r_ess(k+1)=sum(y_ess)/1000; end figure(2); k=[0:99];
stem(k,r_ess,'.');
title('¸ù¾ÝÑù±¾µã¹À¼Æ³öµÄǰ100×ÔÏà¹ØÐòÁÐÖµ'); xlabel('k');ylabel('r_ess[k]'); hold on;
realvalue=[1,zeros(1,99)]; stem(k,realvalue,'r','.');
legend('¸ù¾ÝÑù±¾µã¹À¼Æ³öµÄǰ100×ÔÏà¹ØÐòÁÐÖµ','ÕæÊµµÄ×ÔÏà¹ØÐòÁÐ'); error1=r_ess-realvalue;
mean_error_b=mean(error1) var_error_b=var(error1) %%
for k=0:99 for m=0:9
for n=k+1:100
y_ess2(m+1,n)=x(n+100*m)*x(n-k+100*m); end end
r_ess2(k+1)=sum(sum(y_ess2))/1000; end
figure(3); k=0:99;
stem(k,r_ess2,'b.'); hold on;
realvalue2=[1,zeros(1,99)]; stem(k,realvalue2,'r.','.');
title('Bartlett·¨¹À¼Æ¹¦ÂÊÆ×·½·¨µÃ³öµÄǰ100¸ö×ÔÏà¹ØÐòÁÐÖµ'); xlabel('k');ylabel('r_ess2[k]');
legend('Bartlett·¨¹À¼Æ¹¦ÂÊÆ×·½·¨µÃ³öµÄǰ100¸ö×ÔÏà¹ØÐòÁÐÖµ','ÕæÊµµÄ×ÔÏà¹ØÐòÁÐ');
error2=r_ess2-realvalue2;
mean_error_c=mean(error2) var_error_c=var(error2) %%
y=zeros(1,1000);
B=[1]; A=[1,-0.9];
y=filter(B,A,x);
r_ess3=zeros(1,100); for k=0:99
for n=(k+1):1000
r_ess3(k+1)=r_ess3(k+1)+y(n)*y(n-k); end
r_ess3(k+1)=r_ess3(k+1)/1000; end
figure(4);
stem(r_ess3,'.');
title('y[n]ǰ100¸ö×ÔÏà¹ØÐòÁйÀ¼ÆÖµ'); xlabel('k'),ylabel('r_ess3(k)'); hold on;
p=[1,zeros(1,99)]; h=filter(B,A,p); for i=1:100
h1(i)=h(101-i); end
rh=conv(h,h1); rh=rh(100:199);
realvalue3=conv(p,rh);
realvalue3=realvalue3(1:100); stem(realvalue3,'r.','.');
legend('y[n]ǰ100¸ö×ÔÏà¹ØÐòÁйÀ¼ÆÖµ','y[n]µÄÕæÊµ×ÔÏà¹ØÐòÁÐ');
2¡¢¼ÆËã»úÁ·Ï°2£ºAR¹ý³ÌµÄÏßÐÔ½¨Ä£Ó빦ÂÊÆ×¹À¼Æ¡£¿¼ÂÇAR¹ý³Ì£º
x(n)?a(1)x(n?1)?a(2)x(n?2)?a(3)x(n?3)?a(4)x(n?4)?b(0)v(n)
v(n)Êǵ¥Î»·½²î°×ÔëÉù¡£
(a) È¡b(0)=1, a(1)=0.-7348, a(2)=-1.8820, a(3)=-0.7057, a(4)=-0.8851£¬²úÉúx(n)µÄN=256¸öÑùµã¡£
?x(k)£¬²¢ÓëÕæÊµµÄ×ÔÏà¹ØÐòÁÐÖµÏà±È½Ï¡£ (b)¼ÆËãÆä×ÔÏà¹ØÐòÁеĹÀ¼Ær?x(k)µÄDTFT×÷Ϊx(n)µÄ¹¦ÂÊÆ×¹À¼Æ£¬¼´£º (c) ½«rN?1?(ej?)?Pxk??N?1??x(k)e?jk??r1|X(ej?)|2¡£ N(d)ÀûÓÃËù¹À¼ÆµÄ×ÔÏà¹ØÖµºÍYule-Walker·¨(×ÔÏà¹Ø·¨)£¬¹À¼Æa(1), a(2), a(3), a(4)ºÍb(0)µÄÖµ£¬²¢ÌÖÂÛ¹À¼ÆµÄ¾«¶È¡£
?(e)?(e)ÓÃ(d)ÖÐËù¹À¼ÆµÄa(k)ºÍb(0)À´¹À¼Æ¹¦ÂÊÆ×Ϊ£ºPxj?|b(0)|21??a(k)e?jk?k?142¡£
(f)½«(c)ºÍ(e)µÄÁ½ÖÖ¹¦ÂÊÆ×¹À¼ÆÓëʵ¼ÊµÄ¹¦ÂÊÆ×½øÐбȽϣ¬»³öËüÃǵÄÖØµþ²¨ÐΡ£ (g)ÖØ¸´ÉÏÃæµÄ(d)~(f)£¬Ö»ÊǹÀ¼ÆAR²ÎÊý·Ö±ð²ÉÓÃÈçÏ·½·¨£º(1) з½²î·¨£»(2) Burg·½·¨£»(3) ÐÞÕýз½²î·¨¡£ÊԱȽÏËüÃǵŦÂÊÆ×¹À¼Æ¾«¶È¡£ ·ÂÕæ½á¹û£º £¨a£©
ͼ2.1x(n)µÄN=256¸öÑùµã
£¨b£©
ͼ2.2×ÔÏà¹ØÐòÁеĹÀ¼ÆÖµÓëÕæÊµµÄ¶Ô±È
ͼ2.2ÖйÀ¼ÆµÄ×ÔÏà¹ØÐòÁÐÓëÕæÊµµÄ×ÔÏà¹ØÐòÁвîÒì½Ï´ó£»ÔÚk>100ºó£¬ÕæÊµµÄ×ÔÏà¹ØÐòÁоͲ¨¶¯µÃºÜС£¬¶ø¹À¼ÆµÄ×ÔÏà¹ØÐòÁÐÔòÈÔÓнϴóµÄ²¨¶¯£¬µ«×ÜÌåÉÏÀ´ÑÔÁ½Õß¶¼Ëæ×ÅkµÄÔö´ó¶øÖð½¥Ë¥¼õ£¬µ±k>150ʱ£¬ÕæÊµ×ÔÏà¹ØÐòÁÐÖð½¥Ç÷ÓÚ0£¬¶ø¹À¼Æ³öµÄ×ÔÏà¹ØÐòÁÐÈ´ÈÔÓнϴóµÄ²¨¶¯£¬ÕâÊÇÒòΪ¹À¼ÆµÄµãÊý½ÏÉÙ£¬Ê¹µÃ¹À¼Æ¾«¶È²»¹»¡£ £¨c£©
ͼ2.3 ¹À¼ÆµÄ¹¦ÂÊÆ×ÓëÕæÊµ¹¦ÂÊÆ×¶Ô±È
£¨d£©Yule-Walker·¨(×ÔÏà¹Ø·¨) ¹À¼ÆµÄ²ÎÊýֵΪ£º b(0)= 1.1537