生化习题及大纲 下载本文

向以及转态的稳定是解释酶高效催化的主要因素。此外,广义的酸碱催化和共价催化对于解释酶促反应的高效性也是重要的。酶活性部位的氨基酸残基可以参与酸碱催化(质子的加入或移除)或共价催化。pH对酶促反应速度的影响可以提示什么样的残基参于了催化反应。

对溶菌酶和丝氨酸蛋白酶类作用机制的研究为洞察酶的作用机理提供了很好的范例。溶菌酶对细菌细胞壁的水解涉及底物的变形(由酶和底物之间多种弱的相互作用力所致)和中间物(转换态)的稳定。

许多丝氨酸蛋白酶以无活性的酶原形式合成,在适当的条件下通过选择性水解转变成有活性的酶。X-射线晶体衍射分析表明,蛋白质的三维结构能揭示出酶活性部位(包括专一性底物的结合部位)的信息。丝氨酸蛋白酶的活性部位含有一个由氢键结合网形成的Ser-His-Asp催化三联体。它的丝氨酸残基起着共价催化剂的作用,组氨酸残基起着酸碱催化剂的作用。带负电荷的四面体中间物由酶提供的氢键来稳定。

酶活性的调节是酶作为生物催化剂区别于非生物催化剂的重要标志,也是生物体内物质代谢的重要调节方式。酶活性调节包括酶原的激活、同工酶调节、别构调节和共价修饰调节。

别构酶是多亚基酶,除含有底物结合部位外,还含有调节物结合部位(别构部位)。当调节物结合到别构部位时,诱导酶的构象发生变化,从而增高或降低酶的催化活性,进而调节代谢途径运行的速度。酶的共价修饰调节通常涉及酶分子特定部位的丝氨酸残基或苏氨酸残基的磷酸化和去磷酸化。处在代谢途径关键部位的酶既具有别构调节又具有共价修饰调节两种调节方式。 习题:

1.延胡索酸酶催化延胡索酸水合形成苹果酸,其逆反应苹果酸脱水转变成延胡索酸也能被该酶催化吗?为什么?

2.△G0'和△G?两者与化学反应的关系是怎样的?

3.借助米-曼氏方程υ=Vmax[S]/(Km+[S])研究底物浓度对酶反应速度影响的一种有用的方法是,在规定的实验条件下检验这个方程。在下述条件下,方程呈什么形式?①当〔S〕=Km时;②当〔S〕>>Km时;③当〔S〕<

4.①为什么kcat / Km比值能用来测定一种酶对它不同底物的优先权?②什么是酶的kcat / Km上限?③ kcat / Km值接近上限的酶常被说成达到“完美催化”。请解释。

5.人类免疫缺于病毒Ⅰ(HIV-Ⅰ) 基因编码一种该病毒装配和成熟所必需的蛋白酶(Mr=21500)。该蛋白酶能催化七肽底物水解,其kcat=1000 s-1和Km=0.075mol·L-1。(a) 当HIV-Ⅰ蛋白酶的浓度为0.2mg mL-1时,计算底物水解的Vmax;(b)当七肽的–CO–NH–替换成–CH2–NH–时,所得到的衍生物不能被HIV-Ⅰ蛋白酶水解,而却可以作为该酶一种的抑制剂。在如(a)所示的条件下,该抑制剂浓度为2.5μmol·L-1时,Vmax是9.3×10-3 mol·L-1 ·s-1。该抑制作用属于哪种类型?

6.为了确定某酶的催化反应的初速度的底物依赖关系,制备了一系列的l00ml含有不同底物浓度的反应混合物。向每个混合物加入相同量的酶后便开始反应。通过测定每单位时间(分钟)所形成的产物量而获得催化反应的初速度,其结果如下表所示。

表4—2

底物浓

度 初速度 底物浓度 初速度 底物浓度 初速度

(mol/L) (μmol/min) (mol/L) (μmol/min) (mol/L) (μmol/min)

1×10

-6

0.08 5×10

-4

-6

0.25 1×10

-3

-5

0.33

-2

1×10 0.48 1×10

0.50 1×10 0.50

①把表中的数据绘制成图,在给出的酶量下的Vmax是多少?

②根据米-曼氏方程,用Vmax、υ和〔S〕推演出Km的代数表达式。计算每个反应混合物的Km。 Km值取决于底物浓度吗?

③当底物浓度为0.1mol·L-1和l×l0-7mol·L-1时,计算它们的初速度。 ④反应混合物保温2分钟后确定反应的初速度。当初始底物浓度为1×10-

2

mol·L-1时,计算产物的生成量。在2分钟后底物总量的百分之几被转换?

7.许多酶都表现出类似钟罩形的pH-活性依赖曲线。但是,不同的酶具有不同的活性最高点,即不同的最适pH。请你举例说明pH对酶活性影响的原因。

8.研究某抑制剂对单底物酶催化反应的影响,获得如下表的结果。

①该抑制剂是竞争性还是非竞争性抑制剂?

②在无抑制剂存在时,该酶促反应的Vmax和Km是多少? ③在有抑制剂存在时,该酶促反应的Vmax和Km是多大? ④该反应的抑制常数(Ki)是多少?

9.十烷双胺((CH3)3+N—CH2—(CH2)8—CH2-N+(CH3)3),一种用于肌肉松弛的药物,是乙酰胆碱酯酶的可逆的竞争性抑制剂。通过增高乙酰胆碱的浓度可使抑制逆转或解除。十烷双胺共价地同酶结合吗?为什么这种抑制作用可通过增高乙酰胆碱的浓度而被解除?

10.二异丙基氟磷酸(DIFP)可使乙酰胆碱酯酶不可逆失活。但是,当有可逆抑制剂十烷双胺存在时,能延缓该酶的失活。为什么?

11.在底物以及中间物转换态同酶活性部位的结合中涉及哪些作用力?解释为什么底物同酶的紧密结合是于酶的催化无益的,而转换态的紧密结合则是需要的?

12.当胰蛋白酶活性中心的Asp定点突变成Asn后,它的催化反应速度降低10 000倍。为什么? 习题解答

1.解答:酶是生物催化剂,它通过降低进入转换态的活化能而增高反应速度,但不改变反应的平衡位置。由于正向和逆向过程都经相同的转换态,所以两者的速度均可被该酶促进。该反应总的自由能变化不会因有酶的存在而改变。但是,请注意,由于底物和产物所固有的自由能是不同的,因此由底物或产物进入到过渡态所需要的活化能的多少是不相同的。酶加快相反两个过程的速度也是不相同的。如果某过程进入的速度太 慢,实际上这个过程是不能进行的。

2.解答:△G0'是某一反应在标准条件的产物与反应物所固有的自由能之差。当△G0'是负值时,表明平衡有利于产物。但平衡不受任何催化剂的影响。有利的平衡并不意味着反应物转变成产物就能自动发生或能快速发生。△G?是反应物从基态达到转换态(活化态)所需的能量,即活化能。若反应所需的活化能越低,反应的速度就越快。酶的存在能大大降低反应所需的活化能。反应的平衡与△G0'有关,但反应的速度则与△G?有关。

3.解答:①当〔S〕=Km时,υ=Vmax[S]/(Km+[S])=Vmax/2。这个方程可作为Km的物理定义,即Km是初速度达到最大半反应速度所对应的底物浓度。 ②当〔S〕>>Km时,Km+〔S〕可以近似地等于〔S〕。那么此时υ=Vmax。因此,在底物浓度很高的情况下,初速度变成了零级反应,即初速度不依赖于底物浓度,并表现为最大反应速度。

③当〔S〕<

4.解答:① kcat / Km比值是酶专一性常数或对不同底物的优先权的一种衡量。当两种底物以相同浓度竞争同一种酶的活性部位时,它们转变成产物的速度比值是与它们的kcat / Km比值相等的。由于对每种底物来说,反应速度υ=(kcat / Km)[E][S],而[E]和[S]又是相同的,所以kcat / Km比值大者的底物是酶优先选择的对象。