ÄϾ©´óѧÎïÀí»¯Ñ§Ñ¡ÔñÌâ´ð°¸ÍêÕû°æ ÏÂÔØ±¾ÎÄ

15¡¢ º£Ë®²»ÄÜÖ±½ÓÒûÓõÃÖ÷ÒªÔ­Òò¾ÍÊÇ£º ( )

£¨A£©²»ÎÀÉú (£Â£©Óпàζ £¨£Ã)º¬Ö°©Îï £¨D)º¬ÑÎÁ¿¸ß

1£¶¡¢ ×ÔÈ»½çÖÐ,ÓеøߴóÊ÷ÖÖ¿ÉÒÔ³¤µ½ 1£°£° £íÒÔÉÏ,Äܹ»Ìá¹©ÓªÑø¼°Ë®Î»µ½Ê÷¹ÚµÃÖ÷Òª¶¯Á¦¾ÍÊÇʲô£¿ £¨ £©

£¨£Á£© ÒòÍâ½ç´óÆøÑ¹ÒýÆðµÃÊ÷¸ÉÄÚµ¼¹ÜµÃ¿ÕÎü×÷Óà (B) Ê÷¸ÉÖÐ΢µ¼¹ÜµÃëϸ×÷Óà £¨£Ã£© Ê÷ÄÚÌåÒºº¬ÑÎŨ¶È¸ß£¬ÉøÍ¸Ñ¹´ó (£Ä) ÓªÑøÓëË®·Ö×ÔÓêˮֱ½ÓÂäµ½Ê÷¹ÚÉÏ

17¡¢ ÓÐһϡÈÜҺŨ¶ÈΪ m£¬·ÐµãÉý¸ßֵΪ ¦¤T£â£¬Äý¹ÌµãϽµÖµÎª¦¤Tf, Ôò: £¨ )

£¨A£© ¦¤£Ô£æ> ¦¤T£â £¨B£© ¦¤Tf£½ ¦¤£Ô£â (C£© ¦¤Tf< ¦¤Tb £¨£Ä£© ²»È·¶¨

£±8¡¢ ÒÑ֪ˮÔÚÕý³£±ùµãʱµÃĦ¶ûÈÛ»¯ìʦ¤f£õsH =£¶025 J/mo£ì,ijˮÈÜÒºµÃÄý¹ÌµãΪ2£µ£¸¡¢£±5 £Ë £¬¸ÃÈÜÒºµÃŨ¶Èx£ÂΪ£º £¨ £©

(A£© 0¡¢85£·1 £¨B£© £°¡¢1429 £¨C) 0¡¢£¹353 £¨£Ä) £°¡¢06£´7 19¡¢ Èô (a£ì£îp/ay(A£©£©T £¼ 0,¼´ÔÚÆøÏàÖÐÔö¼Ó A ×é·ÖµÃĦ¶û·ÖÊý,ʹ×ÜÕôÆøÑ¹½µµÍ£¬Ôò£º £¨ )

£¨A) ÒºÏàÖÐ A µÃŨ¶È´óÓÚËüÔÚÆøÏàÖеÃŨ¶È (B) ÒºÏàÖÐ £Á µÃŨ¶ÈСÓÚËüÔÚÆøÏàÖеÃŨ¶È

£¨C) ÒºÏàÖÐ A µÃŨ¶ÈµÈÓÚËüÔÚÆøÏàÖеÃŨ¶È (D£© ²»ÄÜÈ·¶¨ £Á ÔÚÒºÏàÖлòÆøÏàÖÐÄĸöŨ¶È´ó

20¡¢ Á½Ö»¸÷×°ÓÐ1 kgË®µÃÉÕ±­£¬Ò»Ö»ÈÜÓÐ0¡¢£°1 molÕáÌÇ£¬ÁíÒ»Ö»ÈÜÓÐ0¡¢£°1 mo£ì £ÎaCl, °´Í¬ÑùËٶȽµÎÂÀäÈ´£¬Ôò£º£¨ £©

£¨£Á) ÈÜÓÐÕáÌǵñ­×ÓÏȽá±ù (£Â) Á½±­Í¬Ê±½á±ù (£Ã) ÈÜÓÐNaClµÃ±­×ÓÏȽá±ù (£Ä) ÊÓÍâѹ¶ø¶¨

µÚÎåÕ ÏàÆ½ºâ ÎﻯÊÔ¾í£¨Ò»£©

1¡¢ £ÎH4HS£¨s£©ÓëÈÎÒâÁ¿µÃ£ÎH3(g£©¼°H2S£¨g)´ïƽºâʱ,ÓУº

(£Á£© C=2£¬¦µ=£²,f=2 £¨B£© C£½1£¬¦µ=£²,f=£± £¨C£© £Ã=£²£¬¦µ=£³,f=£² £¨£Ä) C=3,¦µ=2,f=3

2.½«¹ÌÌå N£È4HCO3£¨£ó) ·ÅÈëÕæ¿ÕÈÝÆ÷ÖÐ,ºãε½ 40£° K£¬£ÎH£´£ÈCO£³ °´ÏÂʽ·Ö½â²¢´ïµ½Æ½ºâ: NH4HC£Ï£³(£ó£© £½ £ÎH3£¨g) + £È2O£¨g£© + C£Ï£²(g£© ÌåϵµÃ×é·ÖÊý C Óë×ÔÓɶÈÊý f Ϊ£º

(A) C= 2£¬ f= 1 £¨B) C= 2, f£½ 2 (£Ã£© C= 1, f£½ 0 £¨D£© C= 3£¬ £æ= 2

3¡¢ ijÌåϵ´æÔÚ C£¨s£©£¬£È2O£¨g)£¬£ÃO£¨£ç£©£¬£Ã£Ï2(g£©£¬H2£¨g£© ÎåÖÖÎïÖÊ£¬Ï໥½¨Á¢ÁËÏÂÊöÈý¸öƽºâ:

H2O(g£© £« C(£ó£© ==£½ £È2(g) £« CO£¨£ç) C£Ï2£¨g£© + H2£¨g£© === H2£Ï£¨g) £« C£Ï(g£©

£ÃO2£¨£ç£© + C(s) ==£½ 2CO(£ç) Ôò¸ÃÌåϵµÃ¶ÀÁ¢×é·ÖÊý £Ã Ϊ£º (A) £Ã=£³ £¨B£© C£½2 £¨C£© C=1 £¨D) C£½4

£´¡¢ ijһˮÈÜÒºÖÐÓÐ nÖÖÈÜÖÊ£¬ÆäĦ¶û·ÖÊý·Ö±ð¾ÍÊÇ x1£¬£ø£²,¡¢¡¢¡¢£¬£øn£¬ÈôʹÓÃÖ»ÔÊÐíË®³öÈëµÃ°ë͸Ĥ½«´ËÈÜÒºÓë´¿Ë®·Ö¿ª£¬µ±´ïµ½ÉøÍ¸Æ½ºâÊ±Ë®ÃæÉϵÃÍâѹΪ pw,ÈÜÒºÃæÉÏÍâѹΪ ps£¬Ôò¸ÃÌåϵµÃ×ÔÓɶÈÊýΪ: ( )

(£Á£© f=n (B) f£½n+1 £¨C) f£½£î+2 (£Ä) f=n+3 5¡¢ Na£Ãl Ë®ÈÜÒºÓë´¿Ë®¾­°ë͸Ĥ´ï³ÉÉøÍ¸Æ½ºâʱ,¸ÃÌåϵµÃ×ÔÓɶȾÍÊÇ: ( £© (A) 1 (B£© 2 (£Ã) 3 £¨D£© 4

6¡¢ ÔÚ 101 3£²5 Pa µÃѹÁ¦Ï£¬I2ÔÚҺ̬ˮÓë CCl4Öдﵽ·ÖÅ䯽ºâ £¨ÎÞ¹Ì̬µâ´æÔÚ)£¬Ôò¸ÃÌåϵµÃ×ÔÓɶÈÊýΪ: £¨ £©

£¨£Á£© f*= £± £¨B£© f£ª= 2 (C£© f*= 0 (£Ä) f*= £³ 7¡¢ ¶þÔªºÏ½ð´¦Óڵ͹²ÈÛζÈʱÎïϵµÃ×ÔÓÉ¶È f Ϊ£º £¨ £© (A£© £° £¨£Â£© 1 (C£© £² £¨D) 3

8¡¢ CuSO£´ÓëË®¿ÉÉú³ÉC£õS£Ï£´¡¢H£²O,CuSO4¡¢3H2O£¬C£õSO4¡¢5£È2£ÏÈýÖÖË®ºÏÎÔòÔÚÒ»¶¨Î¶ÈÏÂÓëË®ÕôÆøÆ½ºâµÃº¬Ë®ÑÎ×î¶àΪ£º £¨ £©

(A£©£³ÖÖ £¨B£©2ÖÖ (C)£±ÖÖ (£Ä£©²»¿ÉÄÜÓй²´æµÃº¬Ë®ÑÎ

£¹¡¢ ÓÉC£áCO£³(s),CaO(s)£¬£ÂaCO3(£ó£©,B£á£Ï£¨s)¼°CO£²£¨s)¹¹³ÉµÃƽºâÌåϵ£¬Æä×ÔÓɶÈΪ£º £¨ )

(A) £æ=£² £¨£Â£© £æ=£± (C£© f£½0 £¨D) £æ=3 10¡¢ ÈýÏàµã¾ÍÊÇ: £¨ )

£¨£Á) ijһζȣ¬³¬¹ý´Ëζȣ¬ÒºÏà¾Í²»ÄÜ´æÔÚ £¨B£© ͨ³£·¢ÏÖÔںܿ¿½üÕý³£·ÐµãµÃijһζÈ

£¨C£© ÒºÌåµÃÕôÆøÑ¹µÈÓÚ25¡æÊ±µÃÕôÆøÑ¹Èý±¶ÊýֵʱµÃÎÂ¶È £¨D£© ¹ÌÌå¡¢ÒºÌåÓëÆøÌå¿ÉÒÔÆ½ºâ¹²´æÊ±µÃζÈÓëѹÁ¦

11¡¢ ijһÎïÖÊ XÔÚÈýÏàµãʱµÃζȾÍÊÇ20¡æ£¬Ñ¹Á¦¾ÍÊÇ2¸ö±ê×¼´óÆøÑ¹.ÏÂÁÐÄÄÒ»ÖÖ˵·¨¾ÍÊDz»ÕýÈ·µÃ: ( £©

£¨A) ÔÚ20¡æÒÔÉÏ X ÄÜÒÔÒºÌå´æÔÚ £¨B£© ÔÚ20¡æÒÔÏ £Ø ÄÜÒÔ¹ÌÌå´æÔÚ (£Ã) ÔÚ2£µ¡æ,±ê×¼´óÆøÑ¹ÏÂÒºÌå X ¾ÍÊÇÎȶ¨µÃ £¨D£© ÔÚ25¡æÊ±£¬ÒºÌå X Óë¹ÌÌå X ¾ßÓÐÏàͬµÃÕôÆøÑ¹

12¡¢ N2µÃÁÙ½çζȾÍÊÇ1£²4 K£¬Èç¹ûÏëÒªÒº»¯£Î2£¬¾Í±ØÐë: ( ) £¨A£© ÔÚºãÎÂÏÂÔö¼ÓѹÁ¦ £¨£Â£© ÔÚºãÎÂϽµµÍѹÁ¦ (C) ÔÚºãѹÏÂÉý¸ßÎÂ¶È (D) ÔÚºãѹϽµµÍζÈ

13¡¢ ¶ÔÓÚÓë±¾ÉíµÃÕôÆø´¦ÓÚÆ½ºâ״̬µÃÒºÌå,ͨ¹ýÏÂÁÐÄÄÖÖ×÷ͼ·¨¿É»ñµÃÒ»Ö±Ïß? ( £© £¨A£© p ¶Ô£Ô £¨£Â) l£ç£¨£ð/£Ða£© ¶Ô T £¨£Ã) lg(£ð/P£á) ¶Ô 1/T (D) £±£¯£ð ¶Ôlg(T£¯K)

14¡¢ µ±¿ËÀÍÐÞ˹¡ª¿ËÀ­±´Áú·½³ÌÓ¦ÓÃÓÚÄý¾ÛÏàת±äΪÕôÆøÊ±£¬Ôò£º ( ) £¨A£© £ð±ØËæTÖ®Éý¸ß¶ø½µµÍ £¨£Â£© p±Ø²»ËæT¶ø±ä

£¨C)£ð±ØËæTÖ®Éý¸ß¶ø±ä´ó £¨D£©pËæTÖ®Éý¸ß¿É±ä´ó»ò¼õÉÙ

15¡¢ ÔÚ0¡æµ½£±0£°¡æµÃ·¶Î§ÄÚ£¬ÒºÌ¬Ë®µÃÕôÆøÑ¹pÓë£ÔµÃ¹ØÏµÎª£ºl£ç£¨p/P£á)£½ ¡ª2265/£Ô + £±£±¡¢£±£°£± ,ij¸ßÔ­µØÇøµÃÆøÑ¹Ö»ÓУµ£¹ 9£¹5 £Ða£¬Ôò¸ÃµØÇøË®µÃ·ÐµãΪ:£¨ £© (A£©358¡¢2£Ë £¨B)85¡¢2£Ë £¨C)35£¸.2¡æ £¨D)3£·£³K

16¡¢ ÔÚ £³7£³¡¢£±£µ K ʱ£¬Ä³ÓлúÒºÌå A Óë B µÃÕôÆøÑ¹·Ö±ðΪ p Óë 3£ð£¬AÓëB µÃij»ìºÏÎïΪÀíÏëÒºÌå»ìºÏÎï,²¢ÔÚ 37£³¡¢15 K,2p ʱ·ÐÌÚ£¬ÄÇô A ÔÚÆ½ºâÕôÆøÏàÖеÃĦ¶û·ÖÊý¾ÍÊǶàÉÙ£¿ £¨ £©

£¨A£© £±/3 (B£© 1£¯4 £¨C) £±/2 £¨D) 3/4

17¡¢ ÔÚ±ê×¼´óÆøÑ¹Ï£¬ÓÃË®ÕôÆøÕôïÖ·¨Ìᴿij²»ÈÜÓÚË®µÃÓлúÎïʱ,ÌåϵµÃ·Ðµã½«£º £¨ ) £¨A)±ØµÍÓÚ373¡¢15£Ë £¨C)È¡¾öÓÚË®ÓëÓлúÎïµÃÏà¶ÔÊýÁ¿ (B£©±Ø¸ßÓÚ373¡¢15£Ë (£Ä£©È¡¾öÓÚÓлúÎïµÃ·Ö×ÓÁ¿´óС 18¡¢ ÇøÓòÈÛÁ¶¼¼ÊõÖ÷Òª¾ÍÊÇÓ¦ÓÃÓÚ: £¨ £© £¨£Á) ÖÆ±¸µÍ¹²ÈÛ»ìºÏÎï (B) Ìá´¿

(C£© ÖÆ±¸²»Îȶ¨»¯ºÏÎï £¨D£© »ñµÃ¹ÌÈÛÌå

£±9¡¢ µ±ÓÃÈý½ÇÐÎ×ø±êÀ´±íʾÈý×é·ÖÎïϵʱ£¬ÈôijÎïϵÆä×é³ÉÔÚÆ½ÐÐÓÚµ×±ßB£ÃµÃÖ±ÏßÉϱ䶯ʱ,Ôò¸ÃÎïϵµÃÌØµã¾ÍÊÇ£º £¨ £©

£¨£Á)BµÃ°Ù·Öº¬Á¿²»±ä £¨£Â£©AµÃ°Ù·Öº¬Á¿²»±ä

£¨C£©CµÃ°Ù·Öº¬Á¿²»±ä (D)BÓëCµÃ°Ù·Öº¬Á¿Ö®±È²»±ä

20¡¢ £È2O¡ª£Îa£Ã£ì¡ªNa2SO4µÃÈýԪϵÖÐ,N£á2S£Ï£´Óë£È2£ÏÄÜÐγÉË®ºÏÎïNa£²SO4¡¤10£È2O £¨£Ä£©£¬ÔÚ£ÄBCÇøÖдæÔڵþÍÊÇ£º £¨ £©

£¨A) Ë®ºÏÎïDÓëÈÜÒº £¨B£© Ë®ºÏÎï£ÄÓë´¿£Îa£²S£Ï4¼°´¿NaC£ìÈýÏ๲´æ

(C£© Ë®ºÏÎïD£¬Na£Ã£ìÓë×é³ÉΪFµÃÈÜÒº (D£© ´¿NaC£ì£¬´¿£Îa£²£ÓO4ÓëË®ÈÜÒº

µÚÎåÕ ÏàÆ½ºâ ÎﻯÊÔ¾í£¨¶þ)

1¡¢ £Æe(s£©¡¢FeO£¨£ó£©¡¢Fe3O4£¨s£©ÓëCO£¨g£©¡¢CO2£¨g£©´ïµ½Æ½ºâʱ,Æä¶ÀÁ¢»¯Ñ§Æ½ºâÊý £Ò¡¢×é·ÖÊý C Óë×ÔÓɶÈÊý f ·Ö±ðΪ: ( )

(A) R = £³;C= £²;f= 0 £¨£Â£© R £½ 4;C£½ 1£»£æ= -1 £¨C£© R = 1;£Ã= 4£»f£½ 2 £¨D£© R = 2£»C£½ £³£»f= 1

2¡¢ F£å£Ãl3Óë H2O ÄÜÐÎ³É Fe£Ãl£³¡¤6H2O,2FeCl3¡¤7H£²£Ï£¬2FeCl£³¡¤5H2O, FeCl3¡¤2H2O ËÄÖÖË®ºÏÎÔò¸ÃÌåϵµÃ¶ÀÁ¢×é·ÖÊý£ÃÓëÔÚºãѹÏÂ×î¶à¿ÉÄÜµÃÆ½ºâ¹²´æµÃÏàÊý F·Ö±ðΪ: £¨ ) £¨A£© C= 3£¬¦Õ = 4 £¨B) C£½ 2,¦µ = £´ £¨£Ã£© C= 2,¦µ = 3 £¨D£© £Ã= 3£¬¦µ= £µ

3¡¢ ÁòËáÓëË®¿ÉÐγÉH2£ÓO4¡¤H2O£¨s£©¡¢H2£ÓO4¡¤2£È2O£¨£ó£©¡¢H2SO4¡¤4£È2O(s£©ÈýÖÖË®ºÏÎÎÊÔÚ 101 £³25 Pa µÃѹÁ¦ÏÂ,ÄÜÓëÁòËáË®ÈÜÒº¼°±ùƽºâ¹²´æµÃÁòËáË®ºÏÎï×î¶à¿ÉÓжàÉÙÖÖ? ( £©

£¨£Á)3ÖÖ £¨£Â£©2ÖÖ £¨C£©1ÖÖ (D)²»¿ÉÄÜÓÐÁòËáË®ºÏÎïÓë֮ƽºâ¹²´æ £´¡¢ µ±ÒÒËáÓëÒÒ´¼»ìºÏ·´Ó¦´ïƽºâºó£¬ÌåϵµÃ¶ÀÁ¢×é·ÖÊý C Óë×ÔÓÉ¶È £æ Ó¦·Ö±ðΪ: ( ) £¨A£© £Ã£½ £²£¬f= 3 £¨B) £Ã= 3,£æ= £³ (C£© C£½ 2,£æ= 2 (D) C= 3£¬f= 4

5¡¢ ½« AlCl3ÈÜÓÚË®ÖÐÈ«²¿Ë®½â,´ËÌåϵµÃ×é·ÖÊý C ¾ÍÊÇ£º ( £© (£Á) 1 (£Â£© 2 £¨C£© £³ £¨D£© 4

£¶¡¢ £²£¹£¸ K ʱ£¬ÕáÌÇË®ÈÜÒºÓë´¿Ë®´ïÉøÍ¸Æ½ºâʱ£¬Õû¸öÌåϵµÃ×é·ÖÊý¡¢ÏàÊý¡¢×ÔÓɶÈΪ£º £¨ ) £¨A) £Ã= 2,¦µ = 2£¬£æ*£½ 1 (B) C= 2,¦Õ = 2£¬f*£½ 2 £¨C) £Ã= 2,¦Õ = £±£¬£æ£ª£½ 2 £¨D) £Ã= 2,¦Õ = 1£¬f£ª= 3 7¡¢ ¶Ôºã·Ð»ìºÏÎïµÃÃèÊö,ÏÂÁи÷ÖÖÐðÊöÖÐÄÄÒ»ÖÖ¾ÍÊDz»ÕýÈ·µÃ? £¨ £© (A£© Ó뻯ºÏÎïÒ»Ñù£¬¾ßÓÐÈ·¶¨µÃ×é³É (£Â) ²»¾ßÓÐÈ·¶¨µÃ×é³É