数学经典问题·商高定理[1] 下载本文

www.m448.com (大量管理资料下载)

(5)拓扑学成为李群的条件(拓扑群)。

这一个问题简称连续群的解析性,即是否每一个局部欧氏群都一定是李群。1952年,由格里森(Gleason)、蒙哥马利(Montgomery)、齐宾(Zippin)共同解决。1953年,日本的山迈英彦已得到完全肯定的结果。

(6)对数学起重要作用的物理学的公理化。

1933年,苏联数学家柯尔莫哥洛夫将概率论公理化。后来,在量子力学、量子场论方面取得成功。但对物理学各个分支能否全盘公理化,很多人有怀疑。

(7)某些数的超越性的证明。

需证:如果α是代数数,β是无理数的代数数,那么αβ一定是超越数或至少是

无理数(例如,22和eπ)。苏联的盖尔封特(Gelfond)1929年、德国的施奈德(Schneider)及西格尔(Siegel)1935年分别独立地证明了其正确性。但超越数理论还远未完成。目前,确定所给的数是否超越数,尚无统一的方法。

(8)素数分布问题,尤其对黎曼猜想、哥德巴赫猜想和孪生素共问题。

素数是一个很古老的研究领域。希尔伯特在此提到黎曼(Riemann)猜想、哥德巴赫(Goldbach)猜想以及孪生素数问题。黎曼猜想至今未解决。哥德巴赫猜想和孪生素数问题目前也未最终解决,其最佳结果均属中国数学家陈景润。

(9)一般互反律在任意数域中的证明。

1921年由日本的高木贞治,1927年由德国的阿廷(E.Artin)各自给以基本解决。而类域理论至今还在发展之中。

(10)能否通过有限步骤来判定不定方程是否存在有理整数解?

求出一个整数系数方程的整数根,称为丢番图(约210-290,古希腊数学家)方程可解。1950年前后,美国数学家戴维斯(Davis)、普特南(Putnan)、罗宾逊(Robinson)等取得关键性突破。1970年,巴克尔(Baker)、费罗斯(Philos)对含两个未知数的方程取得肯定结论。1970年。苏联数学家马蒂塞维奇最终证明:在一般情况答案是否定的。尽管得出了否定的结果,却产生了一系列很有价值的副产品,其中不少和计算机科学有密切联系。

(11)一般代数数域内的二次型论。

德国数学家哈塞(Hasse)和西格尔(Siegel)在20年代获重要结果。60年代,法国数学家魏依(A.Weil)取得了新进展。

(12)类域的构成问题。

9

www.m448.com (大量管理资料下载)

即将阿贝尔域上的克罗内克定理推广到任意的代数有理域上去。此问题仅有一些零星结果,离彻底解决还很远。

(13)一般七次代数方程以二变量连续函数之组合求解的不可能性。

七次方程x7+ax3+bx2+cx+1=0的根依赖于3个参数a、b、c;x=x(a,b,c)。这一函数能否用两变量函数表示出来?此问题已接近解决。1957年,苏联数学家阿诺尔德(Arnold)证明了任一在[0,1]上连续的实函数f(x1,x2,x3)可写成形式∑hi(ξi(x1,x2),x3)(i=1~9),这里hi和ξi为连续实函数。柯尔莫哥洛夫证明f(x1,x2,x3)可写成形式∑hi(ξi1(x1)+ξi2(x2)+ξi3(x3))(i=1~7)这里hi和ξi为连续实函数,ξij的选取可与f完全无关。1964年,维土斯金(Vituskin)推广到连续可微情形,对解析函数情形则未解决。

(14)某些完备函数系的有限的证明。

即域K上的以x1,x2,...,xn为自变量的多项式fi(i=1,...,m),R为K[X1,?,Xm]上的有理函数F(X1,?,Xm)构成的环,并且F(f1,?,fm)∈K[x1,?,xm]试问R是否可由有限个元素F1,?,FN的多项式生成?这个与代数不变量问题有关的问题,日本数学家永田雅宜于1959年用漂亮的反例给出了否定的解决。

(15)建立代数几何学的基础。

荷兰数学家范德瓦尔登1938年至1940年,魏依1950年已解决。

注一:舒伯特(Schubert)计数演算的严格基础。

一个典型的问题是:在三维空间中有四条直线,问有几条直线能和这四条直线都相交?舒伯特给出了一个直观的解法。希尔伯特要求将问题一般化,并给以严格基础。现在已有了一些可计算的方法,它和代数几何学有密切的关系。但严格的基础至今仍未建立。

(16)代数曲线和曲面的拓扑研究。

此问题前半部涉及代数曲线含有闭的分枝曲线的最大数目。后半部要求讨论备dx/dy=Y/X的极限环的最多个数N(n)和相对位置,其中X、Y是x、y的n次多项式。对n=2(即二次系统)的情况,1934年福罗献尔得到N(2)≥1;1952年鲍廷得到N(2)≥3;1955年苏联的波德洛夫斯基宣布N(2)≤3,这个曾震动一时的结果,由于其中的若干引理被否定而成疑问。关于相对位置,中国数学家董金柱、叶彦谦1957年证明了(E2)不超过两串。1957年,中国数学家秦元勋和蒲富金具体给出了n=2的方程具有至少3个成串极限环的实例。1978年,中国的史松龄在秦元勋、华罗庚的指导下,与王明淑分别举出至少有4个极限环的具体例子。1983年,秦元勋进一步证明了二次系统最多有4个极限环,并且是(1,3)结构,从而最终地解决了二次微分方程的解的结构问题,并为研究希尔伯特第(16)问题提供

10

www.m448.com (大量管理资料下载)

了新的途径。

(17)半正定形式的平方和表示。

实系数有理函数f(x1,...,xn)对任意数组(x1,?,xn)都恒大于或等于0,确定f是否都能写成有理函数的平方和?1927年阿廷已肯定地解决。

(18)用全等多面体构造空间。

德国数学家比贝尔巴赫(Bieberbach)1910年,莱因哈特(Reinhart)1928年作出部分解决。

(19)正则变分问题的解是否总是解析函数?

德国数学家伯恩斯坦(Bernrtein,1929)和苏联数学家彼德罗夫斯基(1939)已解决。

(20)研究一般边值问题。

此问题进展迅速,己成为一个很大的数学分支。日前还在继读发展。

(21)具有给定奇点和单值群的Fuchs类的线性微分方程解的存在性证明。

此问题属线性常微分方程的大范围理论。希尔伯特本人于1905年、勒尔(H.Rohrl)于1957年分别得出重要结果。1970年法国数学家德利涅(Deligne)作出了出色贡献。

(22)用自守函数将解析函数单值化。

此问题涉及艰深的黎曼曲面理论,1907年克伯(P.Koebe)对一个变量情形已解决而使问题的研究获重要突破。其它方面尚未解决。

(23)发展变分学方法的研究。

这不是一个明确的数学问题。20世纪变分法有了很大发展。

数学经典问题·七桥问题

11

www.m448.com (大量管理资料下载)

当Euler在1736年访问Konigsberg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。Konigsberg城中有一条名叫Pregel的河流横经其中,在河上建有七座桥如图所示:

这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。

Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示,便得如下的图形:

後来推论出此种走法是不可能的。他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。所以每行经一点时,计算两座桥(或线),从起点离开的线与最後回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。

七桥所成之图形中,没有一点含有偶数条数,因此上述的任务是不可能实现的。

数学经典问题·连续统之迷

(注:文中将阿拉夫零记为alf(0),阿拉夫一记为alf(1),依次类推?)

12

www.m448.com (大量管理资料下载)

由于alf(0)是无穷基数,阿拉夫是有异于有限运算的神奇运算,因而,以下的结果也不足为怪:

alf(0)+ 1 = alf(0)

alf(0) + n = alf(0)

alf(0) + alf(0) = alf(0)

alf(0) × n = alf(0)

alf(0) × alf(0) = alf(0)

alf(0)是自然数集的基数。一个无穷基数,只要是可数集,其基数必为alf(0)。由可排序性,可知如整数集、有理数集的基数为alf(0);或由它们的基数为alf(0),得它们为可数集。而实数集不可数(可由康托粉尘线反证不可数)推之存在比alf(0)更大的基数。乘法运算无法突破alf(0),但幂集可突破:2alf(0) = alf(1)

可以证明实数集的基数card(R) = alf(1)。进而,阿拉夫\家族\一发而不可收:2alf(1) = alf(2); 2alf(2) = alf(3); ......

alf(2)究竟有何意义?人们冥思苦想,得出:空间所有曲线的数目。但而后的alf(3),人类绞尽脑汁,至今为能道出眉目来。此外,还有一个令人困惑的连续统之迷:“alf(0)与alf(1)之间是否还存在另一个基数?”

公元1878年,康托提出了这样的猜想:在alf(0)与alf(1)之间不存在其它的基数。但当时康托本人对此无法予以证实。

公元1900年,在巴黎召开的第二次国际数学家会议上,德国哥庭根大学教授希尔伯特提出了举世闻名的23个二十世纪须攻克的数学问题中,连续统假设显赫的排在第一个。然而这个问题的最终结果却是完全出人意料的。

公元1938年,奥地利数学家哥德尔证明了“连续统假设决不会引出矛盾”,意味着人类根本不可能找出连续统假设有什么错误。1963年,美国数学家柯亨居然证明了:“连续统假设是独立的”,也就是说连续统假设根本不可能被证明。

13