Ô²×¶ÇúÏßÒ×´íµãµã¾¦Óë¸ß¿¼Í»ÆÆ ÏÂÔØ±¾ÎÄ

Äѵã 4Ö±ÏßÓëÔ²×¶ÇúÏß

y2x|x|??1941£®Ö±Ïßy=x+3ÓëÇúÏߵĹ«¹²µãµÄ¸öÊýÊÇ £¨ £©

A£®1 B£®2 C£®3 D£®4

3x2MN?.?y2?12 2£®¹ýÍÖÔ²4µÄÓÒ½¹µãF×÷Ö±Ïßl½»ÍÖÔ²ÓÚM¡¢NÁ½µã£¬Éè

£¨¢ñ£©ÇóÖ±ÏßlµÄбÂÊk£»

£¨¢ò£©ÉèM¡¢NÔÚÍÖÔ²ÓÒ×¼ÏßÉϵÄÉäÓ°·Ö±ðΪM1¡¢N1£¬ÇóMN?M1N1µÄÖµ¡£

3£®ÒÑÖªÔ²M:x2+y2-6x+a=0(a<9)ÉÏÓÐËĸöµãA¡¢B¡¢C¡¢D£¨A¡¢B¡¢C¡¢D˳ʱÕëÅÅÁУ©£¬Âú×ã

AB?AD?AC,ÇÒAB?AC?AD?AC,¶øÖ±ÏßCDµÄÒ»¸ö·½ÏòÏòÁ¿µÄ×ø±êΪ£¨3£¬1£©¡£

ÇóÖ±ÏßAC¼°BDµÄбÂÊ£»

Èç¹ûÔÚxÖáÉÏ·½µÄA£¬BÁ½µãÔÚÒ»ÌõÒÔÔ­µãΪ¶¥µã£¬ÒÔxÖáΪ¶Ô³ÆÖáµÄÅ×ÎïÏßÉÏ£¬ÇóÅ×ÎïÏß·½³Ì¼°Ö±ÏßCDµÄ·½³Ì¡£

x2?y2b2?1(a?b?0)µÄ×ó1¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬ÀëÐÄÂÊe=2,P1ΪÍÖÔ²ÉÏÒ»µã£¬Âú×ã

4£®ÒÑÖªÍÖÔ²C£ºa

2F1F2?P1F2?0,P1F1?P1F2?4,9бÂÊΪkµÄÖ±Ïßl¹ý×ó½¹µãF1ÇÒÍÖÔ²µÄÁ½¸ö½»µãΪP¡¢Q£¬ÓëyÖá½»µãΪ

G£¬µãQ·ÖÓÐÏòÏß¶ÎGF1Ëù³ÉµÄ±ÈΪ¦Ë.

£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì¡£

£¨¢ò£©ÉèÏß¶ÎPQÖеãRÔÚ×ó×¼ÏßÉϵÄÉäӰΪH£¬µ±1¡Ü¦Ë¡Ü2ʱ£¬Çó|RH|µÄȡֵ·¶Î§¡£

Äѵã 5¹ì¼£ÎÊÌâ

1£®ÉèF£¨2£¬0£©£¬¶¯µãPµ½yÖáµÄ¾àÀëΪd£¬ÔòÂú×ãµãPµÄ¹ì¼£·½³ÌÊÇy2=8xºÍy=0(x¡Ü0)µÄÒ»¸öÌõ¼þÊÇ £¨ £©

A.|PF|-d=-2 B.|PF|-d=2 C.|PF|-d=-3 D.|PF|-d=3

2£®ÒÑÖªÁ½µãM£¨-2£¬0£©£¬N£¨2£¬0£©¶¯µãPÔÚyÖáÉϵÄÉäÓ°ÊÇH£¬Èç¹ûPH?PH,PM?PN·Ö±ðÊǹ«±ÈΪ2µÄµÈ±ÈÊýÁеĵÚÈý¡¢ËÄÏ

Ç󶯵ãPµÄ¹ì¼£C£»

ÒÑÖª¹ýµãNµÄÖ±Ïßl½»ÇúÏßCÓÚxÖáÏ·½Á½¸ö²»Í¬µãA£¬B£¬ÉèRΪABµÄÖе㣬Èô¹ýRÓ붨µãQ£¨0£¬-2£©µÄÖ±Ïß½»xÖáÓÚµãD£¨x0,0£©£¬Çóx0µÄȡֵ·¶Î§

3£®Éèx1,x2¡ÊR£¬³£Êýa>0,¶¨ÒåÔËËã¡°?¡±x1?x2=(x1+x2)2,¶¨ÒåÔËËã¡°?¡±x1?x2=(x1-x2)2