Êýѧ½¨Ä£ÆÚÄ©ÊÔ¾í´ð°¸ ÏÂÔØ±¾ÎÄ

¿Î³ÌÃû³Æ£º ÊýѧʵÑéÓëÊýѧ½¨Ä£ Ö÷½²½Ìʦ£º ÌÆÏòÑô

ѧºÅ 2010212569 ÐÕÃû ÁèÔó¹ã ³É¼¨ £º

2012¡¶ÊýѧģÐÍ¡·¿¼ÊÔÊÔÌâ

Ò»¡¢(20·Ö)ijÔìÖ½³§ÓÃÔ­²ÄÁϰ×Å÷Ö½Éú²úÔ­¸åÖ½¡¢±Ê¼Ç±¾ºÍÁ·Ï°±¾ÈýÖÖ²úÆ·¡£¸Ã³§ÏÖÓй¤ÈË100ÈË£¬Ã¿Ô°×Å÷Ö½¹©Ó¦Á¿Îª3Íò¹«½ï¡£ÒÑÖª¹¤È˵ÄÀͶ¯Éú²úÂÊΪ£ºÃ¿ÈËÿÔÂÉú²úÔ­¸åÖ½30À¦£¬»òÉú²úÈռDZ¾30´ò£¬»òÁ·Ï°±¾30Ïä¡£¶øÔ­²ÄÁϵÄÏûºÄΪ£ºÃ¿À¦Ô­¸åÖ½Óð×Å÷Ö½10/3¹«½ï£¬Ã¿´ò±Ê¼Ç±¾Óð×Å÷Ö½40/3¹«½ï£¬Ã¿ÏäÁ·Ï°±¾Óð×Å÷Ö½80/3¹«½ï¡£Éú²úÒ»À¦Ô­¸åÖ½¿É»ñÀû2Ôª£¬Éú²úÒ»´ò±Ê¼Ç±¾¿É»ñÀû3Ôª£¬Éú²úÒ»ÏäÁ·Ï°±¾¿É»ñÀû1Ôª¡£

(1)ÊÔÈ·¶¨ÔÚÏÖÓÐÉú²úÌõ¼þϵÄ×îÓÅÉú²ú·½°¸¡£

(2)Èç°×Å÷Ö½µÄ¹©Ó¦Á¿²»±ä£¬µ±¹¤ÈËÊý²»×ãʱ¿ÉÕÐÊÕÁÙʱ¹¤£¬ÁÙʱ¹¤µÄ¹¤×ÊÖ§³öΪÿÈËÿÔÂ40Ôª£¬ÎÊ£ºÒª²»ÒªÕÐÊÕÁÙʱ¹¤£¿

½â£¨1£©£º½¨Á¢Ä£ÐÍ£ºÉèÿÔÂÉú²úÔ­¸åÖ½xÀ¦£¬Ã¿ÔÂÉú²ú±Ê¼Ç±¾y´ò£¬Ã¿ÔÂÉú²úÁ·Ï°±¾zÏ䣬ÓÃMax fÀ´±íʾÔìÖ½³§»ñÀûµÄ×î´óÖµ£¬ÄÇô¸ù¾ÝÌâÒâÓÐÈçÏÂÏßÐԹ滮ģÐÍ£¬

Max f=x*2+y*3+z*1

ÇÒx,y,zÂú×ãÈçϲ»µÈʽ£º

Max f=2x+3y+z

x/30+y/30+z/30<=100 10x/3+40y/3+80z/<=30000

x>=0,y>=0,z>=0

ÀûÓÃmathematica Èí¼þ°üÇó½âÉÏÊö²»µÈʽ£º ÔËÐгÌÐò

ConstrainedMax[2x+3y+z,{x+y+z?3000,x+4y+8z?9000,

x?0,y?0,z?0},{x,y,z}] ÔËÐнá¹ûÈçÏ£º

{8000,{x?1000,y?2000,z?0}}

¹Ê¿ÉÖª£¬µ±Éú²úÔ­¸åֽΪ1000À¦£¬Éú²ú±Ê¼Ç±¾2000´ò£¬Éú²úÁ·Ï°±¾0Ïäʱ£¬´ËʱÔìÖ½³§Ëù»ñµÃµÄÀûÈó×î´ó£¬×î´óΪ8000Ôª

£¨2£©½¨Á¢Ä£ÐÍ£ºÈç¹ûÔìÖ½³§Ã¿ÔÂËùÕнøÀ´µÄÿÃûÁÙʱ¹¤ÈËËù´´ÔìµÄÀûÈó´óÓÚÿ¸öԵŤ×Ê£¬

ÄÇôÔìÖ½³§¾Í¿ÉÒÔÕÐÊÕÁÙʱ¹¤ÈË£¬ÏÖ¼ÙÉèÐèÒªÕÐÊÕmÃûÁÙʱ¹¤ÈË£¬ÄÇô×ܹ²¾ÍÓÐÓÉÓÚ°×Å÷100+mÃû¹¤ÈË£¬ÉèÿÔÂÓÐx1Ãû¹¤ÈËÓÃÀ´Éú²úÔ­¸åÖ½£¬ÓÐx2Ãû¹¤ÈËÓÃÀ´Éú²ú±Ê¼Ç±¾£¬ÓУ¬x3Ãû¹¤ÈËÓÃÀ´Éú²úÁ·Ï°±¾£¬ÓÉÓÚÖ½µÄ¹©Ó¦Á¿²»±ä£¬´ËʱÉèÔìÖ½³§Ëù»ñµÃµÄ×î´óÀûÈó Ϊ Max g£¬ÒÀ¾ÝÌâÒâ¿ÉÖªÓÐÈçÏÂÏßÐԹ滮ģÐÍ£¬

Max g=60x+90y+30z-40m

ÇÒx,y,z,mÂú×ãÈçϲ»µÈʽ£º

x+y+z<=100+m

30x*10/3+30y*40/3+30z*80/3<=30000

x,y,z,m>=0

x,y,z<=100+m

ÀûÓÃmathematicaÈí¼þ°üÇó½âÉÏÊö³ÌÐò,

ÔËÐгÌÐò£º

ConstrainedMax[60x+90y+30z-40m,{x+y+z<=100+m,x+4y+8z?300,x?0,y?0,z?0,x?100+m,y?100+m,z?100+m,m?0},{x,y,z,m}] µÃµ½½á¹û£º

{10000,{x?300,y?0,z?0,m?200}}

ÓÉ´Ë¿ÉÖª£¬´ËʱÔìÖ½³§Ëù»ñµÃµÄ×î´óÀûÈóΪ10000Ôª£¬ËùÐèÒªÕÐÊÕµÄÁÙʱ¹¤Îª200ÈË£» ÄÇô´ËʱÿÃûÁÙʱ¹¤ÈËÿÔÂΪ¹«Ë¾Ëù´øÀ´µÄÀûÈóΪ£º10000/200=50>40, Òò´Ë¿ÉÖª£ºÔìÖ½³§¿ÉÒÔÕÐÊÕÁÙʱ¹¤¡£

¶þ¡¢(30·Ö) ÓÐijÖÖ»õÎïµÄ´æÖüϵͳ£¬Êг¡¶ÔÕâÖÖ»õÎïµÄÐèÇóÁ¿(µ¥Î»£ºµ¥Î»)ºÍ¶©»õÌáǰÆÚ(µ¥Î»£ºÖÜ)¶¼ÊÇËæ»úµÄ£¬ËüÃǵĸÅÂÊ·Ö²¼ÈçÏ£º ÐèÇóÁ¿ 0 1 2 3 4 5 6 ¸ÅÂÊ

ÌáǰÆÚ(ÖÜ) 1 2 3 4 5 ¸ÅÂÊ 0.23 0.45 0.17 0.09 0.06 ÏÖÔÚ¿¼ÂǶ©»õ¡¢´æÖü¡¢È±»õËðʧÈýÏî·ÑÓ㺶©»õ·ÑÓÃÿ´Î25Ôª£¬¶©»õÁ¿Ã¿´Î20µ¥Î»£¬¶©»õµãΪ15µ¥Î»£¨¼´´æ»õµÍÓÚ15µ¥Î»Ê±¶©»õ£¬µ«ÒѶ©»õδµ½Ç°²»ÔÙ¶©£©£¬´æÖü·Ñÿ¼þÿÖÜ10Ôª£¬È±»õËðʧ·Ñÿ¼þÿÖÜ500Ôª¡£¶ÔÓÚȱ»õ£¬»õµ½ºó²»²¹£¬É迪ʼʱ´æ»õΪ20µ¥Î»¡£

ÊÔÓÃmathematicaÉú³ÉËæ»úÊýR1, R2, R1Ä£ÄâÐèÇóÁ¿£¬R2Ä£Äâ¶©»õÌáǰÆÚ¡£Ä£Äâ14ÖܵÄÔËÐÐÇé¿ö£¬ÌîÏÂ±í£¬²¢Çó¶©»õ·ÑÓᢴæÖü·ÑÓá¢È±»õ·ÑÓÃÒÔ¼°ÖÜÆ½¾ù·ÑÓᣠÖÜ µ½»õÁ¿ ´æ´¢Á¿ ÊÇ·ñÌáǰÆÚ ȱ»õÁ¿ Ëæ»úÊýR1 ÐèÇóÁ¿ ¶©»õ R2 ÌáǰÆÚ 0 ¡ª 20 ¡ª 1 68 4 16 2 52 3 13 ÊÇ 50 2 3 90 5 8 4 59 3 26

0.02 0.08 0.22 0.34 0.18 0.09 0.07

5 6 7 8 9 10 11 12 13 14 08 72 44 95 81 94 28 89 63 0 1 4 3 6 4 6 2 5 3 1 24 20 17 11 7 1 0 15 12 31 ÊÇ 86 1 4 1 ½â£º½¨Á¢Ä£ÐÍ£ºÏȽ«ÉÏÊöͼ±íµÄ¸ÅÂÊת»»³ÉÀÛ»ý¸ÅÂÊ£º

ÐèÇóÁ¿ ¸ÅÂÊ

0 0.02 1 0.10 2 0.32 3 0.66 4 0.84 5 0.93 6 1 ÌáǰÆÚ(ÖÜ) ¸ÅÂÊ ÔËÐгÌÐò£º

1 0.23 2 0.68 3 0.85 4 0.94 5 1 d=Table[random[],{k,14}

Do[if[d[j]]<=0.02,r1=r1+1;r2>0.02,and r2?0.1;r3>0.1,and r3<=0.32;r4>0.32,and r4?0.54;r5>0.66,and r5?0.84;r6>0.84,and r6?0.93;r7>0.93,r7?1],{j,14}] Print[\

Éú³ÉÒ»×éËæ»úÊýR1£º 68,52,90,59,08,72,44,95,81,94,28,89,63,0 ÓÃͬÑùµÄ·½·¨Éú³ÉÒ»×éËæ»úÊýR2£º50,86,1

ÄÇôÓÃR1Õâ14¸öÊý·Ö±ð°´ÖÈÐòµÄ´ú±í×Å´ÓµÚ1Öܵ½µ×14ÖÜÄ£ÄâµÄÐèÇóÁ¿£¬ ¿É֪ģÄâ³öÀ´µÄÐèÇóÁ¿·Ö±ðΪ4,3,5,3,1,4,3,6,4,6,2,5,3,1.

ÏÖÔÚÖðÒ»·ÖÎöÿһÖܺóµÄ´æ´¢Á¿£¬ÇÒ×ʼµÄ´æ»õΪ20µ¥Î» (1)ÔÚµÚÒ»ÖܺóµÄµÄ´æ´¢Á¿Îª20-4=16>15£¬²»ÐèÒª¶©»õ (2)ÔÚµÚ¶þÖܺóµÄ´æ´¢Á¿Îª16-3=13<15£¬´ËʱÐèÒª¶©»õ ÀàËÆÓÚͬÑùµÄ£¨1£©£¬£¨2£©½øÐзÖÎö¿ÉÖª£¬ËùµÃµÄÊý¾ÝÈç±íÖÐËùʾ¡£ ËùÒÔ£¬Óɱí¸ñÊý¾Ý¿ÉÖª£¬ ¶©»õ·ÑÓÃΪ25*3=75£» ´æ´¢·ÑÓÃΪ10*200=2000£»

ȱ»õ·ÑÓÃΪ500*1=500£»

ÖÜÆ½¾ù·ÑÓÃΪ1/14£¨75+2000+500£©=183.9¡£

Èý¡¢(50·Ö)Ò»¸ö³Ç½¼µÄÉçÇø¼Æ»®¸üÐÂÏû·ÀÕ¾¡£Ô­À´µÄÏû·ÀÕ¾ÔھɳÇÖÐÐÄ¡£¹æ»®Òª½«ÐµÄÏû·ÀÕ¾ÉèÖõøü¿ÆÑ§ºÏÀí£¬¹ÊÔÚǰһ¸ö¼¾¶ÈÊÕ¼¯Á˻𾯷´Ó¦Ê±¼äµÄ×ÊÁÏ£º

(1) ƽ¾ùÒªÓÃ3.2·ÖÖÓÅÉDzÏû·À¶ÓÔ±£»

(2) Ïû·À¶ÓÔ±µ½´ï»ðÔÖÏÖ³¡µÄʱ¼ä(ÐгµÊ±¼ä)ÒÀÀµÓÚ»ðÔÖÏÖ³¡µÄ¾àÀë¡£

(3) ÐгµÊ±¼äµÄ×ÊÁÏÁÐÓÚ±í1

±í1 ÐгµÊ±¼ä ¾àÀë1.22 3.48 5.10 3.39 4.13 1.75 2.95 1.30 0.76 2.52 1.66 1.84 (Àï) ʱ¼ä2.62 8.35 6.44 3.51 6.52 2.46 5.02 1.73 1.14 4.56 2.90 3.19 (·ÖÖÓ) ¾àÀë3.19 4.11 3.09 4.96 1.64 3.23 3.07 4.26 4.40 2.42 2.96 (Àï) ʱ¼ä4.26 7.00 5.49 7.64 3.09 3.88 5.49 6.82 5.53 4.30 3.55 (·ÖÖÓ) (4)´ÓÉçÇøµÄ²»Í¬ÇøÓò´òÀ´µÄÇó¾Èµç»°ÆµÂʵÄÊý¾ÝÁÐÓÚÏÂͼ¡£ÆäÖÐÿһ¸ñ´ú±íһƽ·½À¸ñÄÚµÄÊý×ÖΪÿÄê´Ó´ËÇøÓò´òÀ´µÄ½ô¼±Çó¾Èµç»°µÄÊýÁ¿¡£

3 0 1 4 2 1 2 1 1 2 3 2 5 3 3 0 1 2 8 5 2 1 0 0 10 6 3 1 3 1 0 2 3 1 1 1 1£®Çó·´Ó¦Ê±¼ä¡£Ïû·À¶Ó¶ÔÀë¾È»ðÕ¾rÀï´¦´òÀ´µÄÒ»¸öÇó¾Èµç»°ÐèÒªµÄ·´Ó¦Ê±¼ä¹À¼ÆÎªd·ÖÖÓ¡£¸ø³öÏû·À¶Ó¶ÔÇó¾Èµç»°µÄ·´Ó¦Ê±¼äµÄÄ£ÐÍd(r)£»

2£®Ç󯽾ù·´Ó¦Ê±¼ä¡£ÉèÉçÇøÎ»ÇøÓò[0, 6]?[0, 6]ÄÚ£¬(x, y)ÊÇеÄÏû·ÀÕ¾µÄλÖ᣸ù¾ÝÇó¾Èµç»°ÆµÂÊ£¬È·¶¨Ïû·À¶Ó¶ÔÇó¾Èµç»°µÄƽ¾ù·´Ó¦Ê±¼äz = f (x, y) £»

3£®ÇóеÄÏû·ÀÕ¾µÄ×î¼ÑλÖá£

½â£º Ê×ÏȶÔÏÂÃæµÄ²ÎÁ¿Óë±äÁ¿½øÐÐÕûÌå˵Ã÷£º

£¨x ,y£©±íʾеÄÏû·ÀÕ¾µÄλÖà x ,yÖÐÖÁÉÙÓÐÒ»¸öΪ0£¬1£¬2£¬3,4,5,6, £¨i£¬j£©±íʾ»ðÔÖÏÖ³¡ËùÔÚÇøÓòµÄλÖà i , j=1,2,3,4,5,6 r±íʾÏû·À¶ÓÀï»ðÔÖÏÖ³¡µÄ¾àÀë

d(r) ±íʾÏû·À¶Óµç»°ÇóÖúµÄ·´Ó¦Ê±¼ä z ±íʾÏû·À¶Ó¶ÔÇó¾Èµç»°µÄƽ¾ù·´Ó¦Ê±¼ä

A ±íʾÿÄê´Ó¸÷ÇøÓò´òÀ´µÄ½ô¼±¾ÈÖúµç»°µÄÊýÁ¿¾ØÕó a ±íʾÿÄê´Ó¸÷ÇøÓò´òÀ´µÄ½ô¼±µç»°µÄƵÂʾØÕó

1.½¨Á¢Ä£ÐÍ£ºÏȶԾàÀ루ÀÓëʱ¼ä£¨·ÖÖÓ£©µÄÊý¾Ý¹ØÏµ½øÐÐÊý¾ÝÄâºÏ£¬ ÔËÐгÌÐòÈçÏ£º

Clear[data]

data={{1.22,2.62},{3.48,8.35},{5.10,6.44},{3.39,3.51},{4.13,6.52},{1.75,2.46},{2.95,5.20},{1.30,1.73},{0.76,1.14},{2.52,4.56},{1.66,2.90},{1.84,3.19},{3.19,4.26},{4.11,7.00},{3.09,5.49},{4.96,7.64},{1.64,3.09},{3.23,3.88},{3.07,5.49},{4.26,6.82},{4.40,5.53},{2.42,4.30},{2.96,3.55}}; ListPlot[data]

ÔËÐнá¹ûÈçÏÂͼ£¨1£©£º

876543212345 ÓÃ×îС¶þ³Ë·¨½øÐÐÖ±ÏßÄâºÏ¸ø³ö·´Ó¦Ê±¼äµÄº¯Êý£¬ÔËÐÐÈçϳÌÐò£º

data={{1.22,2.62},{3.48,8.35},{5.10,6.44},{3.39,3.51},{4.13,6.52},{1.75,2.46},{2.95,5.20},{1.30,1.73},{0.76,1.14},{2.52,4.56},{1.66,2.90},{1.84,3.19},{3.19,4.26},{4.11,7.00},{3.09,5.49},{4.96,7.64},{1.64,3.09},{3.23,3.88},{3.07,5.49},{4.26,6.82},{4.40,5.53},{2.42,4.30},{2.96,3.55}};

f[x]=Fit[data,{1,r},r]

ÔËÐнá¹ûÈçÏ£º

0.579543 +1.36943r

¹Ê¿ÉÖª·´Ó¦Ê±¼äΪÐгµÊ±¼äºÍ×¼±¸Ê±¼ä£¨3.2·Ö£©µÄºÍ£º

d(r)=1.36943r+0.579543 +3.2

2.£¨1£©ÎÒÃÇÒªÇó½âƽ¾ù·´Ó¦Ê±¼ä£¬ÄÇôÎÒÃÇÓÃеÄÏû·ÀÕ¾µÄλÖã¨x , y£©ºÍ»ðÔÖÏÖ³¡ËùÔÚµÄÇøÓòµÄλÖã¨i , j£©À´±íʾÏû·ÀÕ¾µ½»ðÔÖÏÖ³¡µÄ¾àÀër£»

£¨2£©°ÑÇøÓò[0,6]*[0,6]µÈ·Ö³É36¸öÐ¡ÇøÓò£¬²¢ÇÒÀ´×ÔÄ³Ò»Ð¡ÇøµÄÖÐÐĵĽô¼±µç»°¿É´ú±íÀ´×ÔÇøÓòµÄËùÓнô¼±µç»°£»

ÄÇôÓÉÌâÒâ¿ÉÖª£¬Ïû·À¶Ó¶ÔÇóÖúµç»°Æ½¾ù·´Ó¦Ê±¼äΪ£º

z=f(x,y)=i?1,j?1?6ai,j[1.3693*(|i?1/2?x|?|j?1/2?y|)?0.57201]

3. ½¨Á¢Ä£ÐÍ£º¼ÙÉèÏû·ÀÕ¾ÉèÔÚÖ÷ÒªµÀ·µÄÁ©²à£¬Ò²¾ÍÊÇ˵ͼÖеÄx, yÖÁÉÙÓÐÒ»¸öÈ¡ÕûÖµ£»

Ïû·À¶ÓµÄÐгµÂ·ÏßΪÊúÖ±»òˮƽ·½Ïò£¬ÖÕµãΪ½ô¼±µç»°À´×ÔÐ¡ÇøÓòµÄÖÐÐÄ£¬

ÇÒÐгµÂ·Ïß×î¶Ì£¬½»Í¨Í¨³©£»

ÏÖÔÚ£¬ÎÒÃÇҪȷ¶¨ÐµÄÏû·ÀÕ¾µÄ×î¼ÑλÖã¬Ò²¾ÍÊÇÕÒµ½×î¼Ñ×ø±êµã£¬Ê¹µÃÏû·ÀÕ¾µ½¸÷¸ö »ðÔÖÏÖ³¡µÄƽ¾ùʱ¼ä×îС¡£ÏÂÃæ£¬¾Í½«x ,yÖеÄÒ»¸öÈ¡ÕûÊýʱ£¬Æ½¾ù·´Ó¦Ê±¼äËæÁíÒ»¸ö¶ø±ä »¯µÄÇé¿ö½øÐÐÌÖÂÛ£¬

£¨1£©Ê×ÏȼÆËãÿÄê´Ó¸÷ÇøÓò´òÀ´µÄ½ô¼±µç»°ÇóÖúƵÂÊ A=[3 0 1 4 2 1 2 1 1 2 3 2 5 3 3 0 1 2 8 5 2 1 0 0 10 6 3 1 3 1 0 2 3 1 1 1]

sum(A)=

i?1,j?1?a6i,j =84

a=A/sum(A)=[ 0 0.0238 0.0357 0.0119 0.0119 0.0119 0.1190 0.0714 0.0357 0.0119 0.0119 0.0119 0.0952 0.0595 0.0238 0.0119 0 0 0.0595 0.0357 0.0357 0 0.0119 0.0238 0.0238 0.0119 0.0119 0.0238 0.0357 0.0238

0.0357 0 0.0119 0.0476 0.0238 0.0119] £¨2£©½¨Á¢Ò»¸öm Îļþ

a = [ 0 0.0238 0.0357 0.0119 0.0119 0.0119

0.1190 0.0714 0.0357 0.0119 0.0119 0.0119 0.0952 0.0595 0.0238 0.0119 0 0 0.0595 0.0357 0.0357 0 0.0119 0.0238 0.0238 0.0119 0.0119 0.0238 0.0357 0.0238 0.0357 0 0.0119 0.0476 0.0238 0.0119] l=[ 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6]

\¿ÉÈ¡0,1£¬2,3,4,5,6£©

h=a*{1.369*(|i-1/2-x|+|j-1/2-y|)+0.57021}+3.2 g=sum(h) z=sum(g) (3)ÓÃËæ»úÄ£ÄâËã·¨£º

ÔÚ¿ÉÐÐÓò[0 ,6]*[0 ,6] ÄÚ¼òµ¥µØÑ¡È¡100¸öËæ»úµÄµã£º r=random(1,100, [0 ,6])

¼ÆËãÄ¿±êº¯ÊýÔÚÕâЩµãµÄÖµ£¬Ñ¡ÔñÆäÖÐ×îСµÄµã¼´¿É¡£

£¨4£©Ñ­»·Óï¾äΪ

for i=1;100 z0=f(r(1)); X0=r(1); z=f(r(i)); If z

(5£©¼ÆËã×îСֵ l=0;u=6;

[y ,z]=f mincon('f',y0,[],[],[],l,u) £¨6£©¼ÆËã½á¹û£º

µ±y=0ʱ£¬x=2.5,z=8.5972; µ±y=1ʱ£¬x=2.5,z=8.0972; µ±y=2ʱ£¬x=2.5,z=7.5050; µ±y=3ʱ£¬x=2.5,z=7.817; µ±y=4ʱ£¬x=2.5,z=8.4813; µ±y=5ʱ£¬x=2.5,z=9.4612;

µ±y=6ʱ£¬x=2.5,z=10.7164; ÄÇôͬÀí¿ÉµÃ£º

µ±x=0ʱ£¬y=1.5,z=9.5753; µ±x=1ʱ£¬y=1.5,z=8.3364; µ±x=2ʱ£¬y=1.5,z=7.6191; µ±x=3ʱ£¬y=1.5,z=7.5539; µ±x=4ʱ£¬y=1.5,z=7.6778; µ±x=5ʱ£¬y=1.5,z=8.8091; µ±x=6ʱ£¬y=1.5,z=9.9991;

¹Ê×ÛÉÏ¿ÉÖª£ºµ±x=2.5,y=2ʱ£¬z=7.5050Ϊ×îСֵ£¬ËùÒÔÐĵÃÏû·ÀÕ¾µÄ×î¼ÑλÖÃΪ£¨2.5 £¬2£© ´¦µÄµã¡£