Æ½ÃæÏòÁ¿Á·Ï°Ìâ
Ò»¡¢Ñ¡ÔñÌâ
1¡¢ÈôÏòÁ¿a= (1,1), b= (1,£1), c =(£1,2),Ôò cµÈÓÚ( )
????1?3?3?1?1?3?A¡¢?a+b B¡¢a?b C¡¢a?b
2222223?1?D¡¢?a+ b
22£¨ £©
2¡¢ÒÑÖª£¬A£¨2£¬3£©£¬B£¨£4£¬5£©£¬ÔòÓëAB¹²Ïߵĵ¥Î»ÏòÁ¿ÊÇ
A¡¢e?(?31010,) 1010
B¡¢e?(?3101031010,)»ò(,?) 10101010C¡¢e?(?6,2) D¡¢e?(?6,2)»ò(6,2)
£¨ £©
3¡¢ÒÑÖªa?(1,2),b?(?3,2),ka?bÓëa?3b´¹Ö±Ê±kֵΪ A¡¢17
B¡¢18
C¡¢19
D¡¢20
4¡¢ÒÑÖªÏòÁ¿OP=(2£¬1)£¬OA =(1£¬7)£¬OB =(5£¬1)£¬ÉèXÊÇÖ±ÏßOPÉϵÄÒ»µã(OÎª×ø±êÔµã)£¬ÄÇôXA?XBµÄ×îСֵÊÇ ( )
A¡¢-16 B¡¢-8 C¡¢0 D¡¢4
5¡¢ÈôÏòÁ¿m?(1,2),n?(?2,1)·Ö±ðÊÇÖ±Ïßax+(b£a)y£a=0ºÍax+4by+b=0µÄ·½ÏòÏòÁ¿£¬Ôò a, bµÄÖµ·Ö±ð¿ÉÒÔÊÇ £¨ £©
A¡¢ £1 £¬2 B¡¢ £2 £¬1 C¡¢ 1 £¬2 D¡¢ 2£¬1 6¡¢ÈôÏòÁ¿a=(cos?,sin?)£¬b=(cos?,sin?)£¬ÔòaÓëbÒ»¶¨Âú×ã £¨ £©
A¡¢aÓëbµÄ¼Ð½ÇµÈÓÚ?£? B¡¢(a£«b)¡Í(a£b) C¡¢a¡Îb
D¡¢a¡Íb
??????7¡¢Éèi,j·Ö±ðÊÇxÖᣬyÖáÕý·½ÏòÉϵĵ¥Î»ÏòÁ¿£¬OP?3cos?i?3sin?j£¬??(0,),OQ??i¡£ÈôÓÃÀ´±íʾOP2ÓëOQµÄ¼Ð½Ç£¬ÔòµÈÓÚ £¨ £© A¡¢?
B¡¢
?2?? C¡¢
?2?? D¡¢???
8¡¢Éè0???2?£¬ÒÑÖªÁ½¸öÏòÁ¿OP2??2?sin?,2?cos??£¬ÔòÏòÁ¿P1??cos?,sin??£¬OP1P2³¤¶ÈµÄ×î´óÖµÊÇ£¨ £© A¡¢2 ¶þ¡¢Ìî¿ÕÌâ
9¡¢ÒÑÖªµãA(2£¬0)£¬B(4£¬0)£¬¶¯µãPÔÚÅ×ÎïÏßy2£½£4xÔ˶¯£¬ÔòʹAP?BPÈ¡µÃ×îСֵµÄµãPµÄ×ø±ê
1
B¡¢3
C¡¢32
D¡¢
ÊÇ ¡¢ 10¡¢°Ñº¯Êýy?v3cosx?sinxµÄͼÏ󣬰´ÏòÁ¿a???m,n? £¨m>0£©Æ½ÒƺóËùµÃµÄͼÏó¹ØÓÚyÖá¶Ô³Æ£¬ÔòmµÄ×îС
ÕýֵΪ__________________¡¢
11¡¢ÒÑÖªÏòÁ¿OA?(?1,2),OB?(3,m),ÈôOA?AB,Ôòm? ¡¢ Èý¡¢½â´ðÌâ
12¡¢ÇóµãA£¨£3£¬5£©¹ØÓÚµãP£¨£1£¬2£©µÄ¶Ô³ÆµãA/¡¢
13¡¢Æ½ÃæÖ±½Ç×ø±êϵÓеãP(1,cosx),Q?(cosx,1),x?[??4,?4]. £¨1£©ÇóÏòÁ¿OPºÍOQµÄ¼Ð½Ç?µÄÓàÏÒÓÃx±íʾµÄº¯Êýf(x)£» £¨2£©Çó?µÄ×îÖµ¡¢
14¡¢ÉèOA?(2sinx,cos2x)£¬OB?(?cosx£¬1)£¬ÆäÖÐx¡Ê[0£¬?2]¡¢ (1)Çóf(x)=OA¡¤OBµÄ×î´óÖµºÍ×îСֵ£» (2)µ± uOAuur¡ÍuuuOBr£¬Çó|uABuur|¡¢
15¡¢ÒÑÖª¶¨µãA(0,1)¡¢B(0,?1)???¡¢C(1,0)£¬¶¯µãPÂú×㣺AP????BP???k|PC?|2¡¢
£¨1£©Ç󶯵ãPµÄ¹ì¼£·½³Ì£¬²¢ËµÃ÷·½³Ì±íʾµÄͼÐΣ» ???£¨2£©µ±k?2ʱ£¬Çó|AP??BP??|µÄ×î´óÖµºÍ×îСֵ¡¢
2
²Î¿¼´ð°¸
Ò»¡¢Ñ¡ÔñÌâ
1¡¢B£»2¡¢B£»3¡¢C£»4¡¢B£»5¡¢D£»6¡¢B£»7¡¢D£»8¡¢C ¶þ¡¢Ìî¿ÕÌâ 9¡¢(0£¬0) 10¡¢m?5?6 11¡¢4 Èý¡¢½â´ðÌâ
?12¡¢½â£ºÉèA/
£¨£ø£¬£ù£©£¬ÔòÓÐ??3?x???1?2£¬½âµÃ?x?1?5?y???y??1¡¢ËùÒÔA/£¨1£¬£1£©¡£
?2?213¡¢½â£º£¨1£©?OP?OQ?2cosx,|OP||OQ|?1?cos2x,cos??OP?OQ2cosx|OP|?|OQ|?1?cos2x?f(x)cos??f(x)?2cosx21?cos2x?ÇÒx?[???2cosx?14,4]£¬?cosx?[2,1] cosx2?cosx?1cosx?322 223?f(x)?1,¼´22223?cos??1 ?max?arccos3; ?min?0
14¡¢½â£º¢Åf(x)=OA¡¤OB= -2sinxcosx+cos2x=2cos(2x??4)¡¢
¡ß0¡Üx¡Ü?2 £¬ ¡à?4¡Ü2x+?4¡Ü5?4¡¢ ¡àµ±2x+?4=?4£¬¼´x=0ʱ£¬f(x)max=1£»
µ±2x+?4=¦Ð£¬¼´x=38¦Ðʱ£¬f(x)min= -2¡¢
¢ÆOA?OB¼´f(x)=0£¬2x+?4=?2£¬¡àx=?8¡¢
´Ëʱ|AB|?(2sinx?cosx)2?(cos2x?1)2
=4sin2x?cos2x?4sinxcosx?(cos2x?1)2
=
72?72cos2x?2sin2x?cos22x
2£©
3
£¨=
7?72cos?4?2sin??4?cos224 =
1216?32¡¢ ¡¢½â£º( 1 ) É趯µãPµÄ×ø±êΪ(x,y)£¬
?????????ÔòAP?(x,y?1)£¬BP?(x,y?1)£¬PC?(1?x,y)¡¢
?????????¡ßAP?BP?k|PC|2£¬¡àx2?y2?1?k?(x?1)2?y2?£¬
¼´ (1?k)x2?(1?k)y2?2kx?k?1?0¡£
Èôk?1£¬Ôò·½³ÌΪx?1£¬±íʾ¹ýµã(1,0)ÇÒÆ½ÐÐÓÚyÖáµÄÖ±Ïß¡¢ Èôk?1£¬Ôò·½³ÌΪ(x?k1?k)2?y2?(12k1?k)£¬±íʾÒÔ(1?k,0)ΪԲÐÄ£¬ÒÔΪ°ë¾¶ 1|1?k|µÄÔ²¡¢
( 2 ) µ±k?2ʱ£¬·½³Ì»¯Îª(x?2)2?y2?1¡¢?AP????BP???(x,y?1)?(x,y?1)?(2x,2y)??????¡à|AP?BP|?2x2?y2¡¢
ÓÖ¡ß(x?2)2?y2?1£¬¡à Áîx?2?cos?,y?sin?£¬Ôò
|?AP????BP??|?2x2?y2?25?4cos?
??????¡àµ±cos??1ʱ£¬|AP?BP|µÄ×î´óֵΪ6£¬µ±cos???1ʱ£¬×îСֵΪ2¡£
4
15