±êµÈ)µÄº¯Êý,²¢Çó³öÕâ¸ö±äÁ¿µÄȡֵ·¶Î§(¼´º¯ÊýµÄ¶¨ÒåÓò),½«ÎÊÌâת»¯ÎªÇóº¯ÊýµÄÖµÓò»ò×îÖµ. 4.(2015Õã½,19,15·Ö)ÒÑÖªÍÖÔ² +y=1ÉÏÁ½¸ö²»Í¬µÄµãA,B¹ØÓÚÖ±Ïßy=mx+ ¶Ô³Æ. (1)ÇóʵÊýmµÄȡֵ·¶Î§;
(2)Çó¡÷AOBÃæ»ýµÄ×î´óÖµ(OÎª×ø±êÔµã).
2
½âÎö (1)ÓÉÌâÒâÖªm¡Ù0,¿ÉÉèÖ±ÏßABµÄ·½³ÌΪy=-x+b.
ÏûÈ¥y,µÃ x2- x+b2-1=0. ÓÉ
-
ÒòΪֱÏßy=-x+bÓëÍÖÔ²+y=1ÓÐÁ½¸ö²»Í¬µÄ½»µã,
2
ËùÒÔ¦¤=-2b+2+ >0,¢Ù
½«ABµÄÖеãM ´úÈëÖ±Ïß·½³Ìy=mx+ ,½âµÃ b=-
2
.¢Ú
ÓÉ¢Ù¢ÚµÃm<- »òm> . (2)Áît= ¡Ê -
¡È ,
Ôò|AB|= ¡¤ -
,
ÇÒOµ½Ö±ÏßABµÄ¾àÀëΪd=Éè¡÷AOBµÄÃæ»ýΪS(t),
.
ËùÒÔS(t)= |AB|¡¤d= - - ¡Ü . µ±ÇÒ½öµ±t=ʱ,µÈºÅ³ÉÁ¢.
2
¹Ê¡÷AOBÃæ»ýµÄ×î´óֵΪ .
5.(2015Ìì½ò,19,14·Ö)ÒÑÖªÍÖÔ² + =1(a>b>0)µÄ×ó½¹µãΪF(-c,0),ÀëÐÄÂÊΪ ,µãMÔÚÍÖÔ²ÉÏÇÒλÓÚµÚÒ»ÏóÏÞ,Ö±ÏßFM±»Ô²x+y= ½ØµÃµÄÏ߶εij¤Îªc,|FM|=(1)ÇóÖ±ÏßFMµÄбÂÊ;
2
2
.
(2)ÇóÍÖÔ²µÄ·½³Ì;
(3)É趯µãPÔÚÍÖÔ²ÉÏ,ÈôÖ±ÏßFPµÄбÂÊ´óÓÚ ,ÇóÖ±ÏßOP(OΪԵã)µÄбÂʵÄȡֵ·¶Î§. ½âÎö (1)ÓÉÒÑÖªÓÐ = ,ÓÖÓÉa=b+c,¿ÉµÃa=3c,b=2c.
2
2
2
2
2
2
2
ÉèÖ±ÏßFMµÄбÂÊΪk(k>0),ÔòÖ±ÏßFMµÄ·½³ÌΪy=k(x+c).ÓÉÒÑÖª,ÓÐ
+ = ,½âµÃk= .
(2)ÓÉ(1)µÃÍÖÔ²·½³ÌΪ + =1,Ö±ÏßFMµÄ·½³ÌΪy= (x+c),Á½¸ö·½³ÌÁªÁ¢,ÏûÈ¥y,ÕûÀíµÃ3x+2cx-5c=0,½âµÃx=- c»òx=c.ÒòΪµãMÔÚµÚÒ»ÏóÏÞ,¿ÉµÃMµÄ×ø±êΪ ÓÉ|FM|=
2
2
.
- =
,½âµÃc=1,
ËùÒÔÍÖÔ²µÄ·½³ÌΪ+=1.
(3)ÉèµãPµÄ×ø±êΪ(x,y),Ö±ÏßFPµÄбÂÊΪt,µÃt= ,¼´y=t(x+1)(x¡Ù-1),ÓëÍÖÔ²·½³ÌÁªÁ¢µÃ - 222 ÏûÈ¥y,ÕûÀíµÃ2x+3t(x+1)=6.ÓÖÓÉÒÑÖª,µÃt= > ,½âµÃ- ÉèÖ±ÏßOPµÄбÂÊΪm,µÃm= ,¼´y=mx(x¡Ù0),ÓëÍÖÔ²·½³ÌÁªÁ¢,ÕûÀí¿ÉµÃm= - . ¢Ùµ±x¡Ê - - ʱ,ÓÐy=t(x+1)<0,Òò´Ëm>0,ÓÚÊÇm= - ,µÃm¡Ê 2 . . ¢Úµ±x¡Ê(-1,0)ʱ,ÓÐy=t(x+1)>0,Òò´Ëm<0,ÓÚÊÇm=- -,µÃm¡Ê - -×ÛÉÏ,Ö±ÏßOPµÄбÂʵÄȡֵ·¶Î§ÊÇ - - ¡È . ÆÀÎö ±¾Ð¡ÌâÖ÷Òª¿¼²éÍÖÔ²µÄ±ê×¼·½³ÌºÍ¼¸ºÎÐÔÖÊ¡¢Ö±Ïß·½³ÌºÍÔ²µÄ·½³Ì¡¢Ö±ÏßÓëÔ²µÄλÖùØÏµ¡¢Ò»Ôª¶þ´Î²»µÈʽµÈ»ù´¡ÖªÊ¶.¿¼²éÓôúÊý·½·¨Ñо¿Ô²×¶ÇúÏßµÄÐÔÖÊ.¿¼²éÔËËãÇó½âÄÜÁ¦ÒÔ¼°Óú¯ÊýÓë·½³Ì˼Ïë½â¾öÎÊÌâµÄÄÜÁ¦. ¿¼µãÈý ´æÔÚÐÔÎÊÌâ 1.(2015±±¾©,19,14·Ö)ÒÑÖªÍÖÔ²C: + =1(a>b>0)µÄÀëÐÄÂÊΪ,µãP(0,1)ºÍµãA(m,n)(m¡Ù0)¶¼ÔÚ ÍÖÔ²CÉÏ,Ö±ÏßPA½»xÖáÓÚµãM. (1)ÇóÍÖÔ²CµÄ·½³Ì,²¢ÇóµãMµÄ×ø±ê(ÓÃm,n±íʾ); (2)ÉèOΪԵã,µãBÓëµãA¹ØÓÚxÖá¶Ô³Æ,Ö±ÏßPB½»xÖáÓÚµãN.ÎÊ:yÖáÉÏÊÇ·ñ´æÔÚµãQ,ʹµÃ¡ÏOQM=¡ÏONQ?Èô´æÔÚ,ÇóµãQµÄ×ø±ê;Èô²»´æÔÚ,˵Ã÷ÀíÓÉ. 2½âÎö (1)ÓÉÌâÒâµÃ ½âµÃa=2. ¹ÊÍÖÔ²CµÄ·½³ÌΪ+y=1. 2 ÉèM(xM,0). ÒòΪm¡Ù0,ËùÒÔ-1 (2)ÒòΪµãBÓëµãA¹ØÓÚxÖá¶Ô³Æ,ËùÒÔB(m,-n). ÉèN(xN,0),ÔòxN= - . ¡°´æÔÚµãQ(0,yQ)ʹµÃ¡ÏOQM=¡ÏONQ¡±µÈ¼ÛÓÚ¡°´æÔÚµãQ(0,yQ)ʹµÃ = ¡±,¼´yQÂú×ã =|xM||xN|. ÒòΪxM= - ,xN= , +n=1, ËùÒÔ =|xM||xN|= =2. - 2 ËùÒÔyQ= »òyQ=- . ¹ÊÔÚyÖáÉÏ´æÔÚµãQ,ʹµÃ¡ÏOQM=¡ÏONQ. µãQµÄ×ø±êΪ(0, )»ò(0,- ). 2.(2014ɽ¶«,21,14·Ö)ÒÑÖªÅ×ÎïÏßC:y=2px(p>0)µÄ½¹µãΪF,AΪCÉÏÒìÓÚÔµãµÄÈÎÒâÒ»µã,¹ýµãAµÄÖ±Ïßl½»CÓÚÁíÒ»µãB,½»xÖáµÄÕý°ëÖáÓÚµãD,ÇÒÓÐ|FA|=|FD|.µ±µãAµÄºá×ø±êΪ3ʱ,¡÷ADFΪÕýÈý½ÇÐÎ. (1)ÇóCµÄ·½³Ì; (2)ÈôÖ±Ïßl1¡Îl,ÇÒl1ºÍCÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µãE, (i)Ö¤Ã÷Ö±ÏßAE¹ý¶¨µã,²¢Çó³ö¶¨µã×ø±ê; (ii)¡÷ABEµÄÃæ»ýÊÇ·ñ´æÔÚ×îСֵ?Èô´æÔÚ,ÇëÇó³ö×îСֵ,Èô²»´æÔÚ,Çë˵Ã÷ÀíÓÉ. ½âÎö (1)ÓÉÌâÒâÖªF . ÉèD(t,0)(t>0),ÔòFDµÄÖеãΪ ÒòΪ|FA|=|FD|, ÔòÓÉÅ×ÎïÏߵ͍ÒåÖª3+= - , 2 . ½âµÃt=3+p»òt=-3(ÉáÈ¥). ÓÉ =3,½âµÃp=2. 2 ËùÒÔÅ×ÎïÏßCµÄ·½³ÌΪy=4x. (2)(i)ÓÉ(1)ÖªF(1,0), ÉèA(x0,y0)(x0y0¡Ù0),D(xD,0)(xD>0), ÒòΪ|FA|=|FD|,Ôò|xD-1|=x0+1, ÓÉxD>0µÃxD=x0+2,¹ÊD(x0+2,0). ¹ÊÖ±ÏßABµÄбÂÊkAB=- . ÒòΪֱÏßl1ºÍÖ±ÏßABƽÐÐ, ËùÒÔ¿ÉÉèÖ±Ïßl1µÄ·½³ÌΪy=- x+b, ´úÈëÅ×ÎïÏß·½³ÌµÃy+y-=0, 2 Óɦ¤= + =0,µÃb=- . ÉèE(xE,yE),ÔòyE=- ,xE= , µ± ¡Ù4ʱ,kAE= - - =- - - =, ¿ÉµÃÖ±ÏßAEµÄ·½³ÌΪy-y0= ÓÉ =4x0, - (x-x0), ÕûÀí¿ÉµÃy= - (x-1), Ö±ÏßAEºã¹ýµãF(1,0). µ± =4ʱ,Ö±ÏßAEµÄ·½³ÌΪx=1,¹ýµãF(1,0), ËùÒÔÖ±ÏßAE¹ý¶¨µãF(1,0). (ii)ÓÉ(i)ÖªÖ±ÏßAE¹ý½¹µãF(1,0), ËùÒÔ|AE|=|AF|+|FE|=(x0+1)+ =x0++2. ÉèÖ±ÏßAEµÄ·½³ÌΪx=my+1, ÒòΪµãA(x0,y0)ÔÚÖ±ÏßAEÉÏ, ¹Êm= , - ÉèB(x1,y1), Ö±ÏßABµÄ·½³ÌΪy-y0=- (x-x0), ÓÉy0¡Ù0, ¿ÉµÃx=-y+2+x0, ´úÈëÅ×ÎïÏß·½³ÌµÃy+ y-8-4x0=0. 2 ËùÒÔy0+y1=-, ¿ÉÇóµÃy1=-y0- ,x1= +x0+4, ËùÒÔµãBµ½Ö±ÏßAEµÄ¾àÀëΪ d= -