Ãûʦ¾«ÐÄÕûÀí ÖúÄúÒ»±ÛÖ®Á¦
ÓÉÈ¡m=(
,0,-1);
ÓÉ
ȡn=(3,-2,
).
ÓÚÊÇ,cos
ËùÒÔ,¶þÃæ½ÇB-AD-FµÄÆ½Ãæ½ÇµÄÓàÏÒֵΪ.
28.(2016¡¤È«¹ú3¡¤ÀíT19)Èçͼ,ËÄÀâ×¶P-ABCDÖÐ,PA¡Íµ×ÃæABCD,AD¡ÎBC,AB=AD=AC=3,PA=BC=4,MΪÏß¶ÎADÉÏÒ»µã,AM=2MD,NΪPCµÄÖеã. (1)Ö¤Ã÷:MN¡ÎÆ½ÃæPAB;
(2)ÇóÖ±ÏßANÓëÆ½ÃæPMNËù³É½ÇµÄÕýÏÒÖµ.
¡¾½âÎö¡¿(1)Ö¤Ã÷ÓÉÒÑÖªµÃAM=AD=2.È¡BPµÄÖеãT,Á¬½ÓAT,TN,ÓÉNΪPCÖеãÖªTN¡ÎBC,TN=BC=2. ÓÖAD¡ÎBC,¹ÊTN??AM,
ËıßÐÎAMNTΪƽÐÐËıßÐÎ,ÓÚÊÇMN¡ÎAT. ÒòΪAT?Æ½ÃæPAB,MN?Æ½ÃæPAB, ËùÒÔMN¡ÎÆ½ÃæPAB.
(2)½âÈ¡BCµÄÖеãE,Á¬½ÓAE.ÓÉAB=ACµÃAE¡ÍBC,´Ó¶øAE¡ÍAD,
ÇÒAE=ÒÔAÎª×ø±êÔµã,
.
µÄ·½ÏòΪxÖáÕý·½Ïò,
33
Ãûʦ¾«ÐÄÕûÀí ÖúÄúÒ»±ÛÖ®Á¦
Ãûʦ¾«ÐÄÕûÀí ÖúÄúÒ»±ÛÖ®Á¦
½¨Á¢ÈçͼËùʾµÄ¿Õ¼äÖ±½Ç×ø±êϵA-xyz.
ÓÉÌâÒâÖª,P(0,0,4),M(0,2,0),C(n=(x,y,z)ÎªÆ½ÃæPMNµÄ·¨ÏòÁ¿,
,2,0),N=(0,2,-4),.Éè
Ôò
¿ÉÈ¡n=(0,2,1).
ÓÚÊÇ|cos
29.(2015¡¤È«¹ú2¡¤ÀíT19)Èçͼ,³¤·½ÌåABCD-A1B1C1D1ÖÐ,AB=16,BC=10,AA1=8,µãE,F·Ö±ðÔÚA1B1,D1C1ÉÏ,A1E=D1F=4,¹ýµãE,FµÄÆ½Ãæ¦ÁÓë´Ë³¤·½ÌåµÄÃæÏཻ,½»ÏßΧ³ÉÒ»¸öÕý·½ÐÎ. (1)ÔÚͼÖл³öÕâ¸öÕý·½ÐÎ(²»±ØËµÃ÷»·¨ºÍÀíÓÉ); (2)ÇóÖ±ÏßAFÓëÆ½Ãæ¦ÁËù³É½ÇµÄÕýÏÒÖµ.
¡¾½âÎö¡¿(1)½»ÏßΧ³ÉµÄÕý·½ÐÎEHGFÈçͼ: (2)×÷EM¡ÍAB,´¹×ãΪM, ÔòAM=A1E=4,EM=AA1=8.
ÒòΪEHGFΪÕý·½ÐÎ,ËùÒÔEH=EF=BC=10. ÒÔDÎª×ø±êÔµã,
µÄ·½ÏòΪxÖáÕý·½Ïò,½¨Á¢ÈçͼËùʾµÄ¿Õ¼äÖ±½Ç×ø±êϵD-xyz,
ÔòA(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8),
Ãûʦ¾«ÐÄÕûÀí ÖúÄúÒ»±ÛÖ®Á¦
=(10,0,0),=(0,-6,8).
34
Ãûʦ¾«ÐÄÕûÀí ÖúÄúÒ»±ÛÖ®Á¦
Éèn=(x,y,z)ÊÇÆ½ÃæEHGFµÄ·¨ÏòÁ¿,
ÔòËùÒÔ¿ÉÈ¡n=(0,4,3).ÓÖ=(-10,4,8),
¹Ê|cos
ËùÒÔAFÓëÆ½ÃæEHGFËù³É½ÇµÄÕýÏÒֵΪ.
30.(2015¡¤ÉϺ£¡¤ÀíT19)Èçͼ,ÔÚ³¤·½ÌåABCD-A1B1C1D1ÖÐ,AA1=1,AB=AD=2,E,F·Ö±ðÊÇÀâAB,BCµÄÖеã.Ö¤Ã÷
A1,C1,F,EËÄµã¹²Ãæ,²¢ÇóÖ±ÏßCD1ÓëÆ½ÃæA1C1FEËù³ÉµÄ½ÇµÄ´óС.
¡¾½âÎö¡¿Èçͼ,ÒÔ
DΪԵ㽨Á¢¿Õ¼äÖ±½Ç×ø±êϵ,¿ÉµÃÓйصãµÄ×ø±êΪ
A1(2,0,1),C1(0,2,1),E(2,1,0),F(1,2,0),C(0,2,0),D1(0,0,1).
ÒòΪËùÒÔ
=(-2,2,0),=(-1,1,0),
,Òò´ËÖ±ÏßA1C1ÓëEF¹²Ãæ,
¼´A1,C1,F,EËÄµã¹²Ãæ.
ÉèÆ½ÃæA1C1FEµÄ·¨ÏòÁ¿Îªn=(u,v,w), Ôòn¡ÍÓÖ
,n¡Í
,
=(-1,1,0),=(-1,0,1),
¹Ê½âµÃu=v=w.
È¡u=1,µÃÆ½ÃæA1C1FEµÄÒ»¸ö·¨ÏòÁ¿n=(1,1,1).
Ãûʦ¾«ÐÄÕûÀí ÖúÄúÒ»±ÛÖ®Á¦ 35
Ãûʦ¾«ÐÄÕûÀí ÖúÄúÒ»±ÛÖ®Á¦
ÓÖ=(0,-2,1),¹Ê=-.
Òò´ËÖ±ÏßCD1ÓëÆ½ÃæA1C1FEËù³ÉµÄ½ÇµÄ´óСΪarcsin.
31.(2015¡¤±±¾©¡¤ÀíT17)Èçͼ,ÔÚËÄÀâ×¶A-EFCBÖÐ,¡÷AEFΪµÈ±ßÈý½ÇÐÎ,Æ½ÃæAEF¡ÍÆ½ÃæEFCB,EF¡ÎBC,BC=4,EF=2a,¡ÏEBC=¡ÏFCB=60¡ã,OΪEFµÄÖеã. (1)ÇóÖ¤:AO¡ÍBE;
(2)Çó¶þÃæ½ÇF-AE-BµÄÓàÏÒÖµ; (3)ÈôBE¡ÍÆ½ÃæAOC,ÇóaµÄÖµ.
¡¾½âÎö¡¿(1)Ö¤Ã÷ÒòΪ¡÷AEFÊǵȱßÈý½ÇÐÎ,OΪEFµÄÖеã, ËùÒÔAO¡ÍEF.
ÓÖÒòÎªÆ½ÃæAEF¡ÍÆ½ÃæEFCB,AO?Æ½ÃæAEF, ËùÒÔAO¡ÍÆ½ÃæEFCB,ËùÒÔAO¡ÍBE. (2)½âÈ¡BCÖеãG,Á¬½ÓOG. ÓÉÌâÉèÖªEFCBÊǵÈÑüÌÝÐÎ, ËùÒÔOG¡ÍEF.
ÓÉ(1)ÖªAO¡ÍÆ½ÃæEFCB, ÓÖOG?Æ½ÃæEFCB,ËùÒÔOA¡ÍOG.
Èçͼ½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵO-xyz,ÔòE(a,0,0),A(0,0,
a),
B(2,(2-a),0),=(-a,0,a),=(a-2,(a-2),0).
ÉèÆ½ÃæAEBµÄ·¨ÏòÁ¿Îªn=(x,y,z),
Ôò
Ãûʦ¾«ÐÄÕûÀí ÖúÄúÒ»±ÛÖ®Á¦ 36