Ö¤Ã÷ ÉèAÉ϶¨ÒåµÄ¶þÔª¹ØÏµRΪ£º
xu
£¼£¼x,y£¾, £¼u,v£¾£¾¡ÊR? = yvxx
¢Ù ¶ÔÈÎÒ⣼x,y£¾¡ÊA£¬ÒòΪ = £¬ËùÒÔ
yy
£¼£¼x,y£¾, £¼x,y£¾£¾¡ÊR ¼´RÊÇ×Ô·´µÄ¡£
¢Ú É裼x,y£¾¡ÊA£¬£¼u,v£¾¡ÊA£¬Èô
xuux
£¼£¼x,y£¾, £¼u,v£¾£¾¡ÊR? = ? = ?£¼£¼u,v£¾,£¼x,y£¾£¾¡ÊR
yvvy¼´RÊǶԳƵġ£
¢Û ÉèÈÎÒ⣼x,y£¾¡ÊA£¬£¼u,v£¾¡ÊA£¬£¼w,s£¾¡ÊA£¬¶Ô £¼£¼x,y£¾, £¼u,v£¾£¾¡ÊR¡Ä£¼£¼u,v£¾, £¼w,s£¾£¾¡ÊR xuuwxw?£¨ = £©¡Ä£¨ = £©? = yvvsys?£¼£¼x,y£¾, £¼w,s£¾£¾¡ÊR
¹ÊRÊÇ´«µÝµÄ£¬ÓÚÊÇRÊÇAÉϵĵȼ۹ØÏµ¡£
3-10.6 ÉèRÊǼ¯ºÏA ÉϵĶԳƺʹ«µÝ¹ØÏµ£¬Ö¤Ã÷Èç¹û¶ÔÓÚAÖеÄÿһ¸öÔªËØa,ÔÚAÖÐͬʱҲ´æÔÚb£¬Ê¹ÔÚRÖ®ÖУ¬ÔòRÊÇÒ»¸öµÈ¼Û¹ØÏµ¡£
Ö¤Ã÷ ¶ÔÈÎÒâa¡ÊA£¬±Ø´æÔÚÒ»¸öb¡ÊA£¬Ê¹µÃ£¼a,b£¾¡ÊR. ÒòΪRÊÇ´«µÝµÄºÍ¶Ô³ÆµÄ£¬¹ÊÓУº
£¼a,b£¾¡ÊR¡Ä£¼b, c£¾¡ÊR?£¼a, c£¾¡ÊR?£¼c,a£¾¡ÊR ÓÉ£¼a,c£¾¡ÊR¡Ä£¼c, a£¾¡ÊR?£¼a,a£¾¡ÊR ËùÒÔRÔÚAÉÏÊÇ×Ô·´µÄ£¬¼´RÊÇAÉϵĵȼ۹ØÏµ¡£
3-10.7 ÉèR1ºÍR2ÊǷǿռ¯ºÏAÉϵĵȼ۹ØÏµ£¬ÊÔÈ·¶¨ÏÂÊö¸÷ʽ£¬ÄÄЩÊÇa£©£¨A¡ÁA£©-R1£» b£©R1-R2£» c£©R21£»
d) r£¨R1-R2£©£¨¼´R1-R2µÄ×Ô·´±Õ°ü£©¡£ ½â a£©£¨A¡ÁA£©-R1²»ÊÇAÉϵȼ۹ØÏµ¡£ÀýÈ磺
A={a,b}£¬R1={£¼a,a£¾£¬£¼b,b£¾}
AÉϵĵȼ۹ØÏµ£¬¶Ô²»ÊǵÄʽ×Ó£¬Ìṩ·´ÀýÖ¤Ã÷¡£ A¡ÁA={£¼a,a£¾£¬£¼a,b£¾£¬£¼b,a£¾£¬£¼b,b£¾} £¨A¡ÁA£©-R1={£¼a,b£¾£¬£¼b,a£¾} ËùÒÔ£¨A¡ÁA£©-R1²»ÊÇAÉϵȼ۹ØÏµ¡£ b£©Éè A={a,b,c}
R1={£¼a,b£¾£¬£¼b,a£¾£¬£¼b,c£¾£¬£¼c,b£¾£¬£¼a,c£¾£¬£¼c,a£¾£¬£¼a,a£¾£¬£¼b,b£¾£¬£¼ R2={£¼a,a£¾£¬£¼b,b£¾£¬£¼c,c£¾£¬£¼b,c£¾£¬£¼c,b£¾} R1-R2={£¼a,b£¾£¬£¼b,a£¾£¬£¼a,c£¾£¬£¼c,a£¾}
ËùÒÔR1ºÍR2ÊÇAÉϵȼ۹ØÏµ£¬µ«R1-R2²»ÊÇAÉϵȼ۹ØÏµ¡£ c£©ÈôR1ÊÇAÉϵȼ۹ØÏµ£¬Ôò £¼a,a£¾¡ÊR1?£¼a,a£¾¡ÊR1¡ðR1
ËùÒÔR21ÊÇAÉÏ×Ô·´µÄ¡£
Èô£¼a,b£¾¡ÊR21Ôò´æÔÚc£¬Ê¹µÃ£¼a, c£¾¡ÊR1¡Ä£¼c,b£¾¡ÊR1¡£ÒòR1¶Ô³Æ£¬¹ÊÓÐ £¼b, c£¾¡ÊR21¡Ä£¼c,a£¾¡ÊR1?£¼b, a£¾¡ÊR1 ¼´R21ÊǶԳƵġ£
Èô£¼a,b£¾¡ÊR21¡Ä£¼b, c£¾¡ÊR21,ÔòÓÐ £¼a,b£¾¡ÊR1¡ðR1¡Ä£¼b, c£¾¡ÊR1¡ðR1
c,c£¾} ?£¨?e1£©£¨£¼a, e1£¾¡ÊR1¡Ä£¼e1, b£¾¡ÊR1) ¡Ä£¨?e2£©£¨£¼b, e2£¾¡ÊR1¡Ä£¼e2, c£¾¡ÊR1£© ?£¼a,b£¾¡ÊR1¡Ä£¼b, c£¾¡ÊR1£¨¡ßR1´«µÝ£© ?£¼a,c£¾¡ÊR12 ¼´R12ÊÇ´«µÝµÄ¡£ ¹ÊR12ÊÇAÉϵĵȼ۹ØÏµ¡£
d£©Èçb£©ËùÉ裬R1ºÍR2ÊÇAÉϵĵȼ۹ØÏµ£¬µ« r£¨R1-R2£©=£¨R1-R2£©¡ÈIA
={£¼a,b£¾, £¼b,a£¾, £¼a,c£¾£¬£¼c,a£¾£¬£¼a,a£¾£¬£¼b,b£¾, £¼c,c£¾} ²»ÊÇAÉϵĵȼ۹ØÏµ¡£
3-10.8 ÉèC*ÊÇʵÊý²¿·Ö·ÇÁãµÄÈ«Ì帴Êý×é³ÉµÄ¼¯ºÏ£¬C*ÉϵĹØÏµR¶¨ÒåΪ£º(a+bi)R(c+di)?ac>0,Ö¤Ã÷RÊǵȼ۹ØÏµ£¬²¢¸ø³ö¹ØÏµRµÄµÈ¼ÛÀàµÄ¼¸ºÎ˵Ã÷¡£
Ö¤Ã÷£º(1)¶ÔÈÎÒâ·ÇÁãʵÊýa£¬ÓÐa2>0?(a+bi)R(a+bi) ¹ÊRÔÚC*ÉÏÊÇ×Ô·´µÄ¡£
(2) ¶ÔÈÎÒâ(a+bi)R(c+di)?ac>0,