20012014Äê½­ËÕרת±¾¸ßµÈÊýÑ§ÕæÌâ¼°²Î¿¼´ð°¸´óѧ±¾¿Æ±ÏÒµÂÛÎÄ ÏÂÔØ±¾ÎÄ

2001Äê½­ËÕÊ¡ÆÕͨ¸ßУ¡°×¨×ª±¾¡±Í³Ò»¿¼ÊÔ

¸ßµÈÊýѧ

Ò»¡¢Ñ¡ÔñÌ⣨±¾´óÌâ¹²5СÌ⣬ÿСÌâ3·Ö£¬¹²15·Ö£©

1¡¢ÏÂÁи÷¼«ÏÞÕýÈ·µÄÊÇ £¨ £©

1xA¡¢lim(1?)?e

x?0x2¡¢²»¶¨»ý·Ö

1B¡¢lim(1?)x?e

x??x1C¡¢limxsinx??11?1 D¡¢limxsin?1

x?0xx?

11?x2 dx? £¨ £©

A¡¢

11?x2B¡¢

11?x2?c C¡¢arcsinx D¡¢arcsinx?c

3¡¢Èôf(x)?f(?x)£¬ÇÒÔÚ?0,???ÄÚf'(x)?0¡¢f''(x)?0£¬ÔòÔÚ(??,0)ÄÚ±ØÓÐ £¨ £© A¡¢f'(x)?0,f''(x)?0 C¡¢f'(x)?0,f''(x)?0 4¡¢

B¡¢f'(x)?0,f''(x)?0 D¡¢f'(x)?0,f''(x)?0

?20 x?1dx? £¨ £©

B¡¢2

22A¡¢0 C¡¢£­1 D¡¢1

5¡¢·½³Ìx?y?4xÔÚ¿Õ¼äÖ±½Ç×ø±êϵÖбíʾ £¨ £© A¡¢Ô²ÖùÃæ

B¡¢µã

C¡¢Ô²

D¡¢ÐýתÅ×ÎïÃæ

¶þ¡¢Ìî¿ÕÌ⣨±¾´óÌâ¹²5СÌ⣬ÿСÌâ3·Ö£¬¹²15·Ö£©

?x?tetdy6¡¢Éè?£¬Ôò2dx?y?2t?t'''t?0?

7¡¢y?6y?13y?0µÄͨ½âΪ 8¡¢½»»»»ý·Ö´ÎÐò

?dx?022xxf(x,y)dy? y9¡¢º¯Êýz?xµÄȫ΢·Ödz? 1

10¡¢Éèf(x)ΪÁ¬Ðøº¯Êý£¬Ôò

?1?1[f(x)?f(?x)?x]x3dx?

Èý¡¢¼ÆËãÌ⣨±¾´óÌâ¹²10СÌ⣬ÿСÌâ4·Ö£¬¹²40·Ö£© 11¡¢ÒÑÖªy?arctanxx?ln(1?2x)?cos2?5£¬Çódy.

12¡¢¼ÆËãlimx?0x??etdt0x2sinx.

13¡¢Çóf(x)?

(x?1)sinxµÄ¼ä¶Ïµã£¬²¢ËµÃ÷ÆäÀàÐÍ. 2x(x?1)14¡¢ÒÑÖªy?x?

2lnydy£¬Çóxdxx?1,y?1.

e2xdx. 15¡¢¼ÆËã?x1?ek1dx?£¬ÇókµÄÖµ. ???1?x22016¡¢ÒÑÖª

17¡¢Çóy'?ytanx?secxÂú×ãy 18¡¢¼ÆËã

x?0?0µÄÌØ½â.

??sinydxdy£¬DÊÇx?1¡¢y?2¡¢y?x?1Χ³ÉµÄÇøÓò.

D2

19¡¢ÒÑÖªy?f(x)¹ý×ø±êÔ­µã£¬²¢ÇÒÔÚÔ­µã´¦µÄÇÐÏ߯½ÐÐÓÚÖ±Ïß2x?y?3?0£¬Èô

f'(x)?3ax2?b£¬ÇÒf(x)ÔÚx?1´¦È¡µÃ¼«Öµ£¬ÊÔÈ·¶¨a¡¢bµÄÖµ£¬²¢Çó³öy?f(x)µÄ±í´ïʽ.

?zx?2z20¡¢Éèz?f(x,)£¬ÆäÖÐf¾ßÓжþ½×Á¬ÐøÆ«µ¼Êý£¬Çó¡¢.

?x?x?yy2

2

ËÄ¡¢×ÛºÏÌ⣨±¾´óÌâ¹²4СÌ⣬µÚ21СÌâ10·Ö£¬µÚ22СÌâ8·Ö£¬µÚ23¡¢24СÌâ¸÷6·Ö£¬¹²30·Ö£© 21¡¢¹ýP(1,0)×÷Å×ÎïÏßy? £¨1£©ÇÐÏß·½³Ì£» £¨2£©ÓÉy?x?2µÄÇÐÏߣ¬Çó

x?2£¬ÇÐÏß¼°xÖáΧ³ÉµÄÆ½ÃæÍ¼ÐÎÃæ»ý£»

£¨3£©¸ÃÆ½ÃæÍ¼ÐηֱðÈÆxÖá¡¢yÖáÐýתһÖܵÄÌå»ý¡£

?f(x)?22¡¢Éèg(x)??x??ax?0x?0£¬ÆäÖÐf(x)¾ßÓжþ½×Á¬Ðøµ¼Êý£¬ÇÒf(0)?0.

£¨1£©Çóa£¬Ê¹µÃg(x)ÔÚx?0´¦Á¬Ðø£» £¨2£©Çóg'(x).

'23¡¢Éèf(x)ÔÚ?0,c?ÉϾßÓÐÑϸñµ¥µ÷µÝ¼õµÄµ¼Êýf(x)ÇÒf(0)?0£»ÊÔÖ¤Ã÷£º

¶ÔÓÚÂú×ã²»µÈʽ0?a?b?a?b?cµÄa¡¢bÓÐf(a)?f(b)?f(a?b).

24¡¢Ò»×âÁÞ¹«Ë¾ÓÐ40Ì×É豸£¬Èô¶¨½ðÿÔÂÿÌ×200Ԫʱ¿ÉÈ«×â³ö£¬µ±×â½ðÿÔÂÿÌ×Ôö¼Ó10Ԫʱ£¬×â³öÉ豸¾Í»á¼õÉÙÒ»Ì×£¬¶ÔÓÚ×â³öµÄÉ豸ÿÌ×ÿÔÂÐ軨20ÔªµÄά»¤·Ñ¡£ÎÊÿÔÂÒ»Ì׵͍½ð¶àÉÙʱ¹«Ë¾¿É»ñµÃ×î´óÀûÈó£¿

3

2002Äê½­ËÕÊ¡ÆÕͨ¸ßУ¡°×¨×ª±¾¡±Í³Ò»¿¼ÊÔ

¸ßµÈÊýѧ

Ò»¡¢Ñ¡ÔñÌ⣨±¾´óÌâ¹²10СÌ⣬ÿСÌâ3·Ö£¬¹²30·Ö£©

1¡¢ÏÂÁм«ÏÞÖУ¬ÕýÈ·µÄÊÇ £¨ £© A¡¢ lim(1?tanx)x?0cotx?e ?e

B¡¢ limxsinx?01?1 x1nC¡¢ lim(1?cosx)x?0secxD¡¢ lim(1?n)?e

n??2¡¢ÒÑÖªf(x)Êǿɵ¼µÄº¯Êý£¬Ôòlimh?0f(h)?f(?h)? £¨ £©

hC¡¢2f?(0)

D¡¢2f?(x)

A¡¢f?(x) B¡¢f?(0)

3¡¢Éèf(x)ÓÐÁ¬ÐøµÄµ¼º¯Êý£¬ÇÒa?0¡¢1£¬ÔòÏÂÁÐÃüÌâÕýÈ·µÄÊÇ £¨ £© A¡¢C¡¢

?f?(ax)dx?1f(ax)?C aB¡¢D¡¢

?f?(ax)dx??f?(ax)dx?f(ax)?C f(x)?C

?f?(ax)dx)??af(ax)

exdx B¡¢

1?e2x4¡¢Èôy?arctanex£¬Ôòdy? £¨ £©

1dx A¡¢2x1?eC¡¢

11?e2xdx D¡¢

ex1?e2xdx

5¡¢ÔÚ¿Õ¼ä×ø±êϵÏ£¬ÏÂÁÐÎªÆ½Ãæ·½³ÌµÄÊÇ £¨ £© A¡¢y2?x B¡¢??x?y?z?0x?2y?4z C¡¢== D¡¢3x?4z?0

27?3?x?2y?z?16¡¢Î¢·Ö·½³Ìy???2y??y?0µÄͨ½âÊÇ £¨ £© A¡¢y?c1cosx?c2sinx B¡¢y?c1e?c2e C¡¢y??c1?c2x?ex2x?x D¡¢y?c1e?c2e

x?x7¡¢ÒÑÖªf(x)ÔÚ???,???ÄÚÊǿɵ¼º¯Êý£¬Ôò(f(x)?f(?x))?Ò»¶¨ÊÇ £¨ £© A¡¢Ææº¯Êý B¡¢Å¼º¯Êý C¡¢·ÇÆæ·Çżº¯Êý D¡¢²»ÄÜÈ·¶¨ÆæÅ¼ÐÔ 8¡¢ÉèI??1x41?x0 dx£¬ÔòIµÄ·¶Î§ÊÇ £¨ £©

4