酶工程习题集(第三版 ) 下载本文

( )1、固定化细胞在一定的空间范围内生长繁殖,由于细胞密度增大,使生化反应加速,所以能够提高酶活力。

( )2、某些酶的催化反应产物可以诱导该酶的生物合成。

( )3、在酶的发酵生产中,为了提高产酶率和缩短发酵周期,最理想的酶合成方式是延续合成型。

( )4、氨酰-tRNA合成酶具有识别mRNA和tRNA的功能。

( )5、固定化原生质体与固定化细胞一样可以进行生长繁殖和新陈代谢。 五、简答题

1、为什么属于滞后合成型的酶要在细胞生长一段时间甚至进入平衡期以后才开始合成?

2、简述微生物发酵产酶培养基的主要组分及其作用。 3、简述微生物发酵产酶过程中工艺条件的限制性。 4、固定化细胞发酵产酶有哪些特点?

5、固定化微生物原生质体发酵产酶有哪些特点? 6、试述酵发酵动力学的主要内容。 六、综合分析题

1、在酵发酵生产过程中,为了提高酶的产率,可以采取哪些措施? 2、从如下实验方法和结果分析酶生物合成的调节作用。

实验方法:将大肠杆菌细胞接种于营养汤肉培养中,于37℃振荡培养,当OD550达到0.3左右时,将培养液分装到4个小三角瓶中,每瓶17mL培养液。于4个三个瓶中分别添加(A)3mL无菌水;(B)1mL乳糖溶液(0.1mol/L)和2mL无菌水;(C)1mL乳糖溶液(0.1mol/L)、1mL葡萄糖溶液(0.1mol/L)和1mL无菌水;(D)1mL乳糖溶液(0.1mol/L)、1mL葡萄糖溶液(0.1mol/L)和1mLcAMP钠盐溶液(0.1nmol/L)。然后在相同的条件下于于37℃振荡培养2h,分别取样测定B-半乳糖腺酶的活力。 实验结果:(A)瓶和(C)瓶样品的B-半乳糖腺酶活力为0,(B)瓶和(D)瓶

样品的B-半乳糖腺酶活力达到1000U/mL左右。

第二章参考答案

一 名词解释(答案略) 二 填空题

1 DNA,核苷三磷酸,依赖DNA的RNA聚合酶,RNA 2 延续合成型,滞后合成型

3 细胞生长繁殖,微量有机化合物 4 最大比生长速率一半,限制性基质浓度

5 产物生成速率 三选择题

1C 2D 3A 4B 四判断题

1错 2 对 3 对 4 错 5错

五简答题 1 答:属于滞后合成型的酶,之所以要在细胞生长一段时间甚至进入平衡期后才开始合成,主要有两个原因:一是由于酶的生物合成受到培养基中阻遏作用,只有随着细胞的生长,阻遏物几乎被细胞用完而解除阻遏以后,酶才开始大量合成;二是由于该类型酶对所对应的mRNA稳定性好,可以在细胞生长进入平衡期后的相当长的一段时间内,继续进行酶的生物合成。

2 答:培养基的主要组成包括:碳源、氮源、无机盐和生长因子等。 碳源是指能够为细胞提供碳素化合物的营养物质。在一般情况下,碳源也是为细胞提供能量的能源。碳是构成细胞的主要元素之一,也是所有酶的重要组成元素。所以碳源是酶的生物合成法生产中必不可少的营养物质。

氮源是指能向细胞提供氮元素的营养物质。氮元素是各种细胞中蛋白质。核酸等组分的重要组成元素之一,也是各种酶分子的组成元素。氮源是细胞生长、繁殖和酶的生产的必不可少的营养物质。

无机盐的主要作用是提供细胞生命活动所必不可缺的各种无机元素,并对细胞内外的PH、氧化还原电位和渗透压起调节作用。

生长素是指细胞生长繁殖所必需的微量有机化合物。主要包括各种氨基酸、嘌呤、嘧啶、维生素等。氨基酸是蛋白质的组分;嘌呤和嘧啶是核酸和某些辅助酶或辅基的组分;维生素主要是起辅酶作用。

3 答:微生物发酵产酶的过程中,必须根据需要和变化情况,适时进行PH、温度、溶解氧等发酵工艺条件的控制。

(1)PH的调节控制:培养基的PH与细胞的生长繁殖以及发酵产酶关系密切,不同的细胞,其生长繁殖的最适PH有所不同,细胞发酵产酶的最适PH与生长最适PH也往往有所不同,所以必须根据不同的细胞特性和发酵的不同阶段进行PH的控制。

有些细胞可以同时生产若干种酶,在生产过程中,通过控制培养基的PH,往往可以改变各种酶之间的产量比例。

随着细胞的生长繁殖和新陈代谢产物的积累,培养基的PH往往会发生变化。所以在发酵过程中,必须根据变化的情况对培养基的PH进行适当的控制和调节。

调节PH的方法可以通过改变培养基的组分或其比例;也可以使用缓冲液来稳定PH;或者在必要时通过流加适宜的酸、碱溶液的方法,调节培养基的PH,以满足细胞生长和产酶的要求。

(2)温度的调节控制:细胞的生长繁殖和发酵产酶需要一定的温度条件,不同的细胞有各自不同的最适生长温度。

有些细胞发酵产酶的最适温度与细胞生长的最适温度有所不同,而且往往低于最适生长温度。要在不同的发酵阶段控制不同的温度。即在细胞生长阶段控制在细胞生长的最适温度范围,而在产酶阶段,控制在产酶最适温度。

在细胞生长和发酵产酶过程中,由于细胞的新陈代谢作用,会不断放出热量,使培养基的温度升高,同时,由于热量的不断扩散,会使培养基的温度不断降低。两者综合结果,决定了培养基的温度。由于在细胞生长和产酶的不同阶段,细胞新陈代谢放出的热量有较大的差别,散失的热量又受到环境温度等因素的影响,使培养基的温度发生明显的变化。为此必须经常及时地对温度进行调节控制,使培养基的温度维持在适宜的范围内。

温度的调节一般采用热水升温、冷水降温的方法。为了及时地进行温度的调节控制,在发酵罐或者其他的生物反应器中,均应设计有足够传热面积的热交换

装置,如排管、蛇管、夹套、喷淋管等,并且随时备有冷水和热水以满足温度调控的需要。

(3)溶解氧的调节控制:细胞的生长繁殖和酶的生物合成过程需要大量的能量,为零获得足够多的能量,细胞必须获得充足的氧气,使从培养基中获得的能源物质经过有氧降解而生成大量的ATP。

在培养基中培养的细胞一般只能吸收和利用溶解氧,由于氧是难溶于是的气体,在通常情况下,培养基中的溶解的氧并不多,在细胞培养过程中,培养基中原有的溶解氧很快就会被细胞利用完,为了满足细胞的生长繁殖和发酵产酶的需要,在发酵过程中必须不断供给氧,使培养基中的溶解氧保持在一定的水平。

溶解氧的调节控制,就是要根据细胞对溶解氧的需要量,连续不断地进行补充,使培养基中的溶解氧的量保持恒定。

溶解氧的供给,一般是将无菌空气通入发酵容器,再在一定的条件下,使空气中的氧溶解到培养液中,以供细胞生命活动之需。

培养液中溶解氧的量,决定于在一定条件下氧气的溶解速率,溶氧速率与通气量、氧气分压、气液接触时间,气液接触面积以及培养液的性质等有密切关系。一般来说,通气量越大、氧气分压越高、气液接触时间越长。气液接触面积越大,则溶氧速率越大。培养液的性质,主要是黏度、气泡、以及温度等对于溶氧速率有明显影响。

随着发酵过程的进行,细胞耗氧速率发生改变时,必须相应地对溶氧速率进行调节。

调节溶解氧的方法主要有调节通气量,调节氧的分压,调节气液接触时间,调节接触面积,改变培养液的性质等,可以根据不同菌种,不同产物、不同的生物反应器、不同的工艺条件下的不同情况选择使用。以便根据发酵过程耗氧速率的变化而及时有效地调节溶氧速率。

4答:固定化细胞发酵产酶与游离细胞发酵产酶相比,具有下列显著特点:

(1) 提高酶产率:细胞经过固定化后,在一定的空间范围内生长繁殖,细胞密度增大,因而使细胞反应加速,从而提高酶产率。例如,固

定化枯草杆菌生产??淀粉酶,在分批发酵时,其体积产酶率达到游离细胞的122%,在连续发酵时,产酶率更高。再如,转基因大肠杆菌细胞生产??酰胺酶,经过固定化后的细胞比没有选择压力时游离细胞的产酶率提高10~20倍。

(2) 可以反复使用或连续使用较长时间:固定化细胞固定在载体上,不容易脱落流失,所以固定化细胞可以进行半连续发酵,反复使用多次;也可以在高稀释的条件下连续发酵较长时间。例如,固定化细胞进行酒精、乳酸等厌氧发酵,可以连续使用半年或者更长的时间;固定化细胞发酵产生??淀粉酶等,也可以连续地使用30d以上。

(3) 基因工程菌的质粒稳定,不易丢失:基因工程菌经过固定化后,由于有载体的保护作用,质粒的结构稳定性和分裂稳定性都显著提高。

(4) 发酵稳定性好:细胞经过固定化后,由于受到载体的保护作用,使细胞对温度、PH的适应范围增宽;对蛋白酶和酶抑制剂等的耐受能力增强,所以能够比较稳定地进行发酵生产。这一特点使固定化细胞发

酵的操作控制变得相对容易,并有利于发酵生产的自动化。

(5) 缩短发酵周期,提高设备利用率:固定化细胞,如果经过预培养,转入发酵培养基以后,很快就可以发酵产酶,而且能够较长时间维持产酶特性,所以可以缩短发酵周期,提高设备利用率。若不经预培养,第一批发酵时,周期与游离细胞基本相同,但是第二批以后,其发酵周期将明显缩短。例如,固定化黑曲霉细胞半连续发酵生产糖化酶,第一批发酵时,周期为120h,与游离细胞发酵周期相同,但是从第二批发酵开始,发酵周期缩短至60h。若采用连续发酵,则可以在高稀释的条件下连续稳定地产酶,这就更加提高设备利用率。

(6) 产品容易分离纯化:固定化细胞不溶于水,发酵完成后,容易与发酵液分离,而且发酵液中所含的游离细胞很少,这就有利于产品的分离纯化,从而提高产品的纯度和质量。

(7) 适用于胞外酶等胞外产物的生产:由于固定化细胞与载体结合在一起,所以固定化细胞一般只是用于胞外酶等胞外产物的生产。 5答:固定化原生质体发酵产酶具有如下显著特点:

(1) 变胞内产物为胞外产物:固定化原生质体由于解除了细胞壁的扩散障碍,可以使原本存在于细胞质中的胞内酶不断分泌到细胞外。变革了胞内酶的生产工艺。例如,笔者等人采用固定化黑曲霉原生质体生产葡萄糖氧化酶,使细胞内葡萄糖氧化酶的90%以上分泌到细胞外。

(2) 提高酶产率:由于出去了细胞壁,增加了细胞的通透性,有利于氧气和其他营养物质的传递与吸收,也有利于胞内物质的分泌,可以显著提高酶产率。例如,笔者等人的研究表明,固定化枯草杆菌原生质体发酵生产碱性磷酸酶,使原来存在于细胞间质中的碱性磷酸酶全部分泌到发酵液中,产酶率提高30%。

(3) 稳定性好:固定化原生质体由于有载体的保护作用,具有较好的操作稳定性和保存稳定性,可以反复使用或者连续使用较长时间,利于连续生产。

(4) 易于分离纯化:固定化原生质体易于和发酵液分开,有利于产物的分离纯化,提高产品质量。

6答:发酵动力学的主要内容包括细胞生长动力学,产物生成动力学和基质消耗动力学。

细胞生长动力学主要研究发酵过程中细胞生长速率以及各种因素对细胞生长速率的影响规律;产物生成动力学主要研究发酵过程中产物生成速率以及各种因素对产物生成速率的影响规律;基质消耗动力学主要研究发酵过程中基质消耗速率以及各种因素对基质消耗速率的影响规律。

六 综合分析题 1答:在酶的发酵生产过程中,要使酶的产率提高,必须采取一系列的措施,主要的有:

(1) 使用优良的产酶细胞:通过筛选、诱变、原生质体融合、基因重组、定向进化等手段,获得生长快、产率高、稳定性好的产酶细胞。

(2) 使用优良的发酵生产设备:通过精心设计或者选择使用高产、低耗的发酵罐等发酵生产设备。

(3) 采用先进的跟李纯化技术和设备:采用操作简便、收得率高的分离化技术设备,以达到高产丰收的效果。