多学科设计优化 ( MDO ) 机电毕业设计(论文) 下载本文

山东科技大学学士学位论文

到下一代。选择操作是建立在群体中个体的适应度评估基础上的。d)交叉运算;将交叉算子作用于群体。所谓交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作。遗传算法中起核心作用的就是交叉算子。e)变异运算:将变异算子作用于群体。即是对群体中的个体串的某些基因座上的基因值作变动。群体P(t)经过选择、交叉、变异运算之后得到下一代群体P(t1)。f)终止条件判断:若tT,则以进化过程中所得到的具有最大适应度个体作为最优解输出,终止计算。 3.1.2 遗传算法定义

遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。 3.1.3 遗传算法的特征

遗传算法是解决搜索问题的一种通用算法,对于各种通用问题都可以使用。搜索算法的共同特征为:

17

山东科技大学学士学位论文

① 首先组成一组候选解;

② 依据某些适应性条件测算这些候选解的适应度; ③ 根据适应度保留某些候选解,放弃其他候选解; ④ 对保留的候选解进行某些操作,生成新的候选解。 在遗传算法中,上述几个特征以一种特殊的方式组合在一起: 基于染色体群的并行搜索,带有猜测性质的选择操作、交换操作和突变操作。这种特殊的组合方式将遗传算法与其它搜索算法区别开来。

遗传算法还具有以下几方面的特点:

1)遗传算法从问题解的串集开始嫂索,而不是从单个解开始。这是遗传算法与传统优化算法的极大区别。传统优化算法是从单个初始值迭代求最优解的;容易误入局部最优解。遗传算法从串集开始搜索,覆盖面大,利于全局择优。

2)许多传统搜索算法都是单点搜索算法,容易陷入局部的最优解。遗传算法同时处理群体中的多个个体,即对搜索空间中的多个解进行评估,减少了陷入局部最优解的风险,同时算法本身易于实现并行化。

3)遗传算法基本上不用搜索空间的知识或其它辅助信息,而仅用适应度函数值来评估个体,在此基础上进行遗传操作。适应度函数不仅不受连续可微的约束,而且其定义域可以任意设定。这一特点使得遗传算法的应用范围大大扩展。

4)遗传算法不是采用确定性规则,而是采用概率的变迁规则来指导他的搜索方向。

5)具有自组织、自适应和自学习性。遗传算法利用进化过程获得的信息自行组织搜索时,适应度大的个体具有较高的生存概率,并获得更适应环境的基因结构。

18

山东科技大学学士学位论文

3.1.4 遗传算法的应用

由于遗传算法的整体搜索策略和优化搜索方法在计算是不依赖于梯度信息或其它辅助知识,而只需要影响搜索方向的目标函数和相应的适应度函数,所以遗传算法提供了一种求解复杂系统问题的通用框架,它不依赖于问题的具体领域,对问题的种类有很强的鲁棒性,所以广泛应用于许多科学,下面我们将介绍遗传算法的一些主要应用领域:

1)函数优化

函数优化是遗传算法的经典应用领域,也是遗传算法进行性能评价的常用算例,许多人构造出了各种各样复杂形式的测试函数:连续函数和离散函数、凸函数和凹函数、低维函数和高维函数、单峰函数和多峰函数等。对于一些非线性、多模型、多目标的函数优化问题,用其它优化方法较难求解,而遗传算法可以方便的得到较好的结果。

2)组合优化

随着问题规模的增大,组合优化问题的搜索空间也急剧增大,有时在目前的计算上用枚举法很难求出最优解。对这类复杂的问题,人们已经意识到应把主要精力放在寻求满意解上,而遗传算法是寻求这种满意解的最佳工具之一。实践证明,遗传算法对于组合优化中的NP问题非常有效。例如遗传算法已经在求解旅行商问题、背包问题、装箱问题、图形划分问题等方面得到成功的应用。此外,GA也在生产调度问题、自动控制、机器人学、图象处理、人工生命、遗传编码和机器学习等方面获得了广泛的运用。

3.2

3.2.1 模拟退火的算法简介

模拟退火算法

模拟退火算法(adaptive simulated annealing,ASA)最早由Kirkpatrick等应用于组合优化领域,它是基于Mente-Carlo迭代求解策略的一种随机寻优

19

山东科技大学学士学位论文

算法,其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。模拟退火算法从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最优解能概率性地跳出并最终趋于全局最优。模拟退火算法是一种通用的优化算法,理论上算法具有概率的全局优化性能,目前已在工程中得到了广泛应用,诸如VLSI、生产调度、控制工程、机器学习、神经网络、信号处理等领域。

模拟退火算法是通过赋予搜索过程一种时变且最终趋于零的概率突跳性,从而可有效避免陷入局部极小并最终趋于全局最优的串行结构的优化算法。

3.2.2 模拟退火的理论基础

对上述算法,首先要考虑其可行性,即能否在有限时间内得出结果,由于算法的随机性,转为讨论其渐近收敛性,即算法按渐近的概率原则是否收敛。其研究涉及到Mapkob理论,本文不拟深入讨论,可以证明:在多项式时间里算法渐近地收敛于一近似最优解,这个结果对于NP完全问题已是较好的了,下面仅对上述伪程序的运行过程作一简单分析。对恶化解随着t值的衰减,故t衰减到一定程序时即不再接受,至于优化解,由于算法中产生新解的邻域结构通常选得较简单(否则可能因专注个别问题特征而丧失算法通用性,或者因变成精确算法而导致算法不可行),因此在不能由解的恶化跳出当前邻域时,一般均可较快地探索到该邻域的最优解,从而无法再优化,总之,算法在有限时间内必定会现出解在连续M个Mapkob链中无任何改变的情况,即完全可以在有限时间内终止,因此从概率的角度是渐近收敛的。不过对于最坏情况的算法时间问题,还有待于进一步的研究和试验。 3.2.3 模拟退火的实现

模拟退火的实现分如下几个方面

20