3£®5£®
dyx?y¡£ ?dxx?y 4.
?zyz?xyz?,?xxyz?xy?zxz?2xyz?¡£ ?yxyz?xyyz?z?z,?xe?xy?zazy?x6£®?,?xz?axyxy?z¡£ ?z?ye?xy?zaxz?y¡£ ??yz?axy?zz?zz27£®¡£ ?,??xx?z?yy(x?z)8£®dz??dx?dy¡£
2x2z?2x2yz?x2xyz?2xy2z?ydyx(6z?1)dzx9£®¡£ ??,?dx2y(3z?1)dx3z?1xu?yvxv?yuxu?yv?u?uxv?yv?v?u10£®¡£ ??2,?,??,??2222222?x?yx?y?x?yx?yx?yx?y
2xz2?2xyz2?z2xyz2?zϰÌâ10¡ª5
1£®£¨1£© £¨2£©
?2z?x2?2z?y2?2z?x2??asin(ax?by),??b2sin(ax?by)£» ?2?2z?x2y??absin(ax?by)£¬
?2z,?223?x?y(1?xy)2y?2xy31(1?xy)223,?2z?y2?x3y(1?xy)223£»
£¨3£©£¨4£©
?2x?x2?2y(2y?1)x??2z?2z(2y?1),?2x(1?2ylnx),?4x2yln2x£» 2?x?y?y?2zlnxlny?1lnx?2zlnx(lnx?1)lnx,?y,?y£» ?x?yxy?y2y2?2x?x2?2zlny(lny?1)x2?2xy3zylnx?2x3yz?2zz(z4?2xyz2?x2y2)?2z,?,?2£¨5£©2?2£» 32323?x?y?x(z?xy)(z?xy)?y(z?xy)?2z?2z??0¡£ £¨6£©2??x?y?y2?x3£®2£¬2£¬0£®
?2u???xyf22???2xyzf23???zf3?xzf31???xyz2f33??£¬ ?f2??xf214£®
?y?x?2u???x2yzf33??£¬ ?xf3??x2yf32?z?y?2z?2u???xy2f23???xy2zf33??¡£ ?xf3??xyf13?x?z¾¼ÃѧԺѧÉú»áѧϰС×é
21
5£®
?2u?x2?4x2f??(x2?y2?z2)?2f?(x2?y2?z2)¡£
ϰÌâ10¡ª6
1£®?
93 2 2.
2. 5 3.
2. 24.
68. 13µÚʮһÕÂ
ϰÌâ11¡ª1
x?(?21?1)?1£®ÇÐÏß·½³Ì£º
y?1z?22¡£ ?12 ·¨Æ½Ãæ·½³Ì£ºx?y?2z??2?4¡£
12?y?2?z?1£¬ 2£®ÇÐÏß·½³Ì£º0?12 ·¨Æ½Ãæ·½³Ì£º2z?y?0¡£
x?2y?a4z?b?2x?a£¬ ???aa4b ·¨Æ½Ãæ·½³Ì£º22a(x?y)?b(4z?b?)?0¡£
1114£®P1(?1,1,?1)»òP2(?,,?)¡£
39275£®ÇÐÆ½Ãæ·½³Ì£ºx?2y?4?0£¬
x?2y?1z ·¨Ïß·½³Ì£º??¡£
1206£®ÇÐÆ½Ãæ·½³Ì£º9x?y?z?27?0£¬
x?3y?1z?1 ·¨Ïß·½³Ì£º¡£ ??9117£®ÇÐÆ½Ãæ·½³Ì£ºx?2y?z?5?0£¬
x?2y?3z?1 ·¨Ïß·½³Ì£º¡£ ???1?118£®ÇÐÆ½Ãæ·½³Ì£º2ax0x?2by0y?z?z0?0£¬
3£®ÇÐÏß·½³Ì£º
·¨Ïß·½³Ì£º9£®arccos322x?x0y?y0z?z0??¡£ 2ax02by0?1¡£
22
¾¼ÃѧԺѧÉú»áѧϰС×é
ϰÌâ11¡ª2
1£®¼«´óÖµ£º(2,?1)?8¡£ 2. ¼«´óÖµ£º¡£
1e3£®¼«Ð¡Öµ£ºf(,?1)??¡£
221114£®£¨1£©¼«´óÖµ£ºz(,)?£»
224ab2a2ba2b2 £¨2£©¼«Ð¡Öµ£ºz(2£» ,)?2a?b2a2?b2a?b2£¨3£©¼«Ð¡Öµ£ºu(3,3,3)?9¡£
l5£®µ±Á½Ö±½Ç±ß¶¼µÈÓÚʱ£¬Èý½ÇÐÎÖܳ¤×î´ó¡£
22aa6£®µ±³¤¡¢¿íΪ£¬¸ßΪʱ£¬ÄÚ½Ó³¤·½ÌåÌå»ý×î´ó¡£
33
µÚÊ®¶þÕÂ
ϰÌâ12¡ª2
11£®¡£
e2. ln14. 33. (e,?1)2.
4. ??16.
105£®£¨1£© £¨2£© £¨3£©
?0dx?1?xx?1f(x,y)dy??10?1dy?yy?10f(x,y)dx??dy3?1?y0f(x,y)dx£»
??3110dx?3xx2xx/2f(x,y)dy?f(x,y)dy??3dydx2?1f(x,y)dx??93dy?y/3f(x,y)dx£»
dx10??21?2/xx/2f(x,y)dy f(x,y)dx£»
? £¨4£© £¨5£©6£®£¨1£© £¨3£©£¨5£©
?58dy?2yy/2f(x,y)dx??1dy?2/yy/2?????3dx??(3x?4)/2(3x?1)/2f(x,y)dy??13/25dy?(2y?1)/33f(x,y)dx? f(x,y)dx£» f(x,y)dx¡£
13/240dy?(2y?1)/3(2y?4)/3f(x,y)dx??19/28dy?5(2y?4)/3dx3?4?(x?2)23?4?(x?2)2f(x,y)dy??51dy?2?4?(y?3)22?4?(y?3)2?dx?0101xx2f(x,y)dy£»
1?y2 £¨2£©£¨4£©
10?dy?01eeyf(x,y)dx£»
dy??1?y21?y2?1?y2f(x,y)dx£» f(x,y)dx??10dy?3?2yyf(x,y)dx£»
0?1dy??dy?1?y?1?yf(x,y)dx£»
¾¼ÃѧԺѧÉú»áѧϰС×é
23
£¨6£©
?a0dy?a?a2?y2y2/2af(x,y)dx??a0dy?2aa?a2?y2f(x,y)dx??2aady?2ay2/2af(x,y)dx¡£
7£®£¨1£©76/3£» 8£®£¨1£© £¨3£©
£¨2£©9£» £¨3£©
27£» 64£¨4£©14a4¡£
????/20R0d??2Rsin?0arctanRf(rcos?,rsin?)rdr£» £¨2£©f(tan?)d?¡£
?20d??R0f(r2)rdr£»
rdr?0R3?29£®£¨1£©(2ln?1)£» £¨2£©(?)£»
3234
?23?2£¨3£©£» £¨4£©?6?2
64ϰÌâ12¡ª3
1£®£¨1£©
?1?1dx?1?x2?1?x2dy?1x2?y2£¨2£©f(x,y,z)dz£»
?1?1dx?1?x2?1?x2dy?2?x2x2?2y2 f(x,y,z)dz¡£
1152£®£¨1£©(ln5?2ln2)£» £¨2£©ln2?¡£
22168?3£®£¨1£©a2£» £¨2£©?(?ln2?2)£»
924414£®£¨1£©?(A5?a5)£» £¨2£©x¡£ 5. £¨1£©£» £¨2£©0¡£
1558
ϰÌâ12¡ª4
1£®2?¡£
24885£®6. 6. ?.
51529£®(x,y,z)?(0,0,?).
32.
?a2.
12£®2?r(R2?r2).
1224. 162?. ab?b2c2?c2a2.
2417. . 8. (x,y,z)?(0,0,). 154?hR4?hR22h210. . 11. (R?).
243513. (x,y,,z)?(0,0,R).
43.
ϰÌâ12¡ª5
1£®5ln2. 2. 24. 3. 2?a2n?1. 122)?p3]. 6£®[(p2?y03p
3
34. 2?2a3(1?2?2).
35. 1?2.
127. [(t0?2)2?22]. 38.
82?3a. 3¾¼ÃѧԺѧÉú»áѧϰС×é
24