a.确定调查的主题及需要调查的数据; b.设计调查表或统计表; c.确定调查的方法; d.进行调查,予以记录; e.整理和描述数据;
f.根据统计图表分析数据,作出判断和决策。 【课堂作业】
教材第98页练习二十一第2、3题。 【课堂小结】
通过本节课的学习,你有什么收获? 【课后作业】
完成练习册中本课时的练习。
第2课时 统计与概率(2)
做一项调查统计工作的主要步骤: ①确定调查的主题及需要调查的数据; ②设计调查表或统计表; ③确定调查的方法; ④进行调查,予以记录; ⑤整理和描述数据;
⑥根据统计图表分析数据,作出判断和决策。
第3课时 统计与概率(3)
【教学内容】
平均数、中位数和众数的整理和复习。 【教学目标】
1.使学生加深对平均数、中位数和众数的认识。体会三个统计量的不同特征和使用范围。
61
2.使学生经历解决问题的过程,发展初步的推理能力和综合应用意识。 3.灵活运用数学知识解决实际问题,激发学生的学习兴趣。 【重点难点】
进一步认识平均数、中位数和众数,体会三个统计量的不同特征和使用范围。 【教学准备】 多媒体课件。
【情境导入】
教师:CCTV-3举行青年歌手大奖赛,一歌手演唱完毕,评委亮出的分数是:9.87,9.65,9.84,9.78,9.75,9.72,9.90,9.83,要求去掉一个最高分,一个最低分,那么该选手的最后得分是多少?
学生独立思考,然后组织学生议一议,然后互相交流。 指名学生汇报解题思路。 由此引出课题: 平均数、中位数、众数 【复习回顾】 1.复习平均数
教师:什么是平均数?它有什么用处? 组织学生议一议,并相互交流。
指名学生汇报,并组织学生集体评议。使学生明确:平均数能直观、简明地反映一组数据的一般情况,用它可以进行不同数据的比较,看出组与组之间的差别。
课件展示教材第97页例5两个统计表。 ①提问:从上面的统计表中你能获取哪些信息? 学生思考后回答
②小组合作学习。(课件出示思考的问题) a.在上面两组数据中,平均数是多少?
b.不用计算,你能发现上面两组数据的平均数大小吗? c.用什么统计量表示上面两组数据的一般水平比较合适? ③小组汇报。
第一组数据:平均数是(1.40+1.43×3+1.46×5+1.49×10+1.52×12+1.55×6+1.58×3)÷(1+3+5+10+12+6+3)≈1.50(m)
第二组数据:平均数是(30×2+33×4+36×5+39×12+42×10+45×4+48×3)÷40=39.6(kg) ④用什么统计量表示上面两组数据的一般水平比较合适?为什么? 组织学生议一议,相互交流。
学生汇报:上面数据的一般水平用平均数比较合适。因为它与这组数据中的每个数据都有关系。
2.复习中位数、众数
62
(1)教师:什么是中位数?什么是众数?它们各有什么特征? 组织学生议一议,并相互交流。 指名学生汇报。
使学生明白:在一组数据中出现次数最多的数叫做这组数据的众数。将一组数据按大小依次排列,把处在最中间位置上的一个数(或最中间两个数据的平均数)叫做这组数据的中位数。
(2)课件展示教材第97页例5的两个统计表,提问:你能说说这两组数据的中位数和众数吗?
学生认真观察统计表,思考并回答。 指名学生汇报,并进行集体评议。 【归纳小结】
1.教师:不用计算,你能发现上面每组数据的平均数、中位数、众数之间的大小关系吗? 组织学生议一议,并相互交流。 指名学生汇报并进行集体评议。
2.教师:用什么统计量表示两组数据的一般水平比较合适? 组织学生议一议,并相互交流。指名学生汇报。 师生共同评议。师根据学生的回答进行板书。 【课堂作业】
教材第98页练习二十一第4、5题,学生独立完成,集体订正。 答案:
第4题:(1)不合理,因为从进货量和销售量的差来看,尺码是35、39、40三种型号的鞋剩货有些多。
(2)建议下次进货时适当降低35、39、40三种型号鞋的进货量,根据销货量的排名来看,每种型号的鞋的进货量的比例总体上不会有大的变化。
第5题:(1)平均数:(9.8+9.7×2+9.6×4+9.5+9.4×2+9.1)÷11≈9.55(分)(2)有道理,因为平均数与一组数据中的每个数据都有关系,但它易受极端数据的影响,所以为了减小这种影响,在评分时就采取“去掉一个最高分和一个最低分”,再计算平均数的方法,这样做是合理的。平均分:(9.7×2+9.6×4+9.5+9.4×2)÷9≈9.57(分)
【课堂小结】
通过这节课的学习活动,你有什么收获?学生谈谈学到的知识及掌握的方法。 【课后作业】
完成练习册中本课时的练习。
第3课时 统计与概率(3)
平均数:能较充分的反映一组数据的“平均水平”,但它容易受极端值的影响。 中位数:部分数据的变动对中位数没有影响
众数:一组数据的众数可能不止一个,也可能没有。
63
64