?e?y/2, y?0,d?Òò´Ë£¬f Y (y)£½ FY(y)??2? ydy?0, y?0. ?Î壨3£©¡¢ÉèϵͳLÓÉÁ½¸öÏ໥¶ÀÁ¢µÄ×ÓϵͳL1¡¢L2´®Áª¶ø³É£¬ÇÒL1¡¢L2µÄÊÙÃü·Ö±ð·þ´Ó²ÎÊýΪ?,?(???)µÄÖ¸Êý·Ö²¼¡£Çóϵ
ͳLµÄÊÙÃüZµÄÃܶȺ¯Êý¡£ ½â£ºÁîX¡¢Y·Ö±ðΪ×ÓϵͳL1¡¢L2µÄÊÙÃü£¬ÔòϵͳLµÄÊÙÃüZ£½min (X, Y)¡£ ÏÔÈ»£¬µ±z¡Ü0ʱ£¬F Z (z)£½P (Z¡Üz)£½P (min (X, Y)¡Üz)£½0£» µ±z>0ʱ£¬F Z (z)£½P (Z¡Üz)£½P (min (X, Y)¡Üz)£½1£P (min (X, Y)>z) £½1£P (X>z, Y>z)£½1£P (X>z)P (Y>z)£½1?Òò´Ë£¬ÏµÍ³LµÄÊÙÃüZµÄÃܶȺ¯ÊýΪ
???z?e??xdx??e??ydy£½1?e?(???)z¡£ z????(???)e?(???)z, z?0df Z (z)£½ FZ(z)??dz0, z?0?Î壨4£©¡¢ÒÑÖªËæ»ú±äÁ¿X¡«N£¨0£¬1£©£¬ÇóY£½|X|µÄÃܶȺ¯Êý¡£
½â£ºµ±y¡Ü0ʱ£¬F Y (y)£½P (Y¡Üy)£½P (|X |¡Üy)£½0£» µ±y>0ʱ£¬F Y (y)£½P (Y¡Üy)£½P (|X |¡Üy)£½P(?y?X?y)
£½
?y12??ye?x2/2dx?2?y12??0e?x2/2dx
?2?y2/2 y?0,d?eÒò´Ë£¬f Y (y)£½ FY(y)???dy?0, y?0. ?Î壨5£©¡¢ÉèËæ»úÏòÁ¿£¨X£¬Y£©ÁªºÏÃܶÈΪ
?Ae?(2x?3y), x?0,y?0 ;f(x, y)= ?
ÆäËü.?0, £¨1£© ÇóϵÊýA£»
£¨2£© ÅжÏX£¬YÊÇ·ñ¶ÀÁ¢£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£© ÇóP{ 0¡ÜX¡Ü2£¬0¡ÜY¡Ü1}¡£
µÚ21Ò³£¬¹²38Ò³
½â£º£¨1£©ÓÉ1£½
??????????f(x,y)dxdy????0???0Ae?(2x?3y)dxdy?A?e0???2xdx??e0???3y1dy£½A(?e?2x2??01)(?e?3y3??)?0A, 6 ¿ÉµÃA£½6¡£
£¨2£©Òò£¨X£¬Y£©¹ØÓÚXºÍYµÄ±ßÔµ¸ÅÂÊÃܶȷֱðΪ
?2e?2x, x?0 ;?3e?3y, y?0 ;fX (x)£½? ºÍ fY (y)£½ ? £¬
ÆäËü. ÆäËü.?0, ?0, Ôò¶ÔÓÚÈÎÒâµÄ(x,y)?R2, ¾ù³ÉÁ¢f (x, y)= fX (x)* fY (y)£¬ËùÒÔXÓëY¶ÀÁ¢¡£ £¨3£©P{ 0¡ÜX¡Ü2£¬0¡ÜY¡Ü1}£½
?2x20?3y10??6e0021?(2x?3y)dxdy??2e02?2xdx??3e?3ydy
01 £½(?e)(?e)?(1?e?4)(1?e?3).
Î壨6£©¡¢ÉèËæ»úÏòÁ¿£¨X£¬Y£©ÁªºÏÃܶÈΪ
?Ae?(3x?4y), x?0,y?0 ;f (x, y)= ?
ÆäËü.?0, £¨1£© ÇóϵÊýA£»
£¨2£© ÅжÏX£¬YÊÇ·ñ¶ÀÁ¢£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£© ÇóP{ 0¡ÜX¡Ü1£¬0¡ÜY¡Ü1}¡£ ½â£º£¨1£©ÓÉ1£½
??????????f(x,y)dxdy??????0?0??0Ae?(3x?4y)dxdy?A?e0???3xdx??e?4ydy
0??1 £½A(?e?3x301)(?e?4y4??)?A, ¿ÉµÃA£½12¡£ 12 £¨2£©Òò£¨X£¬Y£©¹ØÓÚXºÍYµÄ±ßÔµ¸ÅÂÊÃܶȷֱðΪ
?3e?3x, x?0 ;?4e?4y, y?0 ;fX (x)£½? ºÍ fY (y)£½ ? £¬
ÆäËü. ÆäËü.?0, ?0, Ôò¶ÔÓÚÈÎÒâµÄ(x,y)?R, ¾ù³ÉÁ¢f (x, y)= fX (x)* fY (y)£¬ËùÒÔXÓëY¶ÀÁ¢¡£ £¨3£©P{ 0¡ÜX¡Ü1£¬0¡ÜY¡Ü1}£½
2?1100?(3x?4y)?3x?4y12edxdy?3edx?4edy ???00????µÚ22Ò³£¬¹²38Ò³
£½(?e?3x10)(?e?4y)?(1?e?3)(1?e?4).
01Î壨7£©¡¢ÉèËæ»úÏòÁ¿£¨X£¬Y£©ÁªºÏÃܶÈΪ
f(x, y)= ??6x, 0?x?y?1 ;
ÆäËü.?0, £¨1£© Çó£¨X£¬Y£©·Ö±ð¹ØÓÚXºÍYµÄ±ßÔµ¸ÅÂÊÃܶÈfX(x)£¬fY(y)£»
£¨2£© ÅжÏX£¬YÊÇ·ñ¶ÀÁ¢£¬²¢ËµÃ÷ÀíÓÉ¡£ ½â£º£¨1£©µ±x<0»òx>1ʱ£¬fX (x)£½0£» µ±0¡Üx¡Ü1ʱ£¬fX (x)£½
?????f(x,y)dy??6xdy?6x(1?x).
x1?6x?6x2, 0?x?1,Òò´Ë£¬£¨X£¬Y£©¹ØÓÚXµÄ±ßÔµ¸ÅÂÊÃܶÈfX (x)£½?
ÆäËü.?0, µ±y<0»òy>1ʱ£¬fY (y)£½0£» µ±0¡Üy¡Ü1ʱ£¬fY (y)£½
?????yf(x,y)dx??6xdx?3x2|0?3y2.
0y?3y2, 0?y?1,Òò´Ë£¬£¨X£¬Y£©¹ØÓÚYµÄ±ßÔµ¸ÅÂÊÃܶÈfY (y)£½?
ÆäËü.?0, £¨2£©ÒòΪf (1/2, 1/2)£½3/2£¬¶øfX (1/2) fY (1/2)£½(3/2)*(3/4)£½9/8¡Ùf (1/2, 1/2)£¬ ËùÒÔ£¬XÓëY²»¶ÀÁ¢¡£ Î壨8£©¡¢Éè¶þÎ¬Ëæ»úÏòÁ¿£¨X£¬Y£©µÄÁªºÏ¸ÅÂÊÃܶÈΪ
?e?y, 0?x?y ;f (x, y)=?
ÆäËü.?0, £¨1£© Çó£¨X£¬Y£©·Ö±ð¹ØÓÚXºÍYµÄ±ßÔµ¸ÅÂÊÃܶÈfX(x)£¬fY(y)£»
£¨2£© ÅжÏXÓëYÊÇ·ñÏ໥¶ÀÁ¢£¬²¢ËµÃ÷ÀíÓÉ¡£ ½â£º£¨1£©µ±x¡Ü0ʱ£¬fX (x)£½0£» µ±x>0ʱ£¬fX (x)£½
?????f(x,y)dy??e?ydy?e?x.
x??µÚ23Ò³£¬¹²38Ò³
?e?x, x?0,Òò´Ë£¬£¨X£¬Y£©¹ØÓÚXµÄ±ßÔµ¸ÅÂÊÃܶÈfX (x)£½?
?0, ÆäËü.µ±y¡Ü0ʱ£¬fY (y)£½0£» µ±y>0ʱ£¬fY (y)£½
?????f(x,y)dx??e?ydx?ye?y.
0y?ye?y, y?0,Òò´Ë£¬£¨X£¬Y£©¹ØÓÚYµÄ±ßÔµ¸ÅÂÊÃܶÈfY (y)£½?
ÆäËü.?0, £¨2£©ÒòΪf (1, 2)£½e£¬¶øfX (1) fY (2)£½e*2e£½2 e¡Ùf (1, 2)£¬ ËùÒÔ£¬XÓëY²»¶ÀÁ¢¡£ Î壨9£©¡¢ÉèËæ»ú±äÁ¿XµÄ¸ÅÂÊÃܶÈΪ
-2
-1
-2
-3
?e?x,x?0 f(x)???0,ÆäËüÉèF(x)ÊÇXµÄ·Ö²¼º¯Êý£¬ÇóËæ»ú±äÁ¿Y=F(X)µÄÃܶȺ¯Êý¡£ ½â£ºµ±y<0ʱ£¬F Y (y)£½P (Y¡Üy)£½P (F(X )¡Üy)£½0£» µ±y>1ʱ£¬F Y (y)£½P (Y¡Üy)£½P (F(X )¡Üy)£½1£» µ±0¡Üy¡Ü1ʱ£¬F Y (y)£½P (Y¡Üy)£½P ((F(X )¡Üy)£½P(X?F(y)) £½F(F(y))?y
?1?1Òò´Ë£¬f Y (y)£½
0?y?1,?1, d FY(y)??dy?0, ÆäËü. Î壨10£©¡¢ÉèËæ»úÏòÁ¿£¨X£¬Y£©ÁªºÏÃܶÈΪ
f(x, y)= ??8xy, 0?x?y?1 ;
ÆäËü.?0, £¨1£©Çó£¨X£¬Y£©·Ö±ð¹ØÓÚXºÍYµÄ±ßÔµ¸ÅÂÊÃܶÈfX(x)£¬fY(y)£»
£¨2£©ÅжÏX£¬YÊÇ·ñ¶ÀÁ¢£¬²¢ËµÃ÷ÀíÓÉ¡£ ½â£º£¨1£©µ±x<0»òx>1ʱ£¬fX (x)£½0£» µ±0¡Üx¡Ü1ʱ£¬fX (x)£½
?????2f(x,y)dy??8xydy?4x?y2|1x?4x(1?x).
x1µÚ24Ò³£¬¹²38Ò³