?0£¬ÈôxÎªÆæÊý (4) f:N?{0,1},f(x)=? ÊÇÂúÉ䣬²»Êǵ¥Éä
?1£¬ÈôxΪżÊý
(5) f:N-{0}?R,f(x)=lgx ²»ÊÇÂúÉ䣬Êǵ¥Éä (6) f:R?R,f(x)=x2-2x-15 ²»ÊÇÂúÉ䣬²»Êǵ¥Éä
5. ÉèX={a,b,c,d},Y={1,2,3},f={,,
µÚʮղ¿·Ö¿ÎºóϰÌâ²Î¿¼´ð°¸
4£®ÅжÏÏÂÁм¯ºÏ¶ÔËù¸øµÄ¶þÔªÔËËãÊÇ·ñ·â±Õ£º £¨1£© ÕûÊý¼¯ºÏZºÍÆÕͨµÄ¼õ·¨ÔËËã¡£
·â±Õ,²»Âú×ã½»»»ÂɺͽáºÏÂÉ£¬ÎÞÁãÔªºÍµ¥Î»Ôª £¨2£© ·ÇÁãÕûÊý¼¯ºÏ
ÆÕͨµÄ³ý·¨ÔËËã¡£²»·â±Õ
£¨R£©ºÍ¾ØÕó¼Ó·¨¼°³Ë·¨ÔËË㣬ÆäÖÐn2¡£
£¨3£© È«Ìån?nʵ¾ØÕ󼯺Ï
·â±Õ ¾ùÂú×ã½»»»ÂÉ£¬½áºÏÂÉ£¬³Ë·¨¶Ô¼Ó·¨Âú×ã·ÖÅäÂÉ£» ¼Ó·¨µ¥Î»ÔªÊÇÁã¾ØÕó£¬ÎÞÁãÔª£»
³Ë·¨µ¥Î»ÔªÊǵ¥Î»¾ØÕó£¬ÁãÔªÊÇÁã¾ØÕó£»
£¨4£©È«Ìån?nʵ¿ÉÄæ¾ØÕ󼯺ϹØÓÚ¾ØÕó¼Ó·¨¼°³Ë·¨ÔËË㣬ÆäÖÐn2¡£²»·â±Õ £¨5£©ÕýʵÊý¼¯ºÏ
ºÍÔËË㣬ÆäÖÐÔËË㶨ÒåΪ£º
²»·â±Õ ÒòΪ 1?1?1?1?1?1??1?R? £¨6£©n¹ØÓÚÆÕͨµÄ¼Ó·¨ºÍ³Ë·¨ÔËËã¡£
·â±Õ£¬¾ùÂú×ã½»»»ÂÉ£¬½áºÏÂÉ£¬³Ë·¨¶Ô¼Ó·¨Âú×ã·ÖÅäÂÉ ¼Ó·¨µ¥Î»ÔªÊÇ0£¬ÎÞÁãÔª£»
³Ë·¨ÎÞµ¥Î»Ôª£¨n?1£©£¬ÁãÔªÊÇ0£»n?1µ¥Î»ÔªÊÇ1
17
£¨7£©A = {a1,a2,?,an} n
ÔËË㶨ÒåÈçÏ£º
·â±Õ ²»Âú×ã½»»»ÂÉ£¬Âú×ã½áºÏÂÉ£¬ £¨8£©S =
¹ØÓÚÆÕͨµÄ¼Ó·¨ºÍ³Ë·¨ÔËËã¡£
·â±Õ ¾ùÂú×ã½»»»ÂÉ£¬½áºÏÂÉ£¬³Ë·¨¶Ô¼Ó·¨Âú×ã·ÖÅäÂÉ £¨9£©S = {0,1},SÊǹØÓÚÆÕͨµÄ¼Ó·¨ºÍ³Ë·¨ÔËËã¡£ ¼Ó·¨²»·â±Õ£¬³Ë·¨·â±Õ£»³Ë·¨Âú×ã½»»»ÂÉ£¬½áºÏÂÉ £¨10£©S =
,S¹ØÓÚÆÕͨµÄ¼Ó·¨ºÍ³Ë·¨ÔËËã¡£
¼Ó·¨²»·â±Õ£¬³Ë·¨·â±Õ£¬³Ë·¨Âú×ã½»»»ÂÉ£¬½áºÏÂÉ
5£®¶ÔÓÚÉÏÌâÖзâ±ÕµÄ¶þÔªÔËËãÅжÏÊÇ·ñÊʺϽ»»»ÂÉ£¬½áºÏÂÉ£¬·ÖÅäÂÉ¡£ ¼ûÉÏÌâ
7£®Éè * ΪZ?ÉϵĶþÔªÔËËã?x,y?Z?£¬
X * Y = min ( x£¬y ),¼´xºÍyÖ®ÖнÏСµÄÊý.
(1)Çó4 * 6£¬7 * 3¡£ 4, 3
(2)* ÔÚZÉÏÊÇ·ñÊʺϽ»»»ÂÉ£¬½áºÏÂÉ£¬ºÍÃݵÈÂÉ£¿ Âú×ã½»»»ÂÉ£¬½áºÏÂÉ£¬ºÍÃݵÈÂÉ
(3)Çó*ÔËËãµÄµ¥Î»Ôª£¬ÁãÔª¼°Z?ÖÐËùÓпÉÄæÔªËØµÄÄæÔª¡£ µ¥Î»ÔªÎÞ£¬ÁãÔª1, ËùÓÐÔªËØÎÞÄæÔª
8£®S?Q?Q QΪÓÐÀíÊý¼¯£¬*ΪSÉϵĶþÔªÔËË㣬,
< a£¬b >*
£¨1£©*ÔËËãÔÚSÉÏÊÇ·ñ¿É½»»»£¬¿É½áºÏ£¿ÊÇ·ñΪÃݵȵģ¿ ²»¿É½»»»£º
¿É½áºÏ£º(*
£¨2£©*ÔËËãÊÇ·ñÓе¥Î»Ôª£¬ÁãÔª£¿ Èç¹ûÓÐÇëÖ¸³ö£¬²¢ÇóSÖÐËùÓпÉÄæÔªËØµÄÄæÔª¡£ ÉèÊǵ¥Î»Ôª£¬
? 18
Ôò
ÉèÊÇÁãÔª£¬
ËùÒÔµ±x?0ʱ£¬?x,y??1?1y,? xx
10£®ÁîS={a£¬b}£¬SÉÏÓÐËĸöÔËË㣺*£¬
·Ö±ðÓбí10.8È·¶¨¡£
(a) (b) (c) (d)
(1)Õâ4¸öÔËËãÖÐÄÄЩÔËËãÂú×ã½»»»ÂÉ£¬½áºÏÂÉ£¬ÃݵÈÂÉ£¿ (a) ½»»»ÂÉ£¬½áºÏÂÉ£¬ÃݵÈÂɶ¼Âú×㣬 ÁãԪΪa,ûÓе¥Î»Ôª£» (b)Âú×ã½»»»ÂɺͽáºÏÂÉ£¬²»Âú×ãÃݵÈÂÉ£¬µ¥Î»ÔªÎªa,ûÓÐÁãÔª
a?1?a,b?1?b
(c)Âú×ã½»»»ÂÉ,²»Âú×ãÃݵÈÂÉ,²»Âú×ã½áºÏÂÉ a?(b?b)?a?a?b, a?(b?b)?(a?b)?b ûÓе¥Î»Ôª, ûÓÐÁãÔª
(d) ²»Âú×ã½»»»ÂÉ£¬Âú×ã½áºÏÂɺÍÃݵÈÂÉ Ã»Óе¥Î»Ôª, ûÓÐÁãÔª
(2)Çóÿ¸öÔËËãµÄµ¥Î»Ôª£¬ÁãÔªÒÔ¼°Ã¿Ò»¸ö¿ÉÄæÔªËØµÄÄæÔª¡£ ¼ûÉÏ
(a?b)?b?a?b?a
16£®ÉèV=¡´ N£¬+ £¬¡µ£¬ÆäÖÐ+ £¬·Ö±ð´ú±íÆÕͨ¼Ó·¨Óë³Ë·¨£¬¶ÔÏÂÃæ¸ø¶¨µÄÿ¸ö¼¯ºÏÈ·¶¨ËüÊÇ·ñ¹¹³ÉVµÄ×Ó´úÊý£¬ÎªÊ²Ã´£¿
£¨1£©S1=
ÊÇ
19
£¨2£©S2= ²»ÊÇ ¼Ó·¨²»·â±Õ
£¨3£©S3 = {-1£¬0£¬1} ²»ÊÇ£¬¼Ó·¨²»·â±Õ
µÚʮһÕ²¿·Ö¿ÎºóϰÌâ²Î¿¼´ð°¸
8.ÉèS={0£¬1£¬2£¬3}£¬
Ϊģ4³Ë·¨£¬¼´
y=(xy)mod 4
\?x,y¡ÊS, x
ÎÊ¡´S£¬
¡µÊÇ·ñ¹¹³ÉȺ£¿ÎªÊ²Ã´£¿
y=(xy)mod 4?S,
ÊÇSÉϵĴúÊýÔËËã¡£
½â£º(1) ?x,y¡ÊS, x
(2) ?x,y,z¡ÊS,Éèxy=4k+r 0?r?3
(x
y)
z =((xy)mod 4)
z=r
z=(rz)mod 4
=(4kz+rz)mod 4=((4k+r)z)mod 4 =(xyz)mod 4 ͬÀíx
(y
z) =(xyz)mod 4 y)
z = x1)=(1
(y
z)£¬½áºÏÂɳÉÁ¢¡£
ËùÒÔ£¬(x(3) ?x¡ÊS, (x
x)=x,£¬ËùÒÔ1Êǵ¥Î»Ôª¡£
(4)1?1?1,3?1?3, 0ºÍ2ûÓÐÄæÔª ËùÒÔ£¬¡´S£¬
9.ÉèZΪÕûÊý¼¯ºÏ£¬ÔÚZÉ϶¨Òå¶þÔªÔËËã¡£ÈçÏ£º \?x,y¡ÊZ,xoy= x+y-2 ÎÊZ¹ØÓÚoÔËËãÄÜ·ñ¹¹³ÉȺ£¿ÎªÊ²Ã´£¿
½â£º(1) ?x,y¡ÊZ, xoy= x+y-2?Z,oÊÇZÉϵĴúÊýÔËËã¡£ (2) ?x,y,z¡ÊZ,
(xoy) oz =(x+y-2)oz=(x+y-2)+z-2=x+y+z-4 ͬÀí(xoy)oz= xo(yoz)£¬½áºÏÂɳÉÁ¢¡£
(3)ÉèeÊǵ¥Î»Ôª£¬?x¡ÊZ, xoe= eox=x,¼´x+e-2= e+x-2=x, e=2 (4) ?x¡ÊZ , ÉèxµÄÄæÔªÊÇy, xoy= yox=e, ¼´x+y-2=y+x-2=2, ËùÒÔ£¬x?1?y?4?x ËùÒÔ¡´Z£¬o¡µ¹¹³ÉȺ
20
¡µ²»¹¹³ÉȺ