÚyÖáÉϵÄÉäÓ°ÊÇH£¬Èç¹ûPH?PH,PM?PN·Ö±ðÊǹ«±ÈΪ2µÄµÈ±ÈÊýÁеĵÚÈý¡¢ËÄÏ
Ç󶯵ãPµÄ¹ì¼£C£»
ÒÑÖª¹ýµãNµÄÖ±Ïßl½»ÇúÏßCÓÚxÖáÏ·½Á½¸ö²»Í¬µãA£¬B£¬ÉèRΪABµÄÖе㣬Èô¹ýRÓ붨µãQ£¨0£¬-2£©µÄÖ±Ïß½»xÖáÓÚµãD£¨x0,0£©£¬Çóx0µÄȡֵ·¶Î§
3£®Éèx1,x2¡ÊR£¬³£Êýa>0,¶¨ÒåÔËËã¡°?¡±x1?x2=(x1+x2)2,¶¨ÒåÔËËã¡°?¡±x1?x2=(x1-x2)2