Êý¾Ý½á¹¹¸´Ï°Ìâ(4A) ÏÂÔØ±¾ÎÄ

8.´Ó¶ÑÖÐɾ³ýÒ»¸öÔªËØµÄʱ¼ä¸´ÔÓ¶ÈΪ£¨ £©¡£

A. O(1) B. O(n) C. O(Log2n) D. O(nLog2n) ±ê×¼´ð°¸£ºC

9.ÀûÓÃ3¡¢6¡¢8¡¢12Ϊ4¸öÖµ×÷ΪҶ×Ó½áµãµÄȨ£¬Éú³ÉÒ»¿Ã¹þ·òÂüÊ÷£¬¸ÃÊ÷ÖÐËùÓÐÒ¶×ÓµÄ×î¶Ì´øÈ¨Â·¾¶³¤¶ÈΪ£¨ £©¡£

A. 18 B. 16 C. 12 D. 30 ±ê×¼´ð°¸£ºA

10.Ïò¶ÑÖвåÈëÒ»¸öÔªËØµÄʱ¼ä¸´ÔÓ¶ÈÊÇ£¨ £©¡£

A. O(1) B. O(Log2n) C. O(n) D. O(nLog2n) ±ê×¼´ð°¸£ºB

¶þ¡¢Ìî¿ÕÌ⣨¹²ÓÐÌâÄ¿18Ì⣩

1.¶ÑµÄ´æ´¢½á¹¹ÊÊÒ˲ÉÓÃ˳Ðò´æ´¢£¬ÕâÑùÄܹ»³ä·ÖÀûÓô洢¿Õ¼ä¡£

2.ÈôÓÐÁ½¿ÃÊ÷T 1ºÍT 2¾ùΪС¸ù¶Ñ£¬µ±ÒÔËüÃÇ×÷Ϊһ¿ÃÊ÷TµÄ×ó¡¢ÓÒ×ÓÊ÷£¬²¢ÓÃÒ»¸ö±ÈÕâÁ½¿Ã×ÓÊ÷µÄ¸ù¶¼Ð¡µÄÖµ×÷ΪÕû¸öÊ÷TµÄ¸ù½áµã£¬ÔòÊ÷TÊÇÒ»¸ö¶Ñ;С¸ù¶Ñ¡£

3.ÔÚÒ»¿Ã·Ç¿ÕµÄ¶þ²æËÑË÷Ê÷ÖУ¬ÒÔÿ¸ö·ÖÖ§½áµãΪ¸ùµÄ×ÓÊ÷¶¼ÊÇÒ»¿Ã¶þ²æËÑË÷Ê÷¡£

4.ÓÐ7¸ö´øÈ¨½áµã£¬ÆäȨֵ·Ö±ðΪ3¡¢7¡¢8¡¢2¡¢6¡¢10¡¢14£¬ÈôÒÀËüÃÇΪҶ×Ó½áµã¹¹ÔìÒ»¿Ã¹þ·òÂüÊ÷£¬¸ø³öÆä¹ãÒå±í£¬²¢¼ÆËã³öÆä´øÈ¨Â·¾¶³¤¶ÈWPL£½134¡£ 5.¶ÑÊÇÒ»¿ÃÍêÈ«¶þ²æÊ÷¡£

6.ÔÚÒ»¿ÃÊ÷ÖУ¬½áµãµÄ´øÈ¨Â·¾¶³¤¶È¹æ¶¨Îª´ÓÊ÷¸ù½áµãµ½¸Ã½áµãÖ®¼äµÄ·¾¶³¤¶ÈÓë¸Ã½áµãÉÏȨµÄ³Ë»ý¡£ 7.ÔÚÒ»¿Ã¶þ²æËÑË÷Ê÷ÖУ¬Æä×ó×ÓÊ÷ÉϽáµãµÄ¹Ø¼ü×ÖֵСÓÚ¸ù½áµãµÄ¹Ø¼ü×ÖÖµ¡£ 8.ÔÚÒ»¿ÃÊ÷ÖУ¬Á½¸ö½áµãÖ®¼äÈç¹ûÓз¾¶µÄ»°£¬Â·¾¶µÄ¸öÊýÊÇΨһµÄ¡£

9.ÔÚÒ»¿Ã¶þ²æËÑË÷Ê÷ÖвéÕÒÒ»¸öÔªËØÊ±£¬ÈôÔªËØµÄÖµµÈÓÚ¸ù½áµãµÄÖµ£¬Ôò±íÃ÷²éÕҳɹ¦£»ÈôÔªËØµÄֵСÓÚ¸ù½áµãµÄÖµ£¬Ôò¼ÌÐøÏò×ó×ÓÊ÷²éÕÒ£»ÈôÔªËØµÄÖµ´óÓÚ¸ù½áµãµÄÖµ£¬Ôò¼ÌÐøÏòÓÒ×ÓÊ÷²éÕÒ¡£ 10.µ±ÏòÒ»¸öС¸ù¶Ñ²åÈëÒ»¸ö¾ßÓÐ×îСֵµÄÔªËØÊ±£¬¸ÃÔªËØÐèÒªÖð²ãÏòÉϵ÷Õû£¬Ö±µ½±»µ÷Õûµ½¶Ñ¶¥Î»ÖÃΪֹ¡£ 11.µ±´ÓÒ»¸öС¸ù¶ÑÖÐɾ³ýÒ»¸öÔªËØÊ±£¬ÐèÒª°Ñ¶ÑÎ²ÔªËØÌî²¹µ½¶Ñ¶¥Î»Öã¬È»ºóÔÙ°´Ìõ¼þ°ÑËüÖð²ãÏòϵ÷Õû¡£ 12.¶þ²æËÑË÷Ê÷ÓÖÃû¶þ²æÅÅÐòÊ÷¡£

13.ÔÚÒ»¸ö¶ÑÖУ¬³ý±àºÅΪ0µÄ¶Ñ¶¥½áµãÍ⣬¶ÔÓÚÆäËû±àºÅΪiµÄ½áµã£¬ÆäË«Ç×½áµãµÄ±àºÅΪ?(i?1)/2?¡£14.ÔÚÒ»¸ö¶ÑµÄ˳Ðò´æ´¢½á¹¹ÖУ¬¶ÑÖнáµãµÄ±àºÅÊÇ´Ó0¿ªÊ¼µÄ£¬ÈôÒ»¸öÔªËØµÄϱêΪi£¬ÔòËüµÄ×óº¢×ÓÔªËØµÄϱêÊÇ2i+1£¬ÓÒº¢×ÓÔªËØµÄϱêÊÇ2i+2¡£

15.ÔÚÒ»¸öС¸ù¶ÑÖУ¬¶Ñ¶¥½áµãµÄÖµÊÇËùÓнáµãÖеÄ×îСֵ£»ÔÚÒ»¸ö´ó¸ù¶ÑÖУ¬¶Ñ¶¥½áµãµÄÖµÊÇËùÓнáµãÖеÄ×î´óÖµ¡£

16.ÔÚÈκÎÒ»¿Ã¹þ·òÂüÊ÷ÖУ¬µ¥Ö§½áµãµÄ¸öÊýΪ0¡£

17.¶ÔÒ»¿Ã¶þ²æËÑË÷Ê÷½øÐÐÖÐÐò±éÀúʱ£¬µÃµ½µÄ½áµãÐòÁÐÊÇÒ»¸öÓÐÐòÐòÁС£

18.²»¹ÜÒ»¿Ã¹þ·òÂüÊ÷ÖÐÓÐżÊý»òÆæÊý¸öÒ¶×Ó½áµã£¬ÔòÊ÷ÖÐ×ܽáµãµÄ¸öÊý±ØÎªÆæÊý¸ö¡£

µÚ7Õ ͼ

Ò»¡¢µ¥Ñ¡Ì⣨¹²ÓÐÌâÄ¿18Ì⣩

1.¶ÔÓÚÒ»¸ö¾ßÓÐn¸ö¶¥µãµÄÎÞÏòÁ¬Í¨Í¼£¬Ëü°üº¬µÄÁ¬Í¨·ÖÁ¿µÄ¸öÊýΪ£¨ £©¡£

A. 0 B. 1 C. n D. n-1 ±ê×¼´ð°¸£ºB

2.ÒÑÖªÒ»¸öÎÞÏòͼµÄ±ß¼¯Îª{(0,1)3,(0,2)4,(0,3)8,(1,4)10,(2,3)2, (2,4)12,(3,4)8}£¬ÔòÀûÓÃÆÕÀïÄ·Ëã·¨´Ó¶¥µã0³ö·¢ÇóÆä×îСÉú³ÉÊ÷µÄ¹ý³ÌÖУ¬µÃµ½µÄµÚ£³Ìõ±ßÊÇ£¨ £©¡£

A. (0,1)3 B. (0,2)4 C. (2,3)2 D. (3,4)5 ±ê×¼´ð°¸£ºC

3.ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãºÍeÌõ±ßµÄÎÞÏòͼµÄÁÚ½Ó±íÖУ¬±ß½áµãµÄ¸öÊýΪ£¨ £©¡£

13

A. n B. e C. n*e D. 2e ±ê×¼´ð°¸£ºD

4.ÈôÒª°Ñn¸ö¶¥µãÁ¬½ÓΪһ¸öÁ¬Í¨Í¼£¬ÔòÖÁÉÙÐèÒª£¨ £©Ìõ±ß¡£

A. n B. n+1 C. n-1 D. 2n ±ê×¼´ð°¸£ºC

5.ÓÉÒ»¸ö¾ßÓÐn¸ö¶¥µãµÄÁ¬Í¨Í¼Éú³ÉµÄ×îСÉú³ÉÊ÷ÖУ¬¾ßÓУ¨ £©Ìõ±ß¡£

A. n B. n-1 C. n+1 D. 2n ±ê×¼´ð°¸£ºB

6.ÈôÒ»¸öͼÖаüº¬ÓÐk¸öÁ¬Í¨·ÖÁ¿£¬ÈôÒª°´ÕÕÉî¶ÈÓÅÏÈËÑË÷µÄ·½·¨·ÃÎÊËùÓж¥µã£¬Ôò±ØÐëµ÷Ó㨠£©´ÎÉî¶ÈÓÅÏÈËÑË÷±éÀúµÄËã·¨¡£

A. 1 B. k-1 C. k D. k+1 ±ê×¼´ð°¸£ºC

7.ÈôÒ»¸öͼµÄ±ß¼¯Îª{£¨A,B£©,£¨A,C£©,£¨B,D£©,£¨C,F£©,£¨D,E£©,£¨D,F£©}£¬Ôò´Ó¶¥µãA¿ªÊ¼¶Ô¸Ãͼ½øÐÐÉî¶ÈÓÅÏÈËÑË÷£¬µÃµ½µÄ¶¥µãÐòÁпÉÄÜΪ£¨ £©¡£

A. A£¬B£¬C£¬F£¬D£¬E B. A£¬C£¬F£¬D£¬E£¬B C. A£¬B£¬D£¬C£¬F£¬E D. A£¬B£¬D£¬F£¬E£¬C ±ê×¼´ð°¸£ºB

8.ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãµÄÎÞÏòͼÖУ¬Èô¾ßÓÐeÌõ±ß£¬ÔòËùÓж¥µãµÄ¶ÈÊýÖ®ºÍΪ£¨ £©¡£

A. n B. e C. n+e D. 2e ±ê×¼´ð°¸£ºD

9.ÈôÒ»¸öͼµÄ±ß¼¯Îª{£¨A,B£©,£¨A,C£©,£¨B,D£©,£¨C,F£©,£¨D,E£©,£¨D,F£©}£¬Ôò´Ó¶¥µãA¿ªÊ¼¶Ô¸Ãͼ½øÐйã¶ÈÓÅÏÈËÑË÷£¬µÃµ½µÄ¶¥µãÐòÁпÉÄÜΪ£¨ £©¡£

A. A£¬B£¬C£¬D£¬E£¬F B. A£¬B£¬D£¬E£¬F£¬C C. A£¬B£¬D£¬C£¬E£¬F D. A£¬C£¬B£¬F£¬D£¬E ±ê×¼´ð°¸£ºD

10.ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãµÄÓÐÏòÍêȫͼÖУ¬Ëùº¬µÄ±ßÊýΪ£¨ £©¡£

A. n B. n(n-1) C. n(n-1)/2 D. n(n+1)/2 ±ê×¼´ð°¸£ºB

11.ÒÑÖªÒ»¸öÎÞÏòͼµÄ±ß¼¯Îª{(0,1)3,(0,2)5,(0,3)6,(1,4) 10,(2,3)2,(2,4) 9,(3,4)8}£¬Ôò¸ÃͼµÄ×îСÉú³ÉÊ÷µÄ±ß¼¯Îª£¨ £©¡£

A. {(0,1)3,(0,2)5,(0,3)6,(3,4)8} B. {(0,1)3,(0,2)5,(0,3)6,(2,3)2} C. {(2,3)2,(0,2)5,(3,4)8,(0,3)6} D. {(2,3)2,(0,2)5,(3,4)8,(0,1)3} ±ê×¼´ð°¸£ºD

12.ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãµÄÎÞÏòÍêȫͼÖУ¬Ëùº¬µÄ±ßÊýΪ£¨ £©¡£

A. n B. n(n-1) C. n(n-1)/2 D. n(n+1)/2 ±ê×¼´ð°¸£ºC

13.ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãºÍeÌõ±ßµÄÓÐÏòͼµÄÁÚ½Ó¾ØÕóÖУ¬±íʾ±ß´æÔÚµÄÔªËØµÄ¸öÊýΪ£¨ £©¡£

A. n B. e C. n*e D. 2e ±ê×¼´ð°¸£ºB

14.ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãµÄÓÐÏòͼÖУ¬ÈôËùÓж¥µãµÄ³ö¶ÈÖ®ºÍΪs£¬ÔòËùÓж¥µãµÄÈë¶ÈÖ®ºÍΪ£¨ £©¡£

A. s B. s-1 C. s+1 D. n ±ê×¼´ð°¸£ºA

15.ÒÑÖªÒ»¸öÎÞÏòͼµÄ±ß¼¯Îª{(0,1)3,(0,2)4,(0,3)8,(1,4)10,(2,3)2, (2,4)12,(3,4)5}£¬ÔòÀûÓÿ˳˹¿¨¶ûËã·¨ÇóÆä×îСÉú³ÉÊ÷µÄ¹ý³ÌÖУ¬µÃµ½µÄµÚ£³Ìõ±ßÊÇ£¨ £©¡£

A. (0,1)3 B. (0,2)4 C. (2,3)2 D. (3,4)5 ±ê×¼´ð°¸£ºB

14

16.ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãºÍeÌõ±ßµÄÎÞÏòͼµÄÁÚ½Ó¾ØÕóÖУ¬±íʾ±ß´æÔÚµÄÔªËØ£¨ÓÖ³ÆÎªÓÐÐ§ÔªËØ£©µÄ¸öÊýΪ£¨£©¡£

A. n B. e C. n*e D. 2e ±ê×¼´ð°¸£ºD

17.ÔÚÒ»¸öÎÞȨͼÖУ¬ÈôÁ½¶¥µãÖ®¼äµÄ·¾¶³¤¶ÈΪk£¬Ôò¸Ã·¾¶ÉϵĶ¥µãÊýΪ£¨ £©¡£

A. k B. k+1 C. k+2 D. 2k ±ê×¼´ð°¸£ºB

18.ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãµÄÓÐÏòͼÖУ¬ÈôËùÓж¥µãµÄ³ö¶ÈÊýÖ®ºÍΪs£¬ÔòËùÓж¥µãµÄ¶ÈÊýÖ®ºÍΪ£¨ £©¡£

A. s B. s-1 C. s+1 D. 2s ±ê×¼´ð°¸£ºD

¶þ¡¢Ìî¿ÕÌ⣨¹²ÓÐÌâÄ¿13Ì⣩

1.Ò»¸öͼµÄ±ß¼¯Îª{(a,c),(a,e),(b,e),(c,d),(d,e)},´Ó¶¥µãa³ö·¢½øÐÐÉî¶ÈÓÅÏÈËÑË÷±éÀúµÃµ½µÄ¶¥µãÐòÁÐΪa c d e b£¨ a e b d c »ò a e d c b£©£¬´Ó¶¥µãa³ö·¢½øÐйã¶ÈÓÅÏÈËÑË÷±éÀúµÃµ½µÄ¶¥µãÐòÁÐΪa c e d b£¨a e c b d»òa e c d b£©¡£

2.ÒÑÖªÒ»¸öÁ¬Í¨Í¼µÄ±ß¼¯Îª{(1,2)3,(1,3)6,(1,4)8,(2,3)4, (2,5)10,(3,5)12,(4,5)2}£¬Èô´Ó¶¥µãv1³ö·¢£¬°´ÕÕÆÕÀïÄ·Ëã·¨Éú³ÉµÄ×îСÉú³ÉÊ÷µÄ¹ý³ÌÖУ¬±»Ñ¡È¡µÄµÚ3Ìõ±ßΪ(1,4)8¡£ 3.¶ÔÓÚ¾ßÓÐn¸ö¶¥µãºÍeÌõ±ßµÄÁ¬Í¨Í¼£¬ÆÕÀïÄ·Ëã·¨ºÍ¿Ë³˹¿¨¶ûËã·¨µÄʱ¼ä¸´ÔÓ¶È·Ö±ðΪO(n2)ºÍO(n2)¡£ 4.Ò»¸öÁ¬Í¨Í¼ÖдæÔÚ×Å1¸öÁ¬Í¨·ÖÁ¿¡£

5.ÒÑÖªÒ»¸öÁ¬Í¨Í¼µÄ±ß¼¯Îª{(1,2)3,(1,3)6,(1,4)8,(2,3)4,(2,5) 10,(3,5)12,(4,5)2}£¬Ôò¶ÈΪ3µÄ¶¥µã¸öÊýÓÐ_4¸ö¡£ 6.ÈôÒ»¸öÁ¬Í¨Í¼ÖÐÿ¸ö±ßÉϵÄȨ£¨È¨Öµ£©¾ù²»Í¬£¬ÔòµÃµ½µÄ×îСÉú³ÉÊ÷ÊÇΨһµÄ¡£ 7.ÔÚÒ»¸öͼÖУ¬ËùÓж¥µãµÄ¶ÈÊýÖ®ºÍµÈÓÚËùÓбßÊýµÄ2±¶¡£

8.ÈôÒ»¸öͼµÄ¶¥µã¼¯Îª{a,b,c,d,e,f}£¬±ß¼¯Îª{(a,b),(a,c),(b,c),(d,e)}£¬Ôò¸Ãͼº¬ÓÐ3¸öÁ¬Í¨·ÖÁ¿¡£ 9.ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãµÄÓÐÏòÍêȫͼÖУ¬°üº¬ÓÐn(n-1)Ìõ±ß¡£

10.ÒÑÖªÒ»¸öÁ¬Í¨Í¼µÄ±ß¼¯Îª{(1,2)3,(1,3)6,(1,4)8, (2,3)4,(2,5)10,(3,5)12,(4,5)2}£¬¸ÃͼµÄ×îСÉú³ÉÊ÷µÄȨΪ17¡£

11.ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãµÄÎÞÏòÍêȫͼÖУ¬°üº¬ÓÐn(n-1)/2Ìõ±ß¡£

12.¶ÔÓÚÒ»¸ö¾ßÓÐn¸ö¶¥µãºÍeÌõ±ßµÄÁ¬Í¨Í¼£¬ÆäÉú³ÉÊ÷ÖеĶ¥µãÊýºÍ±ßÊý·Ö±ðΪnºÍn-1¡£ 13.ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãµÄÎÞÏòͼÖУ¬ÒªÁ¬Í¨ËùÓж¥µãÔòÖÁÉÙÐèÒªn-1Ìõ±ß¡£

µÚ8Õ ²éÕÒ

Ò»¡¢µ¥Ñ¡Ì⣨¹²ÓÐÌâÄ¿7Ì⣩

1.¶ÔÓÚ³¤¶ÈΪnµÄ˳Ðò´æ´¢µÄÓÐÐò±í£¬Èô²ÉÓöþ·Ö²éÕÒ£¬Ôò¶ÔËùÓÐÔªËØµÄ×²éÕÒ³¤¶ÈΪ£¨ £©µÄÖµµÄÏòÏÂÈ¡Õû¼Ó1¡£

A. log 2 (n+1) B. log 2 n C. n/2 D. (n+1)/2 ±ê×¼´ð°¸£ºB

2.¶ÔÓÚ³¤¶ÈΪ18µÄ˳Ðò´æ´¢µÄÓÐÐò±í£¬Èô²ÉÓöþ·Ö²éÕÒ£¬Ôò²éÕÒµÚ15¸öÔªËØµÄ²éÕÒ³¤¶ÈΪ£¨ £©¡£

A. 3 B. 4 C. 5 D. 6 ±ê×¼´ð°¸£ºB

3.¶Ô³¤¶ÈΪ10µÄ˳Ðò±í½øÐвéÕÒ£¬Èô²éÕÒÇ°Ãæ5¸öÔªËØµÄ¸ÅÂÊÏàͬ£¬¾ùΪ1/8£¬²éÕÒºóÃæ5¸öÔªËØµÄ¸ÅÂÊÏàͬ£¬¾ùΪ3/40£¬Ôò²éÕÒÈÎÒ»ÔªËØµÄƽ¾ù²éÕÒ³¤¶ÈΪ£¨ £©¡£

A. 5.5 B. 5 C. 39/8 D. 19/4 ±ê×¼´ð°¸£ºC

4.¶ÔÓÚ³¤¶ÈΪnµÄ˳Ðò´æ´¢µÄÓÐÐò±í£¬Èô²ÉÓöþ·Ö²éÕÒ£¬Ôò¶ÔËùÓÐÔªËØµÄ×²éÕÒ³¤¶ÈΪ£¨ £©µÄÖµµÄÏòÉÏÈ¡Õû¡£

A. log2 (n+1) B. log 2 n C. n/2 D. (n+1)/2 ±ê×¼´ð°¸£ºA

15

5.¶ÔÓÚ˳Ðò´æ´¢µÄÓÐÐò±í(5,12,20,26,37,42,46,50,64)£¬Èô²ÉÓöþ·Ö²éÕÒ£¬Ôò²éÕÒÔªËØ26µÄ²éÕÒ³¤¶ÈΪ£¨ £©¡£

A. 2 B. 3 C. 4 D. 5 ±ê×¼´ð°¸£ºC

6.¶ÔÓÚ³¤¶ÈΪ9µÄ˳Ðò´æ´¢µÄÓÐÐò±í£¬Èô²ÉÓöþ·Ö²éÕÒ£¬ÔڵȸÅÂÊÇé¿öÏÂµÄÆ½¾ù²éÕÒ³¤¶ÈΪ£¨ £©µÄÖµ³ýÒÔ9¡£

A. 20 B. 18 C. 25 D. 22 ±ê×¼´ð°¸£ºC

7.¶Ô³¤¶ÈΪ3µÄ˳Ðò±í½øÐвéÕÒ£¬Èô²éÕÒµÚ1¸öÔªËØµÄ¸ÅÂÊΪ1/2£¬²éÕÒµÚ2¸öÔªËØµÄ¸ÅÂÊΪ1/3£¬²éÕÒµÚ3¸öÔªËØµÄ¸ÅÂÊΪ1/6£¬Ôò²éÕÒÈÎÒ»ÔªËØµÄƽ¾ù²éÕÒ³¤¶ÈΪ£¨ £©¡£ A. 5/3 B. 2 C. 7/3 D. 4/3 ±ê×¼´ð°¸£ºA

¶þ¡¢Ìî¿ÕÌ⣨¹²ÓÐÌâÄ¿3Ì⣩

1.ÒÔ˳Ðò²éÕÒ·½·¨´Ó³¤¶ÈΪnµÄ˳Ðò±íÖвéÕÒÒ»¸öÔªËØÊ±£¬Æ½¾ù²éÕÒ³¤¶ÈΪ(n+1)/2£¬Ê±¼ä¸´ÔÓ¶ÈΪO( n )¡£ 2.ÒÔ¶þ·Ö²éÕÒ·½·¨´Ó³¤¶ÈΪ12µÄÓÐÐò±íÖвéÕÒÒ»¸öÔªËØÊ±£¬Æ½¾ù²éÕÒ³¤¶ÈΪ37/12¡£

3.¶ÔÓÚ¶þ·Ö²éÕÒËù¶ÔÓ¦µÄÅж¨Ê÷£¬Ëü¼ÈÊÇÒ»¿Ã¶þ²æËÑË÷Ê÷£¬ÓÖÊÇÒ»¿ÃÀíÏëÆ½ºâ¶þ²æÊ÷£¨ÀíÏëÆ½ºâÊ÷¡¢ÀíÏë¶þ²æÊ÷£©¡£

µÚ9ÕÂ ÅÅÐò

Ò»¡¢µ¥Ñ¡Ì⣨¹²ÓÐÌâÄ¿3Ì⣩ 1.Èô¶Ôn¸öÔªËØ½øÐÐÖ±½Ó²åÈëÅÅÐò£¬ÔÚ½øÐÐµÚ i ÌË£¨1¡Üi¡Ün-1£©ÅÅÐòʱ£¬ÎªÑ°ÕÒ²åÈëλÖÃ×î¶àÐèÒª½øÐУ¨ £©´ÎÔªËØµÄ±È½Ï¡£

A. i+1 B. i-1 C. i D. 1 ±ê×¼´ð°¸£ºC

2.Èô¶Ôn¸öÔªËØ½øÐÐÖ±½Ó²åÈëÅÅÐò£¬ÔÚ½øÐÐÈÎÒ»ÌËÅÅÐòµÄ¹ý³ÌÖУ¬ÎªÑ°ÕÒ²åÈëλÖöøÐèÒªµÄʱ¼ä¸´ÔÓ¶ÈΪ£¨ £©¡£

A. O(1) B. O(n) C. O(n2) D. O(log2n) ±ê×¼´ð°¸£ºB

3.ÔÚ¶Ôn¸öÔªËØ½øÐÐÖ±½ÓÑ¡ÔñÅÅÐòµÄ¹ý³ÌÖУ¬ÐèÒª½øÐУ¨ £©ÌËÑ¡ÔñºÍ½»»»¡£

A. n+1 B. n C. n-1 D. n/2 ±ê×¼´ð°¸£ºC

¶þ¡¢Ìî¿ÕÌ⣨¹²ÓÐÌâÄ¿2Ì⣩

1.ÿ´Î´ÓÎÞÐò±íÖÐȡһ¸öÔªËØ£¬°ÑËü²åÈëµ½ÓÐÐò±íÖеÄÊʵ±Î»Ö㬴ËÖÖÅÅÐò·½·¨½Ð×ö²åÈëÅÅÐò£»Ã¿´Î´ÓÎÞÐò±íÖÐÌôÑ¡³öÒ»¸ö×îС»ò×î´óÔªËØ£¬°ÑËü½»»»µ½ÓÐÐò±íµÄÒ»¶Ë£¬´ËÖÖÅÅÐò·½·¨½Ð×öÑ¡ÔñÅÅÐò¡£ 2.ÔÚÖ±½ÓÑ¡ÔñÅÅÐòÖУ¬¼Ç¼±È½Ï´ÎÊýµÄʱ¼ä¸´ÔÓ¶ÈΪO(n2)£¬¼ÇÂ¼ÒÆ¶¯´ÎÊýµÄʱ¼ä¸´ÔÓ¶ÈΪO(n)¡£

16