µç¶¯Á¦Ñ§Ï°Ìâ½â´ð
5. ¿ÕÐĵ¼ÌåÇò¿ÇµÄÄÚÍâ°ë¾¶ÎªR1ºÍR2£¬ÇòÖÐÐÄÖÃһż¼«×ÓpÇò¿ÇÉÏ´øµçQ£¬Çó¿Õ¼ä¸÷µãµÄµçÊÆºÍµçºÉ·Ö²¼¡£
6. ÔÚ¾ùÔÈÍâµç³¡E0ÖÐÖÃÈëÒ»´ø¾ùÔÈ×ÔÓɵçºÉ?fµÄ¾øÔµ½éÖÊÇò
£¨µçÈÝÂÊΪ?£©£¬Çó¿Õ¼ä¸÷µãµÄµçÊÆ¡£
7. ÔÚÒ»ºÜ´óµÄµç½â²ÛÖгäÂúµçµ¼ÂÊΪ?2µÄÒºÌ壬ʹÆäÖÐÁ÷מù
ÔȵĵçÁ÷Jf0¡£½ñÔÚÒºÌåÖÐÖÃÈëÒ»¸öµçµ¼ÂÊΪ?1µÄСÇò£¬ÇóÎȺãʱµçÁ÷·Ö²¼ºÍÃæµçºÉ·Ö²¼£¬ÌÖÂÛ?1???2¼°?2???1Á½ÖÖÇé¿öµÄµçÁ÷·Ö²¼µÄÌØµã¡£
µÚ 9 Ò³
µç¶¯Á¦Ñ§Ï°Ìâ½â´ð
8. °ë¾¶ÎªR0µÄµ¼ÌåÇòÍâ³äÂú¾ùÔȾøÔµ½éÖÊ?£¬µ¼ÌåÇò½ÓµØ£¬Àë
ÇòÐÄΪa´¦£¨a >R0£©ÖÃÒ»µãµçºÉQf£¬ÊÔÓ÷ÖÀë±äÁ¿·¨Çó¿Õ¼ä¸÷µãµçÊÆ£¬Ö¤Ã÷ËùµÃ½á¹ûÓëµçÏ󷨽á¹ûÏàͬ¡£ (R?R0)
9.
½ÓµØµÄ¿ÕÐĵ¼ÌåÇòµÄÄÚÍâ°ë¾¶ÎªR1ºÍR2£¬ÔÚÇòÄÚÀëÇòÐÄΪa´¦(a P R'R1 R OQQ' µÚ 10 Ò³ µç¶¯Á¦Ñ§Ï°Ìâ½â´ð 10. ÉÏÌâµÄµ¼ÌåÇò¿Ç²»½ÓµØ£¬¶øÊÇ´ø×ܵçºÉQ0£¬»òʹ¾ßÓÐÈ·¶¨µç ÊÆ?0£¬ÊÔÇóÕâÁ½ÖÖÇé¿öµÄµçÊÆ¡£ÓÖÎÊ?0ÓëQ0ÊǺÎÖÖ¹ØÏµÊ±£¬Á½Çé¿öµÄ½âÊÇÏàµÈµÄ£¿ 11. Ôڽӵصĵ¼ÌåÆ½ÃæÉÏÓÐÒ»°ë¾¶ÎªaµÄ°ëÇò͹²¿£¨Èçͼ£©£¬°ëÇò µÄÇòÐÄÔÚµ¼ÌåÆ½ÃæÉÏ£¬µãµçºÉQλÓÚϵͳµÄ¶Ô³ÆÖáÉÏ£¬²¢ÓëÆ½ÃæÏà¾àΪb£¨b>a£©£¬ÊÔÓõçÏó·¨Çó¿Õ¼äµçÊÆ¡£ z ?Qa Q(x0,a,b)(x0,?a,b) b y ?Q?Q(x0,a,?b) (x0,?a,?b) µÚ 11 Ò³ µç¶¯Á¦Ñ§Ï°Ìâ½â´ð 12. ÓÐÒ»µãµçºÉQλÓÚÁ½¸ö»¥Ïà´¹Ö±µÄ½ÓµØµ¼ÌåÆ½ÃæËù Χ³ÉµÄÖ±½Ç¿Õ¼äÄÚ£¬Ëüµ½Á½¸öÆ½ÃæµÄ¾àÀëΪaºÍb£¬ Çó¿Õ¼ä ³äÂúµçµ¼ÂÊΪ¦ÒµÄÒºÌ塣ȡ¸ÃÁ½Æ½ÃæÎªxzÃæºÍyzÃæÔÚ (x,y,z)ºÍ(x,y,?z)Á½µã·Ö±ðÖÃÕý¸ºµç¼«²¢Í¨ÒÔµçÁ÷µçÊÆ¡£ zA(x0,y0,z0)o?yxB(x0,y0,?z0)000000I£¬Çóµ¼µçÒºÌåÖеĵçÊÆ¡£ Q(?x 0,?y0,zz0)Q(?x0,y0,z0) Q(x0,?y0,z0)Q(x0,y0,z0) oy x?Q(?x0,?y0,?z0)?Q(?x0,y0,?z0) ?Q(x0,?y0,?z0)?Q(x0,y0,?z 0) ÉèÓÐÁ½Æ½ÃæÎ§³ÉµÄÖ±½ÇÐÎÎÞÇîÈÝÆ÷£¬ÆäÄÚ µÚ 12 Ò³ 13.