³ÂÄê¾ÉÊÂÖ®2011ÆÚÄ©¸´Ï°
ÉúÌú²úÁ¿x3£¨Íò¶Ö£©£¬Ôú²úÁ¿x4£¨Íò¶Ö£©£¬µçÁ¦²úÁ¿x5£¨ÒÚǧÍßСʱ£©£¬¹Ì¶¨×ʲúͶ×Êx6£¨ÒÚÔª£©£¬¹úÄÚÉú²ú×ÜÖµx7£¨ÒÚÔª£©Ìú·ÔËÊäÁ¿x8£¨Íò¶Ö£©¡£ÏÖ¹À¼Æ³öÈçÏÂÄ£ÐÍ£¬ÊÔ¸ù¾Ý¸ÃÄ£ÐͺÍÓйØ×ÊÁÏÇó½âÒÔÏÂÎÊÌ⣺
??87.4y582?30.008x72931x92?0.059x63?11.4?0.971x65?0.429x26?0.095x47?0.016x68 t=£¨1.0876£©£¨-0.1092£©£¨0.4527£© £¨0.8297£© £¨5.5758£©£¨6.1307£©£¨-4.8807£© £¨-0.8677£©
R2?0.9987,S.E.?89.2557,DW?2.1373,F?2148.399 xj(j=2,3,¡,8)Ö®¼äµÄÏà¹ØÏµÊý±í£º x2 x2 1.0000 0.9422 0.9752 0.9321 0.8280 0.8472 x3 0.9422 1.0000 0.9699 0.9937 0.9429 0.9497 x4 0.9752 0.9699 1.0000 0.9750 0.8914 0.9103 0.9851 x5 0.9321 0.9937 0.9750 1.0000 0.9596 0.9691 0.9455 x6 0.8280 0.9429 0.8914 0.9596 1.0000 0.9962 0.8277 x7 0.8472 0.9497 0.9103 0.9691 0.9962 1.0000 0.8461 x8 0.9849 0.9550 0.9851 0.9455 0.8277 0.8461 1.0000 x3 x4 x5 x6 x7 x8 0.9849 0.9550 ¢Å¶ÔËù¸øÄ£ÐͽøÐÐÆÀ¼Û£» ¢Æ¸ù¾ÝÏà¹ØÏµÊý±í£¬²¢½áºÏÄ£Ð͵ĸ÷Ïî¼ìÑéÖ¸±êÅжÏÄ£ÐÍÖпÉÄÜ´æÔÚµÄÎÊÌ⣻ ¢ÇÕë¶ÔÄ£ÐͳöÏÖµÄÎÊÌâÌá³öÏàÓ¦µÄÐÞÕý´ëÊ©
2¡¢ÔÚÑо¿Éú²úº¯Êýʱ£¬µÃµ½ÈçÏÂÁ½¸öÄ£Ð͹À¼ÆÊ½£º
?£¨1£©LnQ??5.04?0.887LnK?0.893LnL
se=£¨1.40£©£¨0.087£©£¨0.137£©
R2?0.878,n?21
?t?0.460LnK?1.285LnL £¨2£©LnQ??8.57?0.0272 se=£¨2.99£©£¨0.0204£©£¨0.333£©£¨0.324£©
2R?0.889,n?21
ÆäÖУ¬Q=²úÁ¿£¬K=×ʱ¾£¬L=ÀͶ¯Ê±¼ä£¨¼¼ÊõÖ¸±ê£©£¬n=Ñù±¾ÈÝÁ¿¡£ÊÔÇó½âÒÔ
ÏÂÎÊÌ⣺
£¨1£© ˵Ã÷ÔÚÄ£ÐÍ£¨1£©ÖÐËùÓеÄϵÊýÔÚͳ¼ÆÉ϶¼ÊÇÏÔÖøµÄ£¨??0.05)£» £¨2£© ˵Ã÷ÔÚÄ£ÐÍ£¨2£©ÖÐtºÍLnKµÄϵÊýÔÚͳ¼ÆÉÏÊDz»ÏÔÖøµÄ£¨??0.05)£» £¨3£© ¿ÉÄÜÊÇʲôÔÒòʹµÃÄ£ÐÍ£¨2£©ÖÐLnKµÄ²»ÏÔÖøÐÔ£¿
³ÂÄê¾ÉÊÂÖ®2011ÆÚÄ©¸´Ï°
T·Ö²¼±í£º df 19 20 21
´ð: (1) Ä£ÐÍ(A)ÖÐÈý¸öϵÊý¶ÔÓ¦µÄtͳ¼ÆÁ¿·Ö±ðΪ:
?5.040.8870.893 =-3.6 =10.195 =6.5182
1.400.0870.137²ét·Ö²¼ÁÙ½çÖµ±íµÃt0.025(18)=2.101£¬Ä£ÐÍ(A)ÖÐÈý¸öϵÊýtͳ¼ÆÁ¿µÄ¾ø¶ÔÖµ¾ù´óÓÚÁÙ½çÖµ2.101£¬Òò´ËËùÓеĻعéϵÊýÔÚͳ¼ÆÉ϶¼ÊÇÏÔÖøµÄ¡£
(2) Ä£ÐÍ(B)ÖÐtºÍlnKµÄϵÊý¶ÔÓ¦µÄtͳ¼ÆÁ¿·Ö±ðΪ£º
0.02720.460 =1.3333 =1.4193
0.02040.324²ét·Ö²¼ÁÙ½çÖµ±íµÃt0.025(17)=2.11£¬Ä£ÐÍ(B)ÖÐtºÍlnKµÄϵÊý¶ÔÓ¦µÄtͳ¼ÆÁ¿¾ø¶ÔÖµ¾ùСÓÚÁÙ½çÖµ2.11£¬Òò´Ë»Ø¹éϵÊýÔÚͳ¼ÆÉϲ»ÏÔÖø¡£
(3) Ôì³ÉÄ£ÐÍ(B)ÖÐlnKϵÊý²»ÏÔÖøµÄÔÒòÊÇÓÉÓÚбäÁ¿tµÄÒýÈ룬tÓëlnKÖ®¼ä¿ÉÄÜ´æÔÚÑÏÖØµÄ¶àÖØ¹²ÏßÐÔ¡£
(4) tÓëlnKµÄÏà¹ØÏµÊýΪ0.98£¬±íÃ÷Á½ÕßÏà¹Ø³Ì¶ÈºÜ¸ß£¬Ä£ÐÍ(2)´æÔÚÑÏÖØµÄ¶àÖØ¹²ÏßÐÔ¡£ 3¡¢¸ù¾ÝÎÒ¹ú1978¡ª2000ÄêµÄ²ÆÕþÊÕÈëYºÍ¹úÄÚÉú²ú×ÜÖµXµÄͳ¼Æ×ÊÁÏ£¬¿É½¨Á¢ÈçϵļÆÁ¿¾¼ÃÄ£ÐÍ£º
Y?560?0.12?X
Pr 0.1 1.729 1.725 1.721 0.05 2.093 2.086 2.080 0.02 2.539 2.528 2.518 tÖµ £¨3.5£© £¨12.7£©
2 R£½0.9609£¬S.E£½731.2086£¬F£½516.3338£¬D.W£½0.256
Çë»Ø´ðÒÔÏÂÎÊÌ⣺
£¨1£©ºÎν¼ÆÁ¿¾¼ÃÄ£Ð͵Ä×ÔÏà¹ØÐÔ£¿
£¨3£©×ÔÏà¹Ø»á¸ø½¨Á¢µÄ¼ÆÁ¿¾¼ÃÄ£ÐͲúÉúÄÄЩӰÏ죿
£¨4£©Èç¹û¸ÃÄ£ÐÍ´æÔÚ×ÔÏà¹Ø£¬ÊÔд³öÏû³ýÒ»½××ÔÏà¹ØµÄ·½·¨ºÍ²½Öè¡£ £¨ÁÙ½çÖµdL?1.24£¬dU?1.43£©
´ð£º£¨1£©×ÔÏà¹Ø£¬ÓÖ³ÆÐòÁÐÏà¹ØÊÇÖ¸×ÜÌ廨¹éÄ£Ð͵ÄËæ»úÎó²îÏîÖ®¼ä´æÔÚÏà¹Ø¹ØÏµ¡£¼´²»Í¬¹Û²âµãÉϵÄÎó²îÏî±Ë´ËÏà¹Ø¡£
£¨2£©ÒòΪdL=1.24£¬dU=1.43£¬DW=0.3474£¬µÃDW
£¨3£©1.µ±´æÔÚ×ÔÏà¹ØÊ±£¬ÆÕͨ×îС¶þ³Ë¹À¼ÆÁ¿²»ÔÙÊÇ×î¼ÑÏßÐÔÎÞÆ«¹À¼ÆÁ¿£¬¼´
ËüÔÚÏßÐÔÎÞÆ«¹À¼ÆÁ¿Öв»ÊÇ·½²î×îСµÄ¡£
2.Æä´Î½«»áµÍ¹À´æÔÚ×ÔÏà¹ØÊ±²ÎÊý¹À¼ÆÖµµÄÕæÊµ·½²î¡£
£¨2£©ÊÔ¼ìÑé¸ÃÄ£ÐÍÊÇ·ñ´æÔÚÒ»½××ÔÏà¹Ø£¬ÎªÊ²Ã´£¿
³ÂÄê¾ÉÊÂÖ®2011ÆÚÄ©¸´Ï°
3.¶ÔÄ£Ð͵Ät¼ìÑé¡¢F¼ìÑéºÍR2¼ìÑ齫±äµÃ²»¿É¿¿¡£ 4.½µµÍÁËÔ¤²âµÄ¾«¶È¡£ £¨4£©
4¡¢ÏÂÃæÊÇÒ»¸ö»Ø¹éÄ£Ð͵Äij¼ìÑé½á¹û¡£
F-statistic 2.232465 Prob. F(5,25) Obs*R-squared 9.568857 Prob. Chi-Square(5) Scaled explained SS 14.70208 Prob. Chi-Square(5) Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 06/21/10 Time: 05:49 Sample: 1 31 Included observations: 31 Variable Coefficient Std. Error t-Statistic C 351677.4 289645.5 1.214165 X1 -493.4058 479.8876 -1.028170 X1^2 0.165053 0.200596 0.822810 X1*X2 0.178268 0.098924 1.802074 X2 -211.1974 173.9156 -1.214367 X2^2 0.021267 0.020409 1.042045 R-squared 0.308673 Mean dependent var Adjusted R-squared 0.170407 S.D. dependent var S.E. of regression 92450.61 Akaike info criterion Sum squared resid 2.14E+11 Schwarz criterion Log likelihood -395.1202 Hannan-Quinn criter. F-statistic 2.232465 Durbin-Watson stat Prob(F-statistic) 0.082542 £¨1£©ÇëÎÊÕâÊÇʲô¼ìÑéµÄ½á¹û£¿
0.0825 0.0884 0.0117 Prob. 0.2360 0.3137 0.4184 0.0836 0.2360 0.3074 51449.25 101502.6 25.87872 26.15627 25.96920 1.454418 ³ÂÄê¾ÉÊÂÖ®2011ÆÚÄ©¸´Ï°
£¨2£©Ð´³ö´Ë¼ìÑéµÄ¸¨Öú»Ø¹éº¯ÊýºÍԻعéÄ£ÐÍ¡£ £¨2£©¼ìÑé½á¹û˵Ã÷ʲôÎÊÌ⣿ £¨3£©ÈçºÎÐÞÕý£¿ 5¡¢ÉèÏû·Ñº¯ÊýΪ
yyi?b0?b1xi?ui£¬xÆäÖÐiΪÏû·ÑÖ§³ö£¬iΪ¸öÈË¿ÉÖ§ÅäÊÕÈ룬
uiÎªËæ»úÎó²îÏ²¢ÇÒE(ui)?0,Var(ui)??2xi2£¨ÆäÖÐ?2Ϊ³£Êý£©
¡£Ñ¡ÓÃÊÊ
µ±µÄ±ä»»ÐÞÕýÒì·½²î£¬ÒªÇóд³ö±ä»»¹ý³Ì¡£ ½â£º£¨Ò»£©ÔÄ£ÐÍ£ºyi?b0?b1xi?ui £¨1£©µÈºÅÁ½±ßͬ³ýÒÔxi£¬
yiui1?b?b? ÐÂÄ£ÐÍ£º£¨2£© 01xixixiyi*1ui,xi?,vi? Áîy? xixixi*iÔò£º£¨2£©±äΪyi*?b1?b0xi*?vi
ui1)?2(?2xi2)??2ÐÂÄ£ÐͲ»´æÔÚÒì·½²îÐÔ¡£ xixi´ËʱVar(vi)?Var(£¨¶þ£©¶Ôyi*?b1?b0xi*?vi½øÐÐÆÕͨ×îС¶þ³Ë¹À¼Æ
?n?xi*yi*??xi*?yi*?b0?n?(xi*)2?(?xi*)2 ÆäÖÐyi*?yi,xi*?1 ?xixi?**b?y?bx1i0i?¡¢
6¡¢ÊÔÔÚ¼ÒÍ¥¶ÔijÉÌÆ·µÄÏû·ÑÐèÇóº¯ÊýY????X??ÖУ¨ÒÔ¼Ó·¨ÐÎʽ£©ÒýÈëÐéÄâ±äÁ¿£¬ÓÃÒÔ·´Ó³¼¾½ÚÒòËØ£¨µ¡¢Íú¼¾£©ºÍÊÕÈë²ã´Î²î¾à£¨¸ß¡¢µÍ£©¶ÔÏû·ÑÐèÇóµÄÓ°Ï죬²¢Ð´³ö¸÷ÀàÏû·Ñº¯ÊýµÄ¾ßÌåÐÎʽ¡£
³ÂÄê¾ÉÊÂÖ®2011ÆÚÄ©¸´Ï°
7¡¢ÔÚÒ»Ïî¶Ô±±¾©Ä³´óѧѧÉúÔÂÏû·ÑÖ§³öµÄÑо¿ÖУ¬ÈÏΪѧÉúµÄÏû·ÑÖ§³ö³ýÊÜÆä¼ÒÍ¥µÄÔÂÊÕÈëˮƽÍâ,»¹ÊÜÔÚѧУÊÇ·ñµÃ½±Ñ§½ð,À´×ÔÅ©´å»¹ÊdzÇÊУ¬ÊǾ¼Ã·¢´ïµØÇø»¹ÊÇÇ··¢´ïµØÇø,ÒÔ¼°ÐÔ±ðµÈÒòËØµÄÓ°Ïì¡£ÊÔÉ趨Êʵ±µÄÄ£ÐÍ£¨ÒÔ¼Ó·¨ÐÎʽÒýÈëÐéÄâ±äÁ¿£©,²¢µ¼³öÈçÏÂÇéÐÎÏÂѧÉúÏû·ÑÖ§³öµÄƽ¾ùˮƽ: (1)À´×ÔÇ··¢´ïÅ©´åµØÇøµÄÅ®Éú,δµÃ½±Ñ§½ð; (2)À´×ÔÇ··¢´ï³ÇÊеØÇøµÄÄÐÉú,µÃµ½½±Ñ§½ð; (3)À´×Ô·¢´ïµØÇøµÄÅ©´åÅ®Éú,µÃµ½½±Ñ§½ð; (4)À´×Ô·¢´ïµØÇøµÄ³ÇÊÐÄÐÉú,δµÃ½±Ñ§½ð.
½â´ð: ¼ÇѧÉúÔÂÏû·ÑÖ§³öΪY£¬Æä¼ÒÍ¥ÔÂÊÕÈëˮƽΪX£¬ÔòÔÚ²»¿¼ÂÇÆäËûÒòËØµÄÓ°Ïìʱ£¬ÓÐÈçÏ»ù±¾»Ø¹éÄ£ÐÍ£º
Yi=¦Â0+¦Â1Xi+¦Ìi ÆäËû¶¨ÐÔÒòËØ¿ÉÓÃÈçÏÂÐéÄâ±äÁ¿±íʾ£º 1 Óн±Ñ§½ð 1 À´×Ô³ÇÊÐ
D1= D2= 0 ÎÞ½±Ñ§½ð 0 À´×ÔÅ©´å 1 À´×Ô·¢´ïµØÇø 1 ÄÐÐÔ
D3= D4= 0 À´×ÔÇ··¢´ïµØÇø 0 Å®ÐÔ
ÔòÒýÈë¸÷ÐéÄâ±äÁ¿ºóµÄ»Ø¹éÄ£ÐÍÈçÏ£º Yi=¦Â0+¦Â1Xi+?1D1i+?2D2i+?3D3i+?4D4i+¦Ìi Óɴ˻عéÄ£ÐÍ£¬¿ÉµÃÈçϸ÷ÖÖÇéÐÎÏÂѧÉúµÄƽ¾ùÏû·ÑÖ§³ö£º
(1) À´×ÔÇ··¢´ïÅ©´åµØÇøµÄÅ®Éú£¬Î´µÃµ½½±Ñ§½ðʱµÄÔÂÏû·ÑÖ§³ö£º
E(Yi|= Xi, D1i=D2i=D3i=D4i=0)=¦Â0+¦Â1Xi
(2) À´×ÔÇ··¢´ï³ÇÊеØÇøµÄÄÐÉú£¬µÃµ½½±Ñ§½ðʱµÄÔÂÏû·ÑÖ§³ö£º
E(Yi|= Xi, D1i=D4i=1,D2i=D3i=0)=(¦Â0+?1+?4)+¦Â1Xi
(3) À´×Ô·¢´ïµØÇøµÄÅ©´åÅ®Éú£¬µÃµ½½±Ñ§½ðʱµÄÔÂÏû·ÑÖ§³ö£º
E(Yi|= Xi, D1i=D3i=1,D2i=D4i=0)=(¦Â0+?1+?3)+¦Â1Xi
(4) À´×Ô·¢´ïµØÇøµÄ³ÇÊÐÄÐÉú£¬Î´µÃµ½½±Ñ§½ðʱµÄÔÂÏû·ÑÖ§³ö£º
E(Yi|= Xi,D2i=D3i=D4i=1, D1i=0)= (¦Â0+?2+?3+?4)+¦Â1Xi