(ºþÄÏ´óѧ³ö°æÉç)´óѧÎïÀíϲá¿ÎºóϰÌâ´ð°¸ºÍÈ«½â È«²á ÏÂÔØ±¾ÎÄ

´óѧÎïÀíϲá¿ÎºóϰÌâÈ«½â

µÚÊ®¶þÕÂ Õæ¿ÕÖеľ²µç³¡

12£®1 ÈçͼËùʾ£¬ÔÚÖ±½ÇÈý½ÇÐÎABCDµÄAµã´¦£¬ÓеãµçºÉq1 = 1.8¡Á10-9C£¬Bµã´¦ÓеãµçºÉq2 = -4.8¡Á10-9C£¬AC = 3cm£¬BC = 4cm£¬ÊÔÇóCµãµÄ³¡Ç¿£®

[½â´ð]¸ù¾ÝµãµçºÉµÄ³¡Ç¿´óСµÄ¹«Ê½ A q1 q1q92-2

£¬ÆäÖÐ1/(4¦Ð¦Å) = k = 9.0¡Á10N¡¤m¡¤C£® E?k2?0

r4??0r2E2 B C µãµçºÉq1ÔÚCµã²úÉúµÄ³¡Ç¿´óСΪ£º ¦È q2 E1 E q111.8?10?994-1E1?4??0AC2?9?10?(3?10)?22?1.8?10(N?C)

ͼ12.1

·½ÏòÏòÏ£®

µãµçºÉq2ÔÚCµã²úÉúµÄ³¡Ç¿´óСΪ

|q2|4.8?10?994-1E2??9?10??2.7?10(N?C)£¬ 2?224??0BC(4?10)1·½ÏòÏòÓÒ£®

C´¦µÄ×ܳ¡Ç¿´óСΪ

2E?E12?E2?0.913?104?3.245?104(N?C-1)£¬

×ܳ¡Ç¿Óë·Ö³¡Ç¿E2µÄ¼Ð½ÇΪ??arctanE1?33.69?£® E2

12£®2 °ë¾¶ÎªRµÄÒ»¶ÎÔ²»¡£¬Ô²ÐĽÇΪ60¡ã£¬Ò»°ë¾ùÔÈ´øÕýµç£¬ÁíÒ»°ë¾ùÔÈ´ø¸ºµç£¬ÆäµçÏßÃܶȷֱðΪ+¦ËºÍ-¦Ë£¬ÇóÔ²ÐÄ´¦µÄ³¡Ç¿£® ds R [½â´ð]ÔÚ´øÕýµçµÄÔ²»¡ÉÏȡһ»¡Ôª

¦È O Ex x ds = Rd¦È£¬µçºÉԪΪdq = ¦Ëds£¬ ÔÚOµã²úÉúµÄ³¡Ç¿´óСΪ E Ey 1dq1?ds? y £¬ dE???d?224??0R4??0R4??0R³¡Ç¿µÄ·ÖÁ¿ÎªdEx = dEcos¦È£¬dEy = dEsin¦È£®

¶ÔÓÚ´ø¸ºµçµÄÔ²»¡£¬Í¬Ñù¿ÉµÃÔÚOµãµÄ³¡Ç¿µÄÁ½¸ö·ÖÁ¿£®ÓÉÓÚ»¡ÐÎÊǶԳƵģ¬x·½ÏòµÄºÏ³¡Ç¿ÎªÁ㣬×ܳ¡Ç¿ÑØ×ÅyÖáÕý·½Ïò£¬´óСΪ

E?2Ey??dEsin?

L??2??0R?/6?0sin?d???(?cos?)2??0R?/6

0Ex ¦È O E Ey ds R y x ?(1?3?£®

)22??0R

12£®3 ¾ùÔÈ´øµçϸ°ô£¬°ô³¤a = 20cm£¬µçºÉÏßÃܶÈΪ¦Ë = 3¡Á10-8C¡¤m-1£¬Çó£º £¨1£©°ôµÄÑÓ³¤ÏßÉÏÓë°ôµÄ½ü¶Ëd1 = 8cm´¦µÄ³¡Ç¿£»

£¨2£©°ôµÄ´¹Ö±Æ½·ÖÔÚÏßÓë°ôµÄÖеãÏà¾àd2 = 8cm´¦µÄ³¡Ç¿£®

[½â´ð]£¨1£©½¨Á¢×ø±êϵ£¬ÆäÖÐL = a/2 = 0.1(m)£¬x = L+d1 = 0.18(m)£® ÔÚϸ°ôÉÏȡһÏßÔªdl£¬Ëù´øµÄµçÁ¿Îªdq = ¦Ëdl£¬

¸ù¾ÝµãµçºÉµÄ³¡Ç¿¹«Ê½£¬µçºÉÔªÔÚP1µã²úÉúµÄ³¡Ç¿µÄ´óСΪ

y dq?dldl dE1?k2?2 lx r4??(x?l)0 r L d1 P1 x -L o

³¡Ç¿µÄ·½ÏòÑØxÖáÕýÏò£®Òò´ËP1µãµÄ×ܳ¡Ç¿´óСͨ¹ý»ý·ÖµÃ

?Ldl?1LE1? ?2?4??0?L(x?l)4??0x?l?L?1112L?£® ¢Ù ?(?)?224??0x?Lx?L4??0x?L½«ÊýÖµ´úÈ빫ʽµÃP1µãµÄ³¡Ç¿Îª

2?0.1?3?10?8E1?9?10?= 2.41¡Á103(N¡¤C-1)£¬ 220.18?0.19·½ÏòÑØ×ÅxÖáÕýÏò£®

£¨2£©½¨Á¢×ø±êϵ£¬y = d2£®

ÔÚϸ°ôÉÏȡһÏßÔªdl£¬Ëù´øµÄµçÁ¿Îªdq = ¦Ëdl£¬ ÔÚ°ôµÄ´¹Ö±Æ½·ÖÔÚÏßµÄP2µã²úÉúµÄ³¡Ç¿µÄ´óСΪ

dE2?kdq?dl£¬ ?22r4??0rÓÉÓÚ°ôÊǶԳƵģ¬x·½ÏòµÄºÏ³¡Ç¿ÎªÁ㣬y·ÖÁ¿Îª dEy = dE2sin¦È£®

ÓÉͼ¿ÉÖª£ºr = d2/sin¦È£¬l = d2cot¦È£¬ ËùÒÔ dl = -d2d¦È/sin2¦È£¬ Òò´Ë dEy?×ܳ¡Ç¿´óСΪ

dE2 y dEy ¦È P 2 dEx r d2 -L L ¦È o x lx dl ??sin?d?£¬

4??0d2?sin?d??cos??4??d02l??L2L?£® ¢Ú

LL??Ey?4??0d2?1l??L??4??0d2ld?l222L

l??L24??0d2d2?L2½«ÊýÖµ´úÈ빫ʽµÃP2µãµÄ³¡Ç¿Îª

2?0.1?3?10?83-1

= 5.27¡Á10(N¡¤C)£® Ey?9?10?221/20.08(0.08?0.1)9·½ÏòÑØ×ÅyÖáÕýÏò£®

[ÌÖÂÛ]£¨1£©ÓÉÓÚL = a/2£¬x = L+d1£¬´úÈë¢Ùʽ£¬»¯¼òµÃ

E1??a?1£¬ ?4??0d1d1?a4??0d1d1/a?1E1?±£³Öd1²»±ä£¬µ±a¡ú¡Þʱ£¬¿ÉµÃ

?£¬ ¢Û

4??0d1ad?(a/2)222Õâ¾ÍÊǰëÎÞÏÞ³¤´øµçÖ±ÏßÔÚÏà¾àΪd1µÄÑÓ³¤ÏßÉϲúÉúµÄ³¡Ç¿´óС£®

£¨2£©ÓÉ¢ÚʽµÃ

Ey??4??0d2??4??0d21(d2/a)?(1/2)22£¬

µ±a¡ú¡Þʱ£¬µÃ Ey??£¬ ¢Ü

2??0d2ºÎֵʱ£¬Ô²

Õâ¾ÍÊÇÎÞÏÞ³¤´øµçÖ±ÏßÔÚÏßÍâ²úÉúµÄ³¡Ç¿¹«Ê½£®Èç¹ûd1=d2£¬ÔòÓдóС¹ØÏµEy = 2E1£®

12£®4 Ò»¾ùÔÈ´øµçµÄϸ°ô±»Íä³ÉÈçͼËùʾµÄ¶Ô³ÆÐÎ×´£¬ÊÔÎʦÈΪÐÄOµã´¦µÄ³¡Ç¿ÎªÁ㣮

R O ¦È ͼ12.4

[½â´ð]ÉèµçºÉÏßÃܶÈΪ¦Ë£¬ÏȼÆËãÔ²»¡µÄµçºÉÔÚÔ²ÐIJúÉúµÄ³¡Ç¿£® ÔÚÔ²»¡ÉÏȡһ»¡Ôª ds =R d¦Õ£¬ Ëù´øµÄµçÁ¿Îª dq = ¦Ëds£¬

ÔÚÔ²ÐÄ´¦²úÉúµÄ³¡Ç¿µÄ´óСΪ

dE?kdq?ds???d?£¬ r24??0R24??0Rd¦Õ ÓÉÓÚ»¡ÊǶԳƵ쬳¡Ç¿Ö»Ê£x·ÖÁ¿£¬È¡xÖá·½ÏòΪÕý£¬³¡Ç¿Îª dEx = -dEcos¦Õ£® ×ܳ¡Ç¿Îª

Ex???4??0R2???/2??cos?d????4??0R2???/2sin??/2

R ¦Õ O ¦È x /2dE ???sin£¬·½ÏòÑØ×ÅxÖáÕýÏò£® 2??0R2 E`` R O ¦È E` x ÔÙ¼ÆËãÁ½¸ù°ëÎÞÏÞ³¤´øµçÖ±ÏßÔÚÔ²ÐIJúÉúµÄ³¡Ç¿£®

¸ù¾ÝÉÏÒ»ÌâµÄ¹«Ê½¢Û¿ÉµÃ°ëÎÞÏÞ³¤´øµçÖ±ÏßÔÚÑÓ³¤ÉÏOµã²úÉúµÄ³¡Ç¿´óСΪ

E`??£¬

4??0R`Ex?2E`cosÓÉÓÚÁ½¸ù°ëÎÞÏÞ³¤´øµçÖ±Ï߶ԳƷÅÖã¬ËüÃÇÔÚOµã²úÉúµÄºÏ³¡Ç¿Îª

?2???cos£¬·½ÏòÑØ×ÅxÖḺÏò£®

2??0R2b a P `µ±OµãºÏ³¡Ç¿ÎªÁãʱ£¬±ØÓÐEx?Ex£¬¿ÉµÃ tan¦È/2 = 1£¬

Òò´Ë ¦È/2 = ¦Ð/4£¬ ËùÒÔ ¦È = ¦Ð/2£®

12£®5 Ò»¿íΪbµÄÎÞÏÞ³¤¾ùÔÈ´øµçÆ½Ãæ±¡°å£¬ÆäµçºÉÃܶÈΪ¦Æ£¬ÈçͼËùʾ£®ÊÔÇó£º

£¨1£©Æ½°åËùÔÚÆ½ÃæÄÚ£¬¾à±¡°å±ßԵΪa´¦µÄ³¡Ç¿£®

£¨2£©Í¨¹ý±¡°å¼¸ºÎÖÐÐĵĴ¹Ö±ÏßÉÏÓ뱡°å¾àÀëΪd´¦µÄ³¡Ç¿£®

[½â´ð]£¨1£©½¨Á¢×ø±êϵ£®ÔÚÆ½Ã污°åÉÏȡһ¿í¶ÈΪdxµÄ´øµçÖ±Ïߣ¬µçºÉµÄÏßÃܶÈΪd¦Ë = ¦Æd x£¬

¸ù¾ÝÖ±Ïß´øµçÏߵij¡Ç¿¹«Ê½E? d Q ͼ12.5 ?£¬ 2??0r£¬Æä·½ÏòÑØxÖáÕýÏò£®

y µÃ´øµçÖ±ÏßÔÚPµã²úÉúµÄ³¡Ç¿Îª

dE?d?2??0r?b/2?dx2??0(b/2?a?x) b

a ÓÉÓÚÿÌõÎÞÏÞ³¤Ö±ÏßÔÚPµãµÄ²úÉúµÄ³¡Ç¿·½ÏòÏàͬ£¬ËùÒÔ×ܳ¡Ç¿Îª

E??1??dx?ln(b/2?a?x)?/2b/2?a?x2??0?b2??0?b?ln(1?)£® ¢Ù 2??0ab/2 O dx P x ?b/2³¡Ç¿·½ÏòÑØxÖáÕýÏò£®

£¨2£©ÎªÁ˱ãÓڹ۲죬½«±¡°åÐýת½¨Á¢×ø±êϵ£®ÈÔÈ»ÔÚÆ½Ã污°åÉÏȡһ¿í¶ÈΪdxµÄ´øµçÖ±Ïߣ¬µçºÉµÄÏßÃܶÈÈÔȻΪd¦Ë = ¦Æd x£¬ ´øµçÖ±ÏßÔÚQµã²úÉúµÄ³¡Ç¿Îª

dE?d?2??0r??dx2??0(b2?x2)1/2£¬

x r O d y b dx ¦È z Q dE

ÑØzÖá·½ÏòµÄ·ÖÁ¿Îª

dEz?dEcos???cos?dx£¬

2??0(b2?x2)1/2?d? 2??0Éèx = dtan¦È£¬Ôòdx = dd¦È/cos2¦È£¬Òò´Ë

dEz?dEcos??»ý·ÖµÃ

arctan(b/2d)Ez???bd??arctan()£® ¢Ú ?2??0??02d?arctan(b/2d)³¡Ç¿·½ÏòÑØzÖáÕýÏò£®

[ÌÖÂÛ]£¨1£©±¡°åµ¥Î»³¤¶ÈÉϵçºÉΪ¦Ë = ¦Æb£¬ ¢ÙʽµÄ³¡Ç¿¿É»¯Îª

E??ln(1?b/a)£¬ 2??0ab/a?£¬ ¢Û 2??0aµ±b¡ú0ʱ£¬±¡°å¾Í±ä³ÉÒ»¸ùÖ±Ïߣ¬Ó¦ÓÃÂÞ±ØËþ·¨Ôò»òÌ©ÀÕÕ¹¿ªÊ½£¬³¡Ç¿¹«Ê½±äΪ

E?ÕâÕýÊÇ´øµçÖ±Ïߵij¡Ç¿¹«Ê½£®

£¨2£©¢ÚÒ²¿ÉÒÔ»¯ÎªEz??arctan(b/2d)£¬

2??0db/2dµ±b¡ú0ʱ£¬±¡°å¾Í±ä³ÉÒ»¸ùÖ±Ïߣ¬Ó¦ÓÃÂÞ±ØËþ·¨Ôò»òÌ©ÀÕÕ¹¿ªÊ½£¬³¡Ç¿¹«Ê½±äΪ

Ez??£¬

2??0dÕâÒ²ÊÇ´øµçÖ±Ïߵij¡Ç¿¹«Ê½£®

µ±b¡ú¡Þʱ£¬¿ÉµÃ£ºEz??£¬ ¢Ü 2?0ÕâÊÇÎÞÏÞ´ó´øµçÆ½ÃæËù²úÉúµÄ³¡Ç¿¹«Ê½£®

12£®6 £¨1£©µãµçºÉqλÓÚÒ»¸ö±ß³¤ÎªaµÄÁ¢·½ÌåÖÐÐÄ£¬ÊÔÇóÔڸõãµçºÉµç³¡Öд©¹ýÁ¢·½ÌåÒ»ÃæµÄµçͨÁ¿ÊǶàÉÙ£¿

£¨2£©Èç¹û½«¸Ã³¡Ô´µãµçºÉÒÆµ½Á¢·½ÌåµÄµÄÒ»¸ö½ÇÉÏ£¬Õâʱͨ¹ýÁ¢·½Ìå¸÷ÃæµÄµçͨÁ¿ÊǶàÉÙ£¿ [½â´ð]µãµçºÉ²úÉúµÄµçͨÁ¿Îª¦µe = q/¦Å0£®

£¨1£©µ±µãµçºÉ·ÅÔÚÖÐÐÄʱ£¬µçͨÁ¿Òª´©¹ý6¸öÃæ£¬Í¨¹ýÃ¿Ò»ÃæµÄµçͨÁ¿Îª¦µ1 = ¦µe/6 = q/6¦Å0£® £¨2£©µ±µãµçºÉ·ÅÔÚÒ»¸ö¶¥½Çʱ£¬µçͨÁ¿Òª´©¹ý8¸öØÔÏÞ£¬Á¢·½ÌåµÄ3¸öÃæÔÚÒ»¸öØÔÏÞÖУ¬Í¨¹ýÿ¸öÃæµÄµçͨÁ¿Îª¦µ1 = ¦µe/24 = q/24¦Å0£»

Á¢·½ÌåµÄÁíÍâ3¸öÃæµÄ·¨ÏòÓëµçÁ¦Ïß´¹Ö±£¬Í¨¹ýÿ¸öÃæµÄµçͨÁ¿ÎªÁ㣮

12£®7 ÃæµçºÉÃܶÈΪ¦ÆµÄ¾ùÔÈÎÞÏÞ´ó´øµçÆ½°å£¬ÒÔÆ½°åÉϵÄÒ»µãOΪÖÐÐÄ£¬RΪ°ë¾¶×÷Ò»°ëÇòÃæ£¬ÈçͼËùʾ£®Çóͨ¹ý´Ë°ëÇòÃæµÄµçͨÁ¿£®

[½â´ð]ÉèÏëÔÚÆ½°åÏÂÃæ²¹Ò»¸ö°ëÇòÃæ£¬ÓëÉÏÃæµÄ°ëÇòÃæºÏ³ÉÒ»¸öÇòR 2O Ãæ£®ÇòÃæÄÚ°üº¬µÄµçºÉΪ q = ¦ÐR¦Æ£¬

ͨ¹ýÇòÃæµÄµçͨÁ¿Îª ¦µe = q/¦Å0£¬

ͨ¹ý°ëÇòÃæµÄµçͨÁ¿Îª¦µ`e = ¦µe/2 = ¦ÐR2¦Æ/2¦Å0£®

12£®8 Á½ÎÞÏÞ³¤Í¬ÖáÔ²ÖùÃæ£¬°ë¾¶·Ö±ðΪR1ºÍR2(R1 > R2)£¬´øÓеÈÁ¿ÒìºÅµçºÉ£¬µ¥Î»³¤¶ÈµÄµçÁ¿Îª¦ËºÍ-¦Ë£¬Çó£¨1£©r < R1£»£¨2£© R1 < r < R2£»£¨3£©r > R2´¦¸÷µãµÄ³¡Ç¿£®

[½â´ð]ÓÉÓÚµçºÉ·Ö²¼¾ßÓÐÖá¶Ô³ÆÐÔ£¬ËùÒԵ糡·Ö²¼Ò²¾ßÓÐÖá¶Ô³ÆÐÔ£® £¨1£©ÔÚÄÚÔ²ÖùÃæÄÚ×öһͬÖáÔ²ÖùÐθßË¹Ãæ£¬ÓÉÓÚ¸ß˹ÄÚûÓеçºÉ£¬ËùÒÔ