ϰÌâ1.1
1¡¢Ð´³öÏÂÁÐËæ»úÊÔÑéµÄÑù±¾¿Õ¼ä.
£¨1£©Éú²ú²úÆ·Ö±µ½ÓÐ4¼þÕýƷΪÕý£¬¼Ç¼Éú²ú²úÆ·µÄ×ܼþÊý.
£¨2£©ÔÚµ¥Î»Ô°ÖÐÈÎȡһµã¼Ç¼Æä×ø±ê.
£¨3£©Í¬Ê±ÖÀÈý¿Å÷»×Ó£¬¼Ç¼³öÏֵĵãÊýÖ®ºÍ. ½â£º£¨1£©??{4,5,6,7,8?} £¨2£©??{(x.y)x?y?1} £¨3£©??{3,4,5,6,7,8,9,10,?,18}
2¡¢Í¬Ê±ÖÀÁ½¿Å÷»×Ó£¬
1
22x¡¢y·Ö±ð±íʾµÚÒ»¡¢¶þ
Á½¿Å÷»×Ó³öÏֵĵãÊý£¬ÉèʼþA±íʾ¡°Á½¿Å÷»×Ó³öÏÖµãÊýÖ®ºÍÎªÆæÊý¡±£¬B±íʾ¡°µãÊýÖ®²îΪÁ㡱£¬C±íʾ¡°µãÊýÖ®»ý²»³¬¹ý20¡±£¬ÓÃÑù±¾µÄ¼¯ºÏ±íʾʼþB?A£¬BC£¬B?C.
½â£º
B?A?{(1.1),(2.2),(3.3),(4.4),(5.5),(6.6)}
3¡¢ÉèijÈËÏò°Ð×ÓÉä»÷3´Î£¬ÓÃAi±íʾ¡°µÚi´ÎÉä»÷»÷ÖаÐ×Ó¡±£¨i?1,2,3£©£¬ÊÔ
B?C?{(1.1),(2.2),(3.3),(4.4),(5.5),(6.6),(4.6),(6.4),(5.6),(6.5)}
2
BC?{(1.1),(2.2),(3.3),(4.4)}
ÓÃÓïÑÔÃèÊöÏÂÁÐʼþ.
A?A2 £¨1£©1(A?A)A123 £¨2£©
£¨3£©A1A2?A1A2 ½â£º£¨1£©µÚ1£¬2´Î¶¼Ã»ÓÐÖаÐ
£¨2£©µÚÈý´ÎÖаÐÇÒ
µÚ1£¬2ÖÐÖÁÉÙÓÐÒ»´ÎÖаÐ
£¨3£©µÚ¶þ´ÎÖаÐ
4£®ÉèijÈËÏòÒ»°Ñ×ÓÉä»÷Èý´Î£¬ÓÃAi±íʾ¡°µÚi´ÎÉä»÷»÷ÖаÐ×Ó¡±£¨i=1£¬2£¬3£©£¬Ê¹Ó÷ûºÅ¼°ÆäÔËËãµÄÐÎʽ±íʾÒÔÏÂʼþ£º
£¨1£©¡°ÖÁÉÙÓÐÒ»´Î»÷ÖаÐ×Ó¡±¿É±íʾΪ £» £¨2£©¡°Ç¡ÓÐÒ»´Î»÷ÖаÐ×Ó¡±¿É±íʾΪ £» £¨3£©¡°ÖÁÉÙÓÐÁ½´Î»÷ÖаÐ×Ó¡±¿É±íʾΪ £» £¨4£©¡°Èý´ÎÈ«²¿»÷ÖаÐ×Ó¡±¿É±íʾΪ £» £¨5£©¡°Èý´Î¾ùδ»÷ÖаÐ×Ó¡±¿É±íʾΪ £» £¨6£©¡°Ö»ÔÚ×îºóÒ»´Î»÷ÖаÐ×Ó¡±¿É±íʾΪ .
3
½â£º£¨1£©A1?A2?A3; (2) A1A2A3?A1A2A3?A1A2A3; (3)A1A2?A1A3?A2A3; (4) A1A2A3; (5) A1A2A3
(6) A1A2A3 5.Ö¤Ã÷ÏÂÁи÷Ìâ
£¨1£©A?B?AB £¨2£©A?B?(A?B)?(AB)?(B?A)
Ö¤Ã÷£º£¨1£©ÓÒ±ß=A£¨??B£©?A?AB=????AÇÒ??B??A?B=×ó±ß
£¨2£©ÓÒ±ß=£¨AB)?(AB)?(BA£©=????A»ò??B??A?B ϰÌâ1.2
1.Éè
A¡¢B¡¢C
Èýʼþ£¬
P(A)?P(B)?P(C)?14P(AC)?P(BC)?18,P(AB)?0£¬ÇóA¡¢B¡¢CÖÁÉÙÓÐÒ»¸ö·¢ÉúµÄ¸ÅÂÊ.
½â£º?P(AB)?0?P(ABC)?0
P(A?B?C).?P(A)?P(B)?P(C)?P(AB)?P(BC)?P(AC)?P(ABC)
=3?14?2?118?2 2.ÒÑÖªp(A)?0.5 £¬P(AB)?0.2 £¬ P(B)?0.4£¬Çó £¨1£©P(AB)(2)P(A?B)£¬ (3)P(A?B)£¬ (4)P(AB).
½â£º£¨1£©
?A?B,?AB?A?P(AB)?P(A)?0.1
£¨2£©
?A?B,?A?B?B?P(A?B)?P(B)?0.5
3.ÉèP(A)=0.2 P(A?B)=0.6 A.B»¥³â£¬ÇóP(B). ½â£º?A,B»¥³â£¬P(A?B)?P(A)?P(B) ¹ÊP(B)?P(A?B)?P(A)?0.6?0.2?0.4
,
4
£¬