½âº¯Êý²»µÈʽÎÊÌâµÄÒ»°ã²½Ö裺
µÚÒ»²½£º(¶¨ÐÔ)È·¶¨º¯Êýf(x)ÔÚ¸ø¶¨Çø¼äÉϵĵ¥µ÷ÐÔ£» µÚ¶þ²½£º(ת»¯)½«º¯Êý²»µÈʽת»¯Îªf(M) µÚÎå²½£º(·´Ë¼)·´Ë¼»Ø¹Ë£®²é¿´¹Ø¼üµã£¬Ò×´íµã¼°½âÌâ¹æ·¶£® ÎÂܰÌáÐÑ ±¾Ìâ¶Ôº¯ÊýµÄµ¥µ÷ÐÔµÄÅжÏÊÇÒ»¸ö¹Ø¼üµã£®²»»áÔËÓÃÌõ¼þx>0ʱ£¬f(x)>1£¬¹¹Ôì²»³öf(x2)£f(x1)£½f(x2£x1)£1µÄÐÎʽ£¬±ãÕÒ²»µ½ÎÊÌâµÄÍ»ÆÆ¿Ú£®µÚ¶þ¸ö¹Ø¼üÓ¦¸ÃÊǽ«²»µÈʽ»¯Îªf(M) [·½·¨Óë¼¼ÇÉ] 13 1£®ÀûÓö¨ÒåÖ¤Ã÷»òÅжϺ¯Êýµ¥µ÷ÐԵIJ½Öè (1)ȡֵ£»(2)×÷²î£»(3)¶¨Á¿£»(4)Åжϣ® 2£®È·¶¨º¯Êýµ¥µ÷ÐÔÓÐËÄÖÖ³£Ó÷½·¨£º¶¨Òå·¨¡¢µ¼Êý·¨¡¢¸´ºÏº¯Êý·¨¡¢Í¼Ï󷨣¬Ò²¿ÉÀûÓõ¥µ÷º¯ÊýµÄºÍ²îÈ·¶¨µ¥µ÷ÐÔ£® 3£®Çóº¯Êý×îÖµµÄ³£ÓÃÇ󷨣ºµ¥µ÷ÐÔ·¨¡¢Í¼Ï󷨡¢»»Ôª·¨£® [ʧÎóÓë·À·¶] 1£®·Ö¶Îº¯Êýµ¥µ÷ÐÔ²»½öÒª¿¼ÂǸ÷¶ÎµÄµ¥µ÷ÐÔ£¬»¹Òª×¢ÒâÏνӵ㣮 2£®º¯ÊýÔÚÁ½¸ö²»Í¬µÄÇø¼äÉϵ¥µ÷ÐÔÏàͬ£¬Ò»°ãÒª·Ö¿ªÐ´£¬Óá°£¬¡±»ò¡°ºÍ¡±Á¬½á£¬²»ÒªÓá°¡È¡±£® A×é רÏî»ù´¡ÑµÁ· (ʱ¼ä£º40·ÖÖÓ) 12x1£®ÏÂÁк¯Êýf(x)ÖУ¬¢Ùf(x)£½£»¢Úf(x)£½(x£1)£»¢Ûf(x)£½e£»¢Üf(x)£½ln(x£«1)£¬Âú×ã x¡°¶ÔÈÎÒâx1£¬x2¡Ê(0£¬£«¡Þ)£¬µ±x1 ½âÎö ÓÉÌâÒâÖªf(x)ÔÚ(0£¬£«¡Þ)ÉÏÊǼõº¯Êý£® 1 ¢ÙÖУ¬f(x)£½Âú×ãÒªÇó£» x¢ÚÖУ¬f(x)£½(x£1)ÔÚ[0,1]ÉÏÊǼõº¯Êý£¬ÔÚ(1£¬£«¡Þ)ÉÏÊÇÔöº¯Êý£» ¢ÛÖУ¬f(x)£½eÊÇÔöº¯Êý£» ¢ÜÖУ¬f(x)£½ln(x£«1)ÔÚ(0£¬£«¡Þ)ÉÏÊÇÔöº¯Êý£® 2£®ÒÑÖªº¯Êýy£½log2(ax£1)ÔÚ(1,2)Éϵ¥µ÷µÝÔö£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ__________£® ´ð°¸ [1£¬£«¡Þ) 14 x2 ½âÎö Ҫʹy£½log2(ax£1)ÔÚ(1,2)Éϵ¥µ÷µÝÔö£¬Ôòa>0ÇÒa£1¡Ý0£¬¡àa¡Ý1. ?1?3£®ÒÑÖªº¯Êýy£½f(x)µÄͼÏó¹ØÓÚx£½1¶Ô³Æ£¬ÇÒÔÚ(1£¬£«¡Þ)Éϵ¥µ÷µÝÔö£¬Éèa£½f?£?£¬b?2? £½f(2)£¬c£½f(3)£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÎª______________£® ´ð°¸ b ?1??5?½âÎö ¡ßº¯ÊýͼÏó¹ØÓÚx£½1¶Ô³Æ£¬¡àa£½f?£?£½f??£¬ÓÖy£½f(x)ÔÚ(1£¬£«¡Þ)Éϵ¥µ÷µÝÔö£¬ ?2??2??5?¡àf(2) 4£®Èôº¯Êýf(x)£½x£2x£«mÔÚ [3£¬£«¡Þ)ÉϵÄ×îСֵΪ1£¬ÔòʵÊýmµÄֵΪ________£® ´ð°¸ £2 ½âÎö ¡ßf(x)£½(x£1)£«m£1ÔÚ[3£¬£«¡Þ)ÉÏΪµ¥µ÷Ôöº¯Êý£¬ÇÒf(x)ÔÚ[3£¬£«¡Þ)ÉϵÄ×îСֵΪ1£¬ ¡àf(3)£½1£¬¼´2£«m£1£½1£¬m£½£2. 5£®ÒÑÖªº¯Êýf(x)£½2ax£«4(a£3)x£«5ÔÚÇø¼ä(£¡Þ£¬3)ÉÏÊǼõº¯Êý£¬ÔòaµÄȡֵ·¶Î§ÊÇ__________£® 3 ´ð°¸ [0£¬] 4 ½âÎö µ±a£½0ʱ£¬f(x)£½£12x£«5£¬ÔÚ(£¡Þ£¬3)ÉÏÊǼõº¯Êý£¬ 2 2 2 2 a>0£¬?? µ±a¡Ù0ʱ£¬ÓÉ?4a£3 £¡Ý3£¬?4a? 3 ×ÛÉÏaµÄȡֵ·¶Î§ÊÇ0¡Üa¡Ü. 4 3 µÃ0 4 x¡Ý1£¬??log1x£¬26£®º¯Êýf(x)£½???2x£¬x<1 ´ð°¸ (£¡Þ£¬2) µÄÖµÓòΪ________£® ½âÎö µ±x¡Ý1ʱ£¬f(x)£½log1xÊǵ¥µ÷µÝ¼õµÄ£¬ 2´Ëʱ£¬º¯ÊýµÄÖµÓòΪ(£¡Þ£¬0]£» µ±x<1ʱ£¬f(x)£½2Êǵ¥µ÷µÝÔöµÄ£¬ ´Ëʱ£¬º¯ÊýµÄÖµÓòΪ(0,2)£® ×ÛÉÏ£¬f(x)µÄÖµÓòÊÇ(£¡Þ£¬2)£® x 15 1??x2£«a£2£¬x¡Ü1£¬27£®ÒÑÖªº¯Êýf(x)£½???ax£a£¬x>1£¬È¡Öµ·¶Î§Îª________£® ´ð°¸ (1,2] Èôf(x)ÔÚ(0£¬£«¡Þ)Éϵ¥µ÷µÝÔö£¬ÔòʵÊýaµÄ 12x½âÎö ÓÉÌâÒ⣬µÃ1£«a£2¡Ü0£¬Ôòa¡Ü2£¬ÓÖy£½a£a (x>1)ÊÇÔöº¯Êý£¬¹Êa>1£¬ËùÒÔaµÄ 2ȡֵ·¶Î§Îª1 ?1?x8£®º¯Êýf(x)£½??£log2(x£«2)ÔÚÇø¼ä[£1,1]ÉϵÄ×î´óֵΪ________£® ?3? ´ð°¸ 3 ?1?x½âÎö ÓÉÓÚy£½??ÔÚRÉϵݼõ£¬y£½log2(x£«2)ÔÚ[£1£¬1]ÉϵÝÔö£¬ËùÒÔf(x)ÔÚ[£1,1]ÉÏ ?3? µ¥µ÷µÝ¼õ£¬¹Êf(x)ÔÚ[£1,1]ÉϵÄ×î´óֵΪf(£1)£½3. 9£®ÒÑÖªf(x)£½ xx£a(x¡Ùa)£® (1)Èôa£½£2£¬ÊÔÖ¤Ã÷f(x)ÔÚ(£¡Þ£¬£2)ÄÚµ¥µ÷µÝÔö£» (2)Èôa>0ÇÒf(x)ÔÚ(1£¬£«¡Þ)Éϵ¥µ÷µÝ¼õ£¬ÇóaµÄȡֵ·¶Î§£® (1)Ö¤Ã÷ ÈÎÉèx1 £ x1£«2x2£«2 x1x2 2x1£x2 . x1£«2x2£«2 ¡ß(x1£«2)(x2£«2)>0£¬x1£x2<0£¬ ¡àf(x1) ¡àf(x)ÔÚ(£¡Þ£¬£2)Éϵ¥µ÷µÝÔö£® (2)½â ÈÎÉè1 x1x2 f(x1)£f(x2)£½£ x1£ax2£a£½ ax2£x1 . x1£ax2£a¡ßa>0£¬x2£x1>0£¬¡àҪʹf(x1)£f(x2)>0£¬ Ö»Ðè(x1£a)(x2£a)>0ÔÚ(1£¬£«¡Þ)ÉϺã³ÉÁ¢£¬¡àa¡Ü1. ×ÛÉÏËùÊö£¬aµÄȡֵ·¶Î§ÊÇ(0,1]£® 10£®É躯Êýy£½f(x)ÊǶ¨ÒåÔÚ(0£¬£«¡Þ)Éϵĺ¯Êý£¬²¢ÇÒÂú×ãÏÂÃæÈý¸öÌõ¼þ£º¢Ù¶ÔÈÎÒâÕýÊýx£¬ y£¬¶¼ÓÐf(xy)£½f(x)£«f(y)£»¢Úµ±x>1ʱ£¬f(x)<0£»¢Ûf(3)£½£1. 16