中国南方电网公司继电保护反事故措施汇编(1) 下载本文

3.1.10.3 单通道光纤电流差动保护采用短路径通道,双通道光纤电流差动保护采用一路短路径通道和一路长路径通道,且短路径通道和长路径通道分别采用不同的光通信设备。

3.1.10.4 光纤电流差动保护禁止采用光纤通道自愈环,非光纤电流差动保护和 5

辅助保护可采用光纤通道自愈环。

3.1.11 线路保护光纤通道应优先采用本线或同一电压等级线路的光缆,在不具备条件时可复用下一级电压等级线路的光缆。 3.2 母线保护及断路器失灵保护 3.2.1 母线差动保护在设计、安装、调试和运行的各个阶段都应加强质量管理和技术监督,无论在新建、扩建还是技改工程中都应保证母线差动保护不留隐患地投入运行。

3.2.2 为确保母线差动保护检修时母线不至失去保护,防止母线差动保护拒动而危及系统稳定或将事故扩大,500kV母线保护及500kV变电站的220kV母线保护应采用双重化配置,重要的或有稳定问题的220kV厂站的220kV母线保护应采用双重化配置。双重化配置除应符合7.2条的技术要求外,同时还应满足以下要求: 3.2.2.1 每条母线采用两套完整、独立的母线差动保护,并安装在各自的屏柜内。每套保护分别动作于断路器的一组跳闸线圈。 3.2.2.2 采用单套失灵保护时,失灵应同时作用于断路器的两个跳闸线圈;当共用出口的双重化配置的微机型母差保护与断路器失灵保护均投入时,每套保护可分别动作于断路器的一组跳闸线圈。

3.2.2.3 用于母线差动保护的断路器和隔离刀闸的辅助接点、切换回路、辅助变流器以及与其他保护配合的相关回路亦应遵循相互独立的原则按双重化配置。 3.2.2.4应合理分配母线差动保护所接电流互感器二次绕组,对确无办法解决的保护动作死区,在满足系统稳定要求的前提下,可采取起动失灵和远方跳闸等后备措施来解决。 3.2.3 母联、分段断路器应配置充电保护。该保护应具备可瞬时跳闸和延时跳闸的回路,并宜启动失灵保护。

3.2.4 500kV变电站的35kV母线应配置母差保护。 3.2.5 双母线接线的母线保护,应设有电压闭锁元件。 3.2.5.1 对数字式母线保护装置,可在起动出口继电器的逻辑中设置电压闭锁回路,而不在跳闸出口回路上串接电压闭锁触点;

3.2.5.2 对非数字式母线保护装置电压闭锁接点应分别与跳闸出口触点串接。 3.2.5.3 母联或分段断路器的跳闸回路不应经电压闭锁触点控制。 3.2.6 500kV边断路器失灵宜通过母差出口跳相关边开关。

3.2.7 500kV边断路器失灵经母差保护出口跳闸的,母差保护应充分考虑交直流窜扰,可在母差失灵出口回路中增加20~30ms的动作延时来提高失灵回路抗干扰的能力,防止母差失灵误动作。

3.2.8 220kV及以上变压器、发变组的断路器失灵时,应起动断路器失灵保护, 6 并满足以下要求:

3.2.8.1 断路器失灵保护的电流判别元件应采用相电流、零序电流和负序电流按“或门”构成的逻辑。

3.2.8.2 为解决断路器失灵保护复合电压闭锁元件灵敏度不足的问题,可采用以下解决方案:

a)采用由主变各侧“复合电压闭锁元件动作”(或逻辑)作为解除断路器失灵保护的复合电压闭锁元件,当采用微机变压器保护时,应具备主变“各侧复合电压闭锁动作”信号输出的空接点。

b)采用保护跳闸接点和电流判别元件同时动作去解除复合电压闭锁,在故障电流切断或保护跳闸命令收回后重新闭锁断路器失灵保护。 【释义】该解除电压闭锁方案比单纯靠保护跳闸接点解除复合电压闭锁可靠性高,降低了保护跳闸接点误导通而误解锁的可能性。

3.2.9 母线发生故障,母线保护动作后,除一个半断路器接线外,对于不带分支且有纵联保护的线路,应利用线路纵联保护使对侧快速跳闸,如闭锁式采用母差保护动作停信、允许式采用母差保护动作发信、纵差采用母差保护动作直跳对侧等。对于该母线上的变压器,除利用母差保护动作接点跳变压器本侧断路器外,还应启动变压器本侧断路器失灵。 3.3 发电机变压器保护

3.3.1 220kV及以上电压等级的主变压器或100MW及以上容量发电机变压器组保护应按双重化配置(非电气量保护除外)。双重化配置除应符合7.2条的技术要求外,同时还应满足以下要求:

3.3.1.1主变压器应采用两套完整、独立并且安装在各自屏柜内的保护装置。每套保护均应配置完整的主、后备保护。

3.3.1.2发电机变压器组每套保护均应含完整的差动及后备保护,能反应被保护设备的各种故障及异常状态,并能动作于跳闸或发信。

3.3.1.3主变压器或发电机变压器组非电量保护应设置独立的电源回路(包括直流空气小开关及其直流电源监视回路)和出口跳闸回路,且必须与电气量保护完全分开,在保护柜上的安装位置也应相对独立。

3.3.1.4每套完整的电气量保护应分别动作于断路器的一组跳闸线圈。非电量保护的跳闸回路应同时作用于断路器的两个跳闸线圈。

3.3.1.5为与保护双重化配置相适应,500kV变压器的高、中压侧和220kV变压器的高压侧必须选用具有双跳闸线圈的断路器。断路器和隔离刀闸的辅助接点、切换回路、辅助变流器以及与其他保护配合的相关回路亦应遵循相互独立的原则按双重化配置。

3.3.2 发电机、变压器的阻抗保护,都必须经电流起动,并应有电压回路断线闭锁。 7

3.3.3 变压器的瓦斯保护应防水、防油渗漏、密封性好。气体继电器由中间端子箱引出的电缆应直接接入保护柜。非电量保护的重动继电器宜采用启动功率不小于5W、动作电压介于55~65%Ue、动作时间不小于10ms的中间继电器。 3.3.4 电气量保护与非电气量保护的出口继电器应分开,不得使用不能快速返回的电气量保护和非电量保护作为断路器失灵保护的起动量,且断路器失灵保护的相电流判别元件动作时间和返回时间均不应大于20毫秒。

3.3.5 为防止冷却器油泵启动时引起的油压突然变化导致重瓦斯保护误动作,应进行单台及多台油泵启停试验,检查重瓦斯保护动作情况。若出现误动,应采取针对性措施。 3.3.6 有关设计、制造单位和发电厂及其调度部门应针对发电机变压器组一次结构和继电保护的配置及二次接线方案,对发电机变压器保护在设计、安装、调试和运行的各个阶段都应加强质量管理和技术监督,消除隐患。

3.3.7 认真分析和研究发电机失步、失磁保护的动作行为,做好发电机失步、失磁保护的选型工作。应采取相应措施防止系统单相故障发展为两相故障时,失步继电器不正确动作。设计、制造单位应将有关这些问题的计算、研究资料提供给发电厂有关部门和调度单位备案。发电机在进相运行前,应仔细检查和校核发电机失步、失磁保护的测量原理、整定范围和动作特性。在发电机进相运行的上限工况时,防止发电机的失步、失磁保护装置不正确跳闸。

3.3.8 发电机失步保护在发电机变压器组外部发生故障时不应误动作,只有测量到失步振荡中心位于发电机变压器组内部,并对其安全构成威胁时,才作用于跳闸,并尽量避免断路器两侧电势角在180度时开断。 3.3.9 发电机失磁保护应能正确区分短路故障和失磁故障,同时还应配置振荡闭锁元件,防止系统振荡时发电机失磁保护不正确动作。 3.3.10 200MW及以上容量的发电机定子接地保护应投入跳闸,但应将基波零序保护与发电机中性点侧三次谐波电压保护的出口分开,基波零序保护投跳闸,发电机中性点侧三次谐波电压保护宜投信号。

3.3.11 发电机变压器组断路器出现非全相运行时,首先应采取发电机降出力措施,然后经快速返回的“负序或零序电流元件”闭锁的“断路器非全相判别元件”,由独立的时间元件以第一时限启动独立的跳闸回路重跳本断路器一次,并 8 发出“断路器三相位置不一致”的动作信号。若此时断路器故障仍然存在,可采用以下措施:

3.3.11.1以“零序或负序电流”元件动作、“断路器三相位置不一致”和“保护动作”构成的“与”逻辑,通过独立的时间元件以第二时限去解除断路器失灵保护的复合电压闭锁,并发出告警信号。

3.3.11.2同时经“零序或负序电流”元件以及任一相电流元件动作的“或”逻辑,与“断路器三相位置不一致”,“保护动作”构成的“与”逻辑,经由独立的时间元件以第三时限去启动断路器失灵保护,并发“断路器失灵保护启动”的信号。

3.3.12 发电机变压器组的气体保护、低阻抗保护应参照变压器气体保护和低阻抗保护的技术要求。

3.3.13 在新建、扩建和改建工程中,应创造条件优先考虑配置横差保护,并且横差保护的三次谐波滤过比应大于30。

3.3.14 200MW及以上容量的发电机变压器组应配置专用故障录波器。

3.3.15 发变组出口三相不一致保护启动失灵保护。220kV及以上电压等级单元制接线的发变组,应使用具有电气量判据的断路器三相不一致保护去启动发变组断路器失灵保护。

3.4 故障录波和继电保护故障信息系统

3.4.1 为充分利用故障录波手段,更好地开展运行分析,发现隐患,查明事故原因,相同一次设备(如线路、变压器、母线、电抗器)的模拟量和开关量宜接入同一录波器中。

3.4.2 模拟量是故障录波的基本信息,所有220kV及以上电气模拟量必须录波,并宜按照TV、TA装设位置不同分别接入。其中应特别注意:

3.4.2.1 安装在不同位置的每一组三相电压互感器,均应单独录波,同时还应接入外接零序电压。

3.4.2.2 变压器不仅需录取各侧的电压、电流,还应录取公共绕组电流、中性点零序电流和中性点零序电压。电抗器应参照变压器选取模拟量录波。

3.4.2.3 母联、分段以及旁路开关,应录取其电流。

3.4.2.4 3/2接线、角形接线或双开关接线,宜单独录取开关电流。 3.4.3 开关量变位情况是故障录波的重要信息,接入录波器的开关量应包括保护出口信息、通道收发信情况以及开关变位情况等变位信息。其中应特别注意: 3.4.3.1 任意保护的逻辑功能出口跳闸,均应在录波图的开关量中反映。对于独 9

立出口继电器的单一逻辑功能,宜单独接入录波。对于多项逻辑功能共用多组出口继电器的,可选用一组开关量接入录波器。

3.4.3.2 传送闭锁式命令的专用收发信机的收信输出、保护的发(停)信的接点信号,均应接入录波器。

3.4.3.3 220kV及以上的开关,每相开关的跳、合位均应分别录波,宜选用开关辅助接点接入。

3.4.3.4操作箱中的手跳、三跳、永跳继电器的接点变位宜接入故障录波,便于事故分析。

3.4.3.5 保护跳闸、开关位置等重要开关量的变位应启动录波。

3.4.4 为了便于分析交直流串扰引起的保护跳闸,在保证安全的前提下,宜录取保护使用的直流母线电压。 4 直流电源

4.1 保护控制直流电源

4.1.1 正常情况下蓄电池不得退出运行(包括采用硅整流充电设备的蓄电池),当蓄电池组必须退出运行时,应投入备用(临时)蓄电池组。 4.1.2 变电站内蓄电池核容工作结束后投入充电屏的过程中,必须监视并确保新投入直流母线的充电屏直流电流表有电流指示后,方可断开两段直流母线分段开关,防止出现一段直流母线失压。

4.1.3 互为冗余配置的两套主保护、两套安稳装置、两组跳闸回路的直流电源应取自不同段直流母线,且两组直流之间不允许采用自动切换。 4.1.4 双重化配置的两套保护与断路器的两组跳闸线圈一一对应时,其保护电源和控制电源必须取自同一组直流电源。

4.1.5 控制电源与保护电源直流供电回路必须分开。

4.1.6 为防止因直流空气开关(直流熔断器)不正常熔断而扩大事故,应注意做到:

4.1.6.1 直流总输出回路、直流分路均装设熔断器时,直流熔断器应分级配置,逐级配合。

4.1.6.2 直流总输出回路装设熔断器,直流分路装设小空气开关时,必须确保熔断器与小空气开关有选择性地配合。

4.1.6.3 直流总输出回路、直流分路均装设小空气开关时,必须确保上、下级小空气开关有选择性地配合。

4.1.6.4 为防止因直流熔断器不正常熔断或空气开关失灵而扩大事故,对运行 10 中的熔断器和小空气开关应定期检查,严禁质量不合格的熔断器和小空气开关投入运行。

4.1.7 使用具有切断直流负载能力的、不带热保护的小空气开关取代原有的直流熔断器,小空气开关的额定工作电流应按最大动态负荷电流(即保护三相同时动作、跳闸和收发信机在满功率发信的状态下)的1.5-2.0倍选用。 4.1.8 直流空气开关(直流熔断器)的配置原则如下: