¸ß¿¼ÊýѧһÂÖ¸´Ï° µÚ¶þÕ º¯Êý¸ÅÄîÓë»ù±¾³õµÈº¯ÊýI 2.2 º¯ÊýµÄµ¥µ÷ÐÔÓë×îÖµ ÎÄ ÏÂÔØ±¾ÎÄ

½âº¯Êý²»µÈʽÎÊÌâµÄÒ»°ã²½Ö裺

µÚÒ»²½£º(¶¨ÐÔ)È·¶¨º¯Êýf(x)ÔÚ¸ø¶¨Çø¼äÉϵĵ¥µ÷ÐÔ£» µÚ¶þ²½£º(ת»¯)½«º¯Êý²»µÈʽת»¯Îªf(M)

µÚÎå²½£º(·´Ë¼)·´Ë¼»Ø¹Ë£®²é¿´¹Ø¼üµã£¬Ò×´íµã¼°½âÌâ¹æ·¶£®

ÎÂܰÌáÐÑ ±¾Ìâ¶Ôº¯ÊýµÄµ¥µ÷ÐÔµÄÅжÏÊÇÒ»¸ö¹Ø¼üµã£®²»»áÔËÓÃÌõ¼þx>0ʱ£¬f(x)>1£¬¹¹Ôì²»³öf(x2)£­f(x1)£½f(x2£­x1)£­1µÄÐÎʽ£¬±ãÕÒ²»µ½ÎÊÌâµÄÍ»ÆÆ¿Ú£®µÚ¶þ¸ö¹Ø¼üÓ¦¸ÃÊǽ«²»µÈʽ»¯Îªf(M)

[·½·¨Óë¼¼ÇÉ]

13

1£®ÀûÓö¨ÒåÖ¤Ã÷»òÅжϺ¯Êýµ¥µ÷ÐԵIJ½Öè (1)ȡֵ£»(2)×÷²î£»(3)¶¨Á¿£»(4)Åжϣ®

2£®È·¶¨º¯Êýµ¥µ÷ÐÔÓÐËÄÖÖ³£Ó÷½·¨£º¶¨Òå·¨¡¢µ¼Êý·¨¡¢¸´ºÏº¯Êý·¨¡¢Í¼Ï󷨣¬Ò²¿ÉÀûÓõ¥µ÷º¯ÊýµÄºÍ²îÈ·¶¨µ¥µ÷ÐÔ£®

3£®Çóº¯Êý×îÖµµÄ³£ÓÃÇ󷨣ºµ¥µ÷ÐÔ·¨¡¢Í¼Ï󷨡¢»»Ôª·¨£® [ʧÎóÓë·À·¶]

1£®·Ö¶Îº¯Êýµ¥µ÷ÐÔ²»½öÒª¿¼ÂǸ÷¶ÎµÄµ¥µ÷ÐÔ£¬»¹Òª×¢ÒâÏνӵ㣮

2£®º¯ÊýÔÚÁ½¸ö²»Í¬µÄÇø¼äÉϵ¥µ÷ÐÔÏàͬ£¬Ò»°ãÒª·Ö¿ªÐ´£¬Óá°£¬¡±»ò¡°ºÍ¡±Á¬½á£¬²»ÒªÓá°¡È¡±£®

A×é רÏî»ù´¡ÑµÁ·

(ʱ¼ä£º40·ÖÖÓ)

12x1£®ÏÂÁк¯Êýf(x)ÖУ¬¢Ùf(x)£½£»¢Úf(x)£½(x£­1)£»¢Ûf(x)£½e£»¢Üf(x)£½ln(x£«1)£¬Âú×ã

x¡°¶ÔÈÎÒâx1£¬x2¡Ê(0£¬£«¡Þ)£¬µ±x1f(x2)¡±µÄÊÇ________£®(ÌîÐòºÅ) ´ð°¸ ¢Ù

½âÎö ÓÉÌâÒâÖªf(x)ÔÚ(0£¬£«¡Þ)ÉÏÊǼõº¯Êý£® 1

¢ÙÖУ¬f(x)£½Âú×ãÒªÇó£»

x¢ÚÖУ¬f(x)£½(x£­1)ÔÚ[0,1]ÉÏÊǼõº¯Êý£¬ÔÚ(1£¬£«¡Þ)ÉÏÊÇÔöº¯Êý£» ¢ÛÖУ¬f(x)£½eÊÇÔöº¯Êý£»

¢ÜÖУ¬f(x)£½ln(x£«1)ÔÚ(0£¬£«¡Þ)ÉÏÊÇÔöº¯Êý£®

2£®ÒÑÖªº¯Êýy£½log2(ax£­1)ÔÚ(1,2)Éϵ¥µ÷µÝÔö£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ__________£® ´ð°¸ [1£¬£«¡Þ)

14

x2

½âÎö Ҫʹy£½log2(ax£­1)ÔÚ(1,2)Éϵ¥µ÷µÝÔö£¬Ôòa>0ÇÒa£­1¡Ý0£¬¡àa¡Ý1.

?1?3£®ÒÑÖªº¯Êýy£½f(x)µÄͼÏó¹ØÓÚx£½1¶Ô³Æ£¬ÇÒÔÚ(1£¬£«¡Þ)Éϵ¥µ÷µÝÔö£¬Éèa£½f?£­?£¬b?2?

£½f(2)£¬c£½f(3)£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÎª______________£® ´ð°¸ b

?1??5?½âÎö ¡ßº¯ÊýͼÏó¹ØÓÚx£½1¶Ô³Æ£¬¡àa£½f?£­?£½f??£¬ÓÖy£½f(x)ÔÚ(1£¬£«¡Þ)Éϵ¥µ÷µÝÔö£¬ ?2??2??5?¡àf(2)

4£®Èôº¯Êýf(x)£½x£­2x£«mÔÚ [3£¬£«¡Þ)ÉϵÄ×îСֵΪ1£¬ÔòʵÊýmµÄֵΪ________£® ´ð°¸ £­2

½âÎö ¡ßf(x)£½(x£­1)£«m£­1ÔÚ[3£¬£«¡Þ)ÉÏΪµ¥µ÷Ôöº¯Êý£¬ÇÒf(x)ÔÚ[3£¬£«¡Þ)ÉϵÄ×îСֵΪ1£¬

¡àf(3)£½1£¬¼´2£«m£­1£½1£¬m£½£­2.

5£®ÒÑÖªº¯Êýf(x)£½2ax£«4(a£­3)x£«5ÔÚÇø¼ä(£­¡Þ£¬3)ÉÏÊǼõº¯Êý£¬ÔòaµÄȡֵ·¶Î§ÊÇ__________£® 3

´ð°¸ [0£¬]

4

½âÎö µ±a£½0ʱ£¬f(x)£½£­12x£«5£¬ÔÚ(£­¡Þ£¬3)ÉÏÊǼõº¯Êý£¬

2

2

2

2

a>0£¬??

µ±a¡Ù0ʱ£¬ÓÉ?4a£­3

£­¡Ý3£¬?4a?

3

×ÛÉÏaµÄȡֵ·¶Î§ÊÇ0¡Üa¡Ü.

4

3

µÃ0

4

x¡Ý1£¬??log1x£¬26£®º¯Êýf(x)£½???2x£¬x<1

´ð°¸ (£­¡Þ£¬2)

µÄÖµÓòΪ________£®

½âÎö µ±x¡Ý1ʱ£¬f(x)£½log1xÊǵ¥µ÷µÝ¼õµÄ£¬

2´Ëʱ£¬º¯ÊýµÄÖµÓòΪ(£­¡Þ£¬0]£» µ±x<1ʱ£¬f(x)£½2Êǵ¥µ÷µÝÔöµÄ£¬ ´Ëʱ£¬º¯ÊýµÄÖµÓòΪ(0,2)£® ×ÛÉÏ£¬f(x)µÄÖµÓòÊÇ(£­¡Þ£¬2)£®

x 15

1??x2£«a£­2£¬x¡Ü1£¬27£®ÒÑÖªº¯Êýf(x)£½???ax£­a£¬x>1£¬È¡Öµ·¶Î§Îª________£® ´ð°¸ (1,2]

Èôf(x)ÔÚ(0£¬£«¡Þ)Éϵ¥µ÷µÝÔö£¬ÔòʵÊýaµÄ

12x½âÎö ÓÉÌâÒ⣬µÃ1£«a£­2¡Ü0£¬Ôòa¡Ü2£¬ÓÖy£½a£­a (x>1)ÊÇÔöº¯Êý£¬¹Êa>1£¬ËùÒÔaµÄ

2ȡֵ·¶Î§Îª1

?1?x8£®º¯Êýf(x)£½??£­log2(x£«2)ÔÚÇø¼ä[£­1,1]ÉϵÄ×î´óֵΪ________£®

?3?

´ð°¸ 3

?1?x½âÎö ÓÉÓÚy£½??ÔÚRÉϵݼõ£¬y£½log2(x£«2)ÔÚ[£­1£¬1]ÉϵÝÔö£¬ËùÒÔf(x)ÔÚ[£­1,1]ÉÏ

?3?

µ¥µ÷µÝ¼õ£¬¹Êf(x)ÔÚ[£­1,1]ÉϵÄ×î´óֵΪf(£­1)£½3. 9£®ÒÑÖªf(x)£½

xx£­a(x¡Ùa)£®

(1)Èôa£½£­2£¬ÊÔÖ¤Ã÷f(x)ÔÚ(£­¡Þ£¬£­2)ÄÚµ¥µ÷µÝÔö£» (2)Èôa>0ÇÒf(x)ÔÚ(1£¬£«¡Þ)Éϵ¥µ÷µÝ¼õ£¬ÇóaµÄȡֵ·¶Î§£® (1)Ö¤Ã÷ ÈÎÉèx1

£­ x1£«2x2£«2

x1x2

2x1£­x2

.

x1£«2x2£«2

¡ß(x1£«2)(x2£«2)>0£¬x1£­x2<0£¬ ¡àf(x1)

¡àf(x)ÔÚ(£­¡Þ£¬£­2)Éϵ¥µ÷µÝÔö£® (2)½â ÈÎÉè1

x1x2

f(x1)£­f(x2)£½£­

x1£­ax2£­a£½

ax2£­x1

. x1£­ax2£­a¡ßa>0£¬x2£­x1>0£¬¡àҪʹf(x1)£­f(x2)>0£¬

Ö»Ðè(x1£­a)(x2£­a)>0ÔÚ(1£¬£«¡Þ)ÉϺã³ÉÁ¢£¬¡àa¡Ü1. ×ÛÉÏËùÊö£¬aµÄȡֵ·¶Î§ÊÇ(0,1]£®

10£®É躯Êýy£½f(x)ÊǶ¨ÒåÔÚ(0£¬£«¡Þ)Éϵĺ¯Êý£¬²¢ÇÒÂú×ãÏÂÃæÈý¸öÌõ¼þ£º¢Ù¶ÔÈÎÒâÕýÊýx£¬

y£¬¶¼ÓÐf(xy)£½f(x)£«f(y)£»¢Úµ±x>1ʱ£¬f(x)<0£»¢Ûf(3)£½£­1.

16