计算机网络实验指导书 下载本文

【实验原理】

(一)TCP报文格式 16位源端口号 32位序号 32位确认序号 4位保U A P R S F 首留R C S S Y I 16位窗口大小 部6G K H T N N 长位 度 16位检验和 选项 数据

说明: (1)每个TCP段都包括源端和目的端的端口号,用于寻找发送端和接收端的应用进程。这两个值加上IP首部的源端IP地址和目的端IP地址唯一确定一个TCP连接。

(2)序号用来标识从TCP发送端向接收端发送的数据字节流,它表示在这个报文段中的第一个数据字节。如果将字节流看作在两个应用程序间的单向流动,则TCP用序号对每个字节进行计数。

(3)当建立一个新连接时,SYN标志变1。序号字段包含由这个主机选择的该连接的初始序号ISN,该主机要发送数据的第一个字节的序号为这个ISN加1,因为SYN标志使用了一个序号。

(4)既然每个被传输的字节都被计数,确认序号包含发送确认的一端所期望收到的下一个序号。因此,确认序号应当时上次已成功收到数据字节序号加1。只有ACK标志为1时确认序号字段才有效。 (5)发送ACK无需任何代价,因为32位的确认序号字段和ACK标志一样,总是TCP首部的一部分。因此一旦一个连接建立起来,这个字段总是被设置,ACK标志也总是被设置为1。

(6)TCP为应用层提供全双工的服务。因此,连接的每一端必须保持每个方向上的传输数据序号。

(7)TCP可以表述为一个没有选择确认或否认的华东窗口协议。因此TCP首部中的确认序号表示发送方已成功收到字节,但还不包含确认序号所指的字节。当前还无法对数据流中选定的部分进行确认。

(8)首部长度需要设置,因为任选字段的长度是可变的。TCP首部最多60个字节。 (9)6个标志位中的多个可同时设置为1 ◆ URG-紧急指针有效 ◆ ACK-确认序号有效

◆ PSH-接收方应尽快将这个报文段交给应用层 ◆ RST-重建连接

◆ SYN-同步序号用来发起一个连接

33

16位目的端口号 16位紧急指针 ◆ FIN-发送端完成发送任务

(10)TCP的流量控制由连接的每一端通过声明的窗口大小来提供。窗口大小为字节数,起始于确认序号字段指明的值,这个值是接收端期望接收的字节数。窗口大小是一个16为的字段,因而窗口大小最大为65535字节。

(11)检验和覆盖整个TCP报文端:TCP首部和TCP数据。这是一个强制性的字段,一定是由发送端计算和存储,并由接收端进行验证。TCP检验和的计算和UDP首部检验和的计算一样,也使用伪首部。 (12)紧急指针是一个正的偏移量,黄蓉序号字段中的值相加表示紧急数据最后一个字节的序号。TCP的紧急方式是发送端向另一端发送紧急数据的一种方式。

(13)最常见的可选字段是最长报文大小MMS,每个连接方通常都在通信的第一个报文段中指明这个选项。它指明本端所能接收的最大长度的报文段。

(二)用户数据报格式: 源端口号 目的端口号 总长度 (2字节) (2字节) (2字节) (三)Winsock网络编程接口简介

检验和 (2字节) 数据 1.套接口网络编程原理

套接口有三种类型:流式套接口、数据报套接口及原始套接口。流式套接口定义了一种可靠的面向连接的服务,实现了无差错无重复的顺序数据传输.数据报套接口定义了一种无连接的服务,数据通过相互独立的报文进行传输,是无序的,并且不保证可靠,无差错.原始套接口允许对低层协议如IP或ICMP直接访问,主要用于新的网络协议实现的测试等。

无连接服务器一般都是面向事务处理的,一个请求一个应答就完成了客户程序与服务程序之间的相互作用。若使用无连接的套接口编程,程序的流程如图:

34

面向连接服务器处理的请求往往比较复杂,不是一来一去的请求应答所能解决的,而且往往是并发服务器。使用面向连接的套接口编程, 其时序可以通过下图来表示:

套接口工作过程如下:服务器首先启动,通过调用socket()建立一个套接口,然后调用bind()将该套接口和本地网络地址联系在一起,再调用listen()使套接口做好侦听的准备,并规定它的请求队列的长度,之后就调用accept()来接收连接.客户在建立套接口后就可调用connect()和服务器建立连接.连接一旦建立,客户机和服务器之间就可以通过调用send()和recv()来发送和接收数据.最后,待数据传送结束后,双方调用close()关闭套接口。

2、常用的Windows Socket API函数 (1)WSAStartup函数

int WSAStartup(

WORD wVersionRequested, LPWSADATA lpWSAData );

使用Socket的程序在使用Socket之前必须调用WSAStartup函数。该函数的第一个参数指明程序请求使用的Socket版本,其中高位字节指明副版本、低位字节指明主版本;操作系统利用第二个参数返回请求的Socket的版本信息。当一个应用程序调用WSAStartup函数时,操作系统根据请求的Socket版本来搜索相应的Socket库,然后

35

绑定找到的Socket库到该应用程序中。以后应用程序就可以调用所请求的Socket库中的其它Socket函数了。该函数执行成功后返回0。

例:假如一个程序要使用2.1版本的Socket,那么程序代码如下 wVersionRequested = MAKEWORD( 2, 1 );

err = WSAStartup( wVersionRequested, &wsaData );

(2)WSACleanup函数

int WSACleanup (void);

应用程序在完成对请求的Socket库的使用后,要调用WSACleanup函数来解除与Socket库的绑定并且释放Socket库所占用的系统资源。

(3)socket函数

SOCKET socket( int af, int type, int protocol );

应用程序调用socket函数来创建一个能够进行网络通信的套接字。第一个参数指定应用程序使用的通信协议的协议族,对于TCP/IP协议族,该参数置PF_INET;第二个参数指定要创建的套接字类型,流套接字类型为SOCK_STREAM、数据报套接字类型为SOCK_DGRAM;第三个参数指定应用程序所使用的通信协议。该函数如果调用成功就返回新创建的套接字的描述符,如果失败就返回INVALID_SOCKET。套接字描述符是一个整数类型的值。每个进程的进程空间里都有一个套接字描述符表,该表中存放着套接字描述符和套接字数据结构的对应关系。该表中有一个字段存放新创建的套接字的描述符,另一个字段存放套接字数据结构的地址,因此根据套接字描述符就可以找到其对应的套接字数据结构。每个进程在自己的进程空间里都有一个套接字描述符表但是套接字数据结构都是在操作系统的内核缓冲里。下面是一个创建流套接字的例子:

struct protoent *ppe;

ppe=getprotobyname(\

SOCKET ListenSocket=socket(PF_INET,SOCK_STREAM,ppe->p_proto);

(4)closesocket函数

int closesocket( SOCKET s );

closesocket函数用来关闭一个描述符为s套接字。由于每个进程中都有一个套接字描述符表,表中的每个套接字描述符都对应了一个位于操作系统缓冲区中的套接字数据结构,因此有可能有几个套接字描述符指向同一个套接字数据结构。套接字数据结构中专门有一个字段存放该结构的被引用次数,即有多少个套接字描述符指向该结构。当调用closesocket函数时,操作系统先检查套接字数据结构中的该字段的值,如果为1,就表明只有一个套接字描述符指向它,因此操作系统就先把s在套接字描述符表中对应的那条表项清除,并且释放s对应的套接字数据结构;如果该字段大于1,那么操作系统仅仅清除s在套接字描述符表中的对应表项,并且把s对应的套接字数据结构的引用次数减1。

36