CCB制动机系统与DK-1制动系统比较 - 图文 下载本文

山东职业学院

总风缸:750kPa。

制动管:高出定压30~40kPa。 均衡风缸:500或600kPa。

制动缸:车辆快速缓解;机车仍制动保压,机车制动缸不缓解。

应当注意的是,当电空制动控制器由“过充位”移至“运转位”时,制动管会恢复定压,既产生30~40kPa的减压量,但这一减压量不会使列车制动系统产生制动作用。这是因为,当电空制动控制器由“过充位”移至“运转位”时,均衡风缸压力仍保持定压,而过充风缸内原有的压力空气经过充风缸小孔∮0.5mm向大气缓慢排向大气,过充风缸压力缓慢降低,在中继阀的控制下,制动管的压力也缓慢降低,分配阀工作风缸的压力也缓慢降低,当制动管压力缓慢降低到与均衡风缸压力相当时,制动缸与工作风缸停止减压,并保持在定压,使全列车制动系统不产生制动作用。因此,当电空制动控制器由过充位移至运转位时,既能消除制动管的过冲压力,又能避免列车制动系统产生制动。事实上,这一操作会使排风1电空阀254YV得电,作用管向大气排风,机车还要缓解。

3.制动位

该位置是操纵列车常用制动时的工作位置,电空制动控制器手柄在该位置停留时间的长短,控制着列车制动管的常用制动减压量。它与电空制动控制器“中立位”配合使用使列车制动管实现阶段常用准确减压。 (1) 电路 ①

导线806 电空制动控制 导线808 制动逻辑控制装置→中立电空阀253YV得电。 导线813 ② 导线899→压力开关208上的208SA(当均衡风缸减压量大于200kPa时,压

力开关动作)→导线845→制动逻辑控制装置→制动电空阀257YV得电。 ③ 其余电空阀均失电。 (2) 气路

① 缓解电空阀258YV失电,缓解电空阀下阀口关闭,切断了均衡风缸的充气通路,上阀口打开,则有:

~ 17 ~

山东职业学院

均衡风缸→转换阀153→缓解电空阀258YV上阀口

阀座缩孔d3→制动电空阀257YV上阀口→大气。 管接头锁孔d4→初制风缸58。

② 总风→塞门157→中立电空阀253YV下阀口→中继阀总风遮断阀左侧。 ③ 过充风缸→排2电空阀256YV上阀口→大气。

在此三条气路中,需注意的是:制动电空阀257YV失电时间的长短,既电控制动 控制手柄在“制动位”停留时间的长短,决定了均衡风缸减压量的大小;均衡风缸的 减压速度则由阀座上的缩孔d3决定。初制风缸58可以确保使均衡风缸有一个最小有效减压量40~50kPa,从而保证全列车制动机可靠动作。客/货转换阀154将设置在集成气路板内的初制风缸分隔为两部分,以适应不同的制动管定压(当牵货车,定压为500kPa时,客/货转换阀154置于货车位;当牵引客车,定压为600kPa时,客/货转换阀154置于客车位)。压力开关208可使制动位操纵时,当均衡风缸打到最大减压量后自动停止减压,制动电空阀257YV自动得电,避免了不必要的过量减压量。 (3) 中继阀 ① 总风遮断阀

中立电空阀253YV得电,切断总风充往中继阀供气室的气路。 ② 中继阀

处于排风制动状态。随着均衡风缸压力的降低,活塞膜板带动顶杆左移并打开排气阀口,联通控制管及活塞膜板右侧向大气排风的气路,既制动管压力降低;当制动管及活塞膜板右侧压力降低到与均衡风缸压力平衡时,在排气阀弹簧的作用下,关闭排气阀口,且不打开供气阀口,即停止制动管排风。 (4) 分配阀 ① 主阀部

随着制动管压力降低,主活塞通过主活塞杆带动节制阀上移,连通制动管向局部减压室降压的气路,以实现局部减压作用;随着制动管压力进一步降低,主活塞通过主活塞杆带动节制阀、滑阀继续上移,连通工作风缸向作用管充风的气路,即作用管压力升高,而工作风缸压力降低;当工作风缸压力降低至与制动管压力平衡时,在自

~ 18 ~

山东职业学院

重及稳定弹簧作用下,主活塞通过主活塞杆带动节制阀下移,切断工作风缸向作用管充风的气路,即作用管停止充风。

② 紧急增压阀

增压阀柱塞仍保持在下端,切断总风向作用管充风的气路。 ③ 均衡部

随着作用管压力升高,均衡活塞带动空心阀杆上移,顶开供气阀口,连通总风向机车制动缸及均衡活塞上侧充风的气路,即机车制动缸压力升高,当机车制动缸及均衡活塞上侧压力升至与作用管压力平衡时,在供气阀弹簧的作用下,均衡活塞和空心阀杆下移,关闭供气阀口,即停止机车制动缸的充风。

此时,机车制动机处于制动状态,车辆制动机也处于制动状态。 (5) 紧急阀

紧急阀处于常用制动状态。随着制动管压力降低,使活塞膜板带动活塞杆下移,但不足以顶开放风阀口,紧急室经过缩孔Ⅰ向制动管逆流,直至紧急室压力与制动管压力平衡时为止;在安定弹簧作用下,活塞膜板带动活塞杆上移到上端。 (6) 压力开关

由于均衡风缸压力下降,压力开关209膜板带动芯杆下移离微动开关,导线899与846连通。如均衡风缸压力继续下降,达到最大减压量时,压力开关208膜板也将带动芯杆下移离微动开关,导线899与845连通。 (7) 各压力表显示 总风缸:750~900kPa。

制动管:一般减压140kPa或170kPa。

均衡风缸:减压140kPa或170kPa的时间为5-7s。 机车制动缸:制动缸压力升至340~380kPa的时间为6-8s。

综上所述,该操纵可实现全列车的常用制动,并能自动控制制动管过量减压量(190-230kPa)。因此,用于列车调速或停车。

实际运行中,既可进行“一段制动法”操纵,又可进行“两段制动法操纵。所谓一段制动法,是指施行制动后不再进行缓解,根据列车减速情况追加减压,使列车停于预定地点的操纵方法。所谓两段制动法,是指进站前施行制动,待列车速度降至所需要的速度时进行缓解,充风后再次施行制动,使列车停于预定地点的操纵方法。

~ 19 ~

山东职业学院

当在制动位实施追加制动时,须待第一次减压排风完成后,再实施追加减压。这是因为减压排风未完成就进行追加减压,相当于施行了一次大减压,列车因制动力过强而增加冲击,也容易使后部车辆产生紧急制动作用。同时,追加减压量不应超过第一次减压量,否则因列车制动力急剧增加,不利于平稳操纵。

制动位下,还可以进行“长波浪式制动”和“短波浪式制动”。所谓长波浪式制动,是指减压量小、列车减速慢、制动距离长的操纵方法。长波浪式制动的优点是列车在较长的距离内,基本保持匀速减速运行,且用风量小,使空气压缩机工作量小;缺点是闸瓦与轮箍摩擦时间长,易发热,因此在使用时,应注意制动距离不宜太长,以免闸瓦过热而使制动失效,或轮箍过热迟缓。另外,在起伏坡道的线路上,也可以用空气制动阀调整机车的制动力。所谓短波浪式制动,是指减压量大(一般在100kPa以上)、列车减速快、制动距离短的制动操纵方法。短波浪式制动的优点是闸瓦不易过热,缺点是制动频繁,空气压缩机工作量大,因此使用时,应掌握好缓解时机,纺织因缓解过早使列车速度剧增,并且严防充风不足,错过下一次制动时机,而造成超速或放风事故。

4.中立位

“中立位”是操纵列车常用制动前的准备和制动后的保压的工作位置。根据作用可以分为制动钳的中立位和制动后的中立位。 (1)电路

导线806 1电控制动控器 ○

导线807 制动逻辑控制装置→中立电空阀 导线899→ 钮子开关463QS 253YV和制动电空阀257YV导线得电。

2在制动前中立位即均衡风缸未减压,压力开关209未动作。 ○

导线899→209SA压力开关→制动逻辑控制装置→缓解电空阀258YV、排2电空阀256YV得电。

3其余电空阀均失电。 ○(2)气路

~ 20 ~