µ¯ÐÔÀíÂÛ¸´Ï°Ìâ ÏÂÔØ±¾ÎÄ

¦Òy= - ¦Á2(C0 + C1y + C2y2 +C3y3 +C4y4)

= - ¦Á

(C1 + 2C2y + 3C3y2 + 4C4y3)

ƽºâ·½³Ì£º + = 0

+ = 0

Ó¦Á¦·½³Ì£º¦Òx =

(2C2 + bC3y +12C4y2)

¦Òy= - ¦Á2(C0 + C1y + C2y2 +C3y3 +C4y4)

= - ¦Á

(C1 + 2C2y + 3C3y2 + 4C4y3)

+ = ¦Á

(2C2 + bC3y +12C4y2)

- ¦Á

(2C2 + bC3y +12C4y2) =0

+

= -¦Á2

(C1 + 2C2y + 3C3y2 + 4C4y3)

+¦Á2

Âú×ãÆ½ºâ·½³Ì¡£

(C1 + 2C2y + 3C3y2 + 4C4y3) =0

222?¦Å?¦Ãxy?¦Åyx8¡¢ÊÔÖ¤Ã÷ÐαäЭµ÷·½³Ì£º ???y2?x2?x?yÖ¤Ã÷£º ¦Åx= = =

¦Åy= = =

Ôò + =()=

9¡¢Áгöµ¥ÔªµÄ½ÚµãÁ¦ÁÐÕóºÍµ¥Ôª¸Õ¶È¾ØÕ󣨾¢¶È¾ØÕ󣩡£ ½ÚµãÁ¦¾ØÕó£º

l

=

T

,

l

=

l

µ¥Ôª¸Õ¶È¾ØÕó£º

»ò

=

»ò

ÒÑÖªÎ»ÒÆ·ÖÁ¿ÈçÏ£¬ÊÔÇóÓ¦±ä·ÖÁ¿²¢Ö¸³öËüÃÇÊÇ·ñÂú×ã±äÐÎЭµ÷·½³Ì¡£ u= a1 + a2x + a3y v= a4 + a5x + a6y

ÆäÖÐai ( i=1,2¡­6)Ϊ³£Êý¡£

½â£º ¦Åx=

¦Åy=

¦Ãxy=

+

¦Åx=a2 ¦Åy=a6 ¦Ãxy=a3+a5

+

=

0+0=0

Âú×ã±äÐÎЭµ÷·½³Ì¡£

д³öÒÔÏÂÓ¦Á¦º¯Êý¶ÔÓ¦µÄÓ¦Á¦·ÖÁ¿ºÍͼʾÏàÓ¦µÄ±ß½çÌõ¼þ¡£ £¨1£© ¦Õ =C3xy2 £¨2£© ¦Õ = a0 + a1x + b1y

½â£º ¦Òx=

¦Òy=

¦Óxy

(1) ¦Òx=2C3x ¦Òy=0 ¦Óxy=2C3y

°ëÎÞÏÞÌå

½â£º £¨¦Ò¦È£©¦È=5

,r¡Ù0 =0

£¨¦Ó¦Èr£©¦È=5,r¡Ù0 =0

+P=0 £¨¦Òr£©¦È=0,r=0 = -P