²»È·¶¨ÍÆÀí·½·¨(ËÄ) ÏÂÔØ±¾ÎÄ

ÇóM1ÓëM2µÄÕý½»ºÍM£º

3K?M1(D)?M2(D)??[M1({bi})?M2({bi})

i?1?M1({bi})?M2({D})?M1({D})?M2({bi})]

=0.524¡Á0.636+0.053¡Á0.208+0.265¡Á0.104+0.159¡Á0.052+0.053¡Á0.636 +0.265¡Á0.636+0.159¡Á0.636+0.208¡Á0.524+0.052¡Á0.524 =0.874 µÃ M({b1})=K?1?

x??M1(x)?M2(y)y?b1?K?1?[M1({b1})?M2({b1})?M1({b1})?M2({D})?M1({D})?M2({b1})]

?10.874?(0.053?0.208?0.053?0.636?0.524?0.208) =0.176 M({b2})=K?1?x??M1(x)?M2(y)

y?b2?K?1?[M1({b2})?M2({b2})?M1({b2})?M2({D})?M1({D})?M2({b2})]?10.874?(0.256?0.104?0.256?0.636?0.524?0.164) =0.299 M({b3})=K?1?)

x??M1(x)?M2(yy?b3?K?1?[M1({b3})?M2({b3})?M1({b3})?M2({D})?M1({D})?M2({b3})]?10.874?(0.159?0.052?0.159?0.636?0.524?0.052) =0.157

3M(D)?1??M({bi})

i?1=1-(0.176+0.299+0.157)=0.368

(2) ¼ÆËã½áÂÛBµÄÐÅÈκ¯Êý¼°ËÆÈ»º¯ÊýÖµ£º Bel(B)=M({b1})+M({b2})+M({b3})=0.632 Pl(B)=M(D)+Bel(B)=0.368+0.632=1

(3) Çó½áÂÛBµÄÐÅÈζÈf(B)£º

f(B)?Bel(B)?|B||D|?(Pl(B)?Bel(B)) 29

?0.632?320?(1?0.632)?0.687

Àý£º ÉèÓÐÈçÏÂÍÆÀí¹æÔò£º

R1£ºIF E1 AND E2 THEN A={a} (CF={0.8})

R2£ºIF E2 AND (E3 OR E4) THEN B={b1, b2} (CF={0.4, 0.5}) R3£ºIF A THEN H={h1, h2, h3} (CF={0.2, 0.3, 0.4}) R4£ºIF B THEN H={h1, h2, h3} (CF={0.3, 0.2, 0.1}) ÇÒÒÑÖª³õʼ֤¾ÝµÄÈ·¶¨ÐÔ·Ö±ðΪ

F(E1)=0.5, F(E2)=0.6, F(E3)=0.7, F(E4)=0.8 Èô¼ÙÉè|D|=10£¬Çóf(H)=?

½â ÓÉÒѸøµÄÍÆÀí¹æÔò£¬¿ÉÒÔÐγÉÈçͼËùʾµÄÍÆÀíÍøÂç¡£

(1) Çóf(A)

µÚÒ»²½£º¼ÆËãAµÄ¸ÅÂÊ·ÖÅ亯Êý¡£ÓɹæÔòR1£º f(E1 AND E2)=min{f(E1), f(E2)}=0.5 M({a})=f(E1¡ÄE2)¡Áci=0.5¡Á0.8=0.4

µÚ¶þ²½£º¼ÆËãAµÄÐÅÈκ¯ÊýºÍËÆÈ»º¯Êý¡£ Bel(A)=M(¦µ)+M({a})=0.4 Pl(A)=1-Bel(¡«A)=1

µÚÈý²½£º¼ÆËãAµÄÐÅÈζȡ£

f(A)?Bel(A)?|A||D|?(Pl(A)?Bel(A)) ?0.4?110?(1?0.4)?0.46 (2) Çóf(B)

µÚÒ»²½£º¼ÆËãBµÄ¸ÅÂÊ·ÖÅ亯Êý¡£ÓɹæÔòR2£º f(E2 AND (E3 OR E4))=min(f(E2), max{f(E3), f(E4)}) =min{0.6, max{0.7, 0.8}} =0.6

M({b1},{b2})={0.6¡Á0.4, 0.6¡Á0.5}={0.24, 0.3} µÚ¶þ²½£º¼ÆËãBµÄÐÅÈκ¯ÊýºÍËÆÈ»º¯Êý¡£ Bel(B)=M(¦µ)+M({b1})+M({b2})+M({b1,b2}) =0+0.24+0.3+0=0.54 Pl(B)=1-Bel(¡«B)=1-0=1 µÚÈý²½£º¼ÆËãBµÄÐÅÈζȡ£

f(B)?Bel(B)?|B||D|?(Pl(B)?Bel(B)) ?0.54?210?(1?0.54)?0.632

(3) Çóf(H)

30

µÚÒ»²½£ºÇóHµÄ¸ÅÂÊ·ÖÅ亯Êý¡£ÒòΪHÊǹæÔòR3ºÍR4µÄ¹²Í¬½áÂÛ£¬ËùÒÔΪÁËÇóµÃHµÄ¸ÅÂÊ·ÖÅ亯Êý£¬Ôò±ØÐë¶Ô¹æÔòR3ºÍR4·Ö±ðÇó³öµÄ¸ÅÂÊ·ÖÅ亯Êý×öÕý½»ºÍ£¬²ÅÄÜÇóµÃHµÄ¸ÅÂÊ·ÖÅ亯Êý¡£ ¶ÔÓÚR3£¬Æä¸ÅÂÊ·ÖÅ亯ÊýΪ

M1({h1}, {h2}, {h3})=(f(A)¡Ác1, f(A)¡Ác2, f(A)¡Ác3) =(0.092, 0.138, 0.184)

M1(D)=1-[M1({h1})+ M1({h2})+ M1({h3})] =1-(0.092+0.138+0.184) =0.586

¶ÔÓÚR4£¬Æä¸ÅÂÊ·ÖÅ亯ÊýΪ

M2({h1}, {h2}, {h3})=(f(B)¡Ác1, f(B)¡Ác2, f(B)¡Ác3) =(0.1896, 0.1264, 0.0632)

M2(D)=1-[M2({h1})+ M2({h2})+ M2({h3})] =1-[0.1896+0.1264+0.0632] =0.621

ÇóM1ºÍM2µÄÕý½»ºÍM£º

3K?M1(D)?M2(D)??[M1({hi})?M2({hi})

i?1?M1({hi})?M2(D)?M1(D)?M2({hi})]

=0.89

M({h1})=K-1¡Á[M1({h1})¡ÁM2({h1})+ M1({h1})¡ÁM2(D)+ M1(D)¡ÁM2({h1})] =0.209

M({h2})=K-1¡Á[M1({h2})¡ÁM2({h2})+ M1({h2})¡ÁM2(D)+ M1(D)¡ÁM2({h2})] =0.199

M({h3})=K-1¡Á[M1({h3})¡ÁM2({h3})+ M1({h3})¡ÁM2(D)+ M1(D)¡ÁM2({h3})] =0.183

µÚ¶þ²½£ºÇóHµÄÐÅÈκ¯ÊýÖµ¼°ËÆÈ»º¯ÊýÖµBel(H)£¬Pl(H)¡£

3Bel(H)??M({hi})?0.591

i?1Pl(H)=1-Bel(¡«H)=1-0=1

µÚÈý²½£ºÇóHµÄÐÅÈζÈf(H)¡£

f(H)?Bel(H)?|H||D|?[Pl(H)?Bel(H)] =0.714

×ܽ᣺

Ò»¡¢²»È·¶¨ÍÆÀí¸ÅÊö 1¡¢²»È·¶¨ÍÆÀíµÄ¸ÅÄî 2¡¢²»È·¶¨ÍÆÀíµÄ·ÖÀà·½·¨ 3¡¢²»È·¶¨ÍÆÀíÖеĻù±¾ÎÊÌâ

31

¶þ¡¢¿ÉÐŶȷ½·¨ 1¡¢¿ÉÐŶȵĸÅÄî

2¡¢ÖªÊ¶²»È·¶¨ÐԵıíʾ 3¡¢Ö¤¾Ý²»È·¶¨ÐԵıíʾ 4¡¢²»È·¶¨ÐÔµÄÍÆÀí¼ÆËã 5¡¢¿ÉÐŶȷ½·¨Ó¦ÓþÙÀý

Èý¡¢Ö÷¹ÛBayes·½·¨ 1¡¢»ù±¾Bayes¹«Ê½

2¡¢Ö÷¹ÛBayes·½·¨¼°ÆäÍÆÀíÍøÂç 3¡¢ÖªÊ¶²»È·¶¨ÐԵıíʾ 4¡¢Ö¤¾Ý²»È·¶¨ÐԵıíʾ 5¡¢²»È·¶¨ÐÔµÄÍÆÀí·½·¨

6¡¢½áÂÛ²»È·¶¨ÐԵĺϳÉÓë¸üÐÂËã·¨ 7¡¢Ö÷¹ÛBayes·½·¨Ó¦ÓþÙÀý

ËÄ¡¢Ö¤¾ÝÀíÂÛ

1¡¢D£­SÀíÂÛµÄÊýѧ»ù´¡ 2¡¢Ìض¨¸ÅÂÊ·ÖÅ亯Êý

3¡¢»ùÓÚÌØ¶¨¸ÅÂÊ·ÖÅ亯ÊýµÄ²»È·¶¨ÐÔÍÆÀíÄ£ÐÍ4¡¢Ö¤¾ÝÀíÂÛ½âÌâ¾ÙÀý

32