2018Äê¸ß¿¼Àí¿ÆÊýѧ·ÂտģÄâÊÔÌ⣨ȫ¹ú¾í£©-º¬³¬Ïê½â ÏÂÔØ±¾ÎÄ

18£®¡¾½âÎö¡¿(1)(i)ÓÉÌâÒâµÃ£¬ËùÇóͬѧµÄ³É¼¨Îª6¡Á75 +(72+76+74+70+73)=85£¬Òò¶øÅÅÃûµÚ

Ò»£®£¨2·Ö£©

(ii)¸ù¾Ý·Ö²½³Ë·¨¼ÆÊýÔ­ÀíÖª(a£¬b)µÄȡֵ¹²ÓÐ5¡Á4=20ÖÖÇé¿ö£¬Èôx+2ax+b=0ÓÐʵ¸ù£¬Ôò(2a)2?4b2¡Ý0£¬¼´a¡Ýb£¬¶øÂú×ãa¡ÝbµÄÇé¿öÓÐ10ÖÖ£¬Òò¶øÓɹŵä¸ÅÐ͵ĸÅÂʼÆË㹫ʽµÃËùÇó¸ÅÂÊP=

22101=£®£¨6·Ö£© 202(2)Ëæ»ú±äÁ¿¦ÎµÄËùÓпÉÄÜȡֵΪ1£¬2£¬3£¬

3C13P(¦Î=1)=3=´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡££¬

10C521C3C23P(¦Î=2)= =´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡££¬ 35C51C33P(¦Î=3)= 3=´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡££®

10C5Òò¶ø¦ÎµÄ·Ö²¼ÁÐΪ

¦Î P E(¦Î)=´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£

1 2 3 3 103 51 1033¡Á1+´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£¡Á2+´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£

51019¡Á3=´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£ £®£¨12·Ö£©

510¡¾±¸×¢¡¿(1)¶ÀÁ¢Öظ´ÊÔÑéÊÇÖ¸ÔÚÏàͬÌõ¼þÏ¿ÉÖØ¸´½øÐеġ¢¸÷´ÎÖ®¼äÏ໥¶ÀÁ¢µÄÒ»ÖÖÊÔÑ飬

ÿһ´ÎÊÔÑéÖ»ÄÜÓÐÁ½ÖÖ½á¹û(¼´ÒªÃ´·¢Éú£¬ÒªÃ´²»·¢Éú)£¬ÇÒÈκÎÒ»´ÎÊÔÑéÖз¢ÉúµÄ¸ÅÂʶ¼ÊÇÒ»ÑùµÄ£¬ÔÚÏàͬÌõ¼þÏÂÖØ¸´µØ×ön´ÎÊÔÑé³ÆÎªn´Î¶ÀÁ¢Öظ´ÊÔÑ飻(2)ÔÚn´Î¶ÀÁ¢

kn?k

ÖØ¸´ÊÔÑéÖУ¬ÈôʼþAÿ´Î·¢ÉúµÄ¸ÅÂÊΪp£¬ÔòA·¢ÉúµÄ´ÎÊýΪkµÄ¸ÅÂÊΪCknp(1?p)£¬

ʼþA·¢ÉúµÄ´ÎÊýÊÇÒ»¸öËæ»ú±äÁ¿X£¬Æä·Ö²¼ÁгÆÎª¶þÏî·Ö²¼£¬¼ÇΪX~B(n£¬p)£® 19£®¡¾½âÎö¡¿(1)ÓÉÌâÒâÖªEA¡Î´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£FD£¬EB¡Î´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£FC£¬

ËùÒÔAB¡ÎCD£¬¼´A£¬B£¬C£¬DËÄµã¹²Ãæ£®ÓÉEF=EB=´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£

12121FC=2£¬2EF¡ÍAB£¬µÃFB=BC=22´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡££¬ÔòBC¡ÍFB£¬ÓÖ·­ÕÛºóÆ½ÃæAEFD¡ÍÆ½ÃæEBCF£¬Æ½ÃæAEFD¡ÉÆ½ÃæEBCF=EF£¬DF¡ÍEF£¬ËùÒÔDF¡ÍÆ½ÃæEBCF£¬Òò¶øBC

13

¡ÍDF£¬ÓÖDF¡ÉFB=F£¬ËùÒÔBC¡ÍÆ½ÃæBDF£¬ÓÉÓÚBC?Æ½ÃæBCD£¬ÔòÆ½ÃæBCD¡ÍÆ½ÃæBDF£¬ÓÖÆ½ÃæABD¼´Æ½ÃæBCD£¬ËùÒÔÆ½ÃæABD¡ÍÆ½ÃæBDF£®£¨5·Ö£©

(2)ÏòÁ¿·¨ ÒÔFÎª×ø±êÔ­µã£¬FE£¬FC£¬FDËùÔÚµÄÖ±Ïß·Ö±ðΪx£¬y£¬zÖᣬ½¨Á¢ÈçͼËùʾµÄ¿Õ¼äÖ±½Ç×ø±êϵ£¬

ÔòF(0£¬0£¬0)£¬B (2£¬2£¬0)£¬ÉèEA=t(t>0)£¬ÔòA (2£¬0£¬t)£¬D(0£¬0£¬2t)£¬

????????£¨8·Ö£© AB=(0£¬2£¬?t)£¬AD=(?2£¬0£¬t)£®

??????m?AB?0ÉèÆ½ÃæABDµÄ·¨ÏòÁ¿Îªm=(x£¬y£¬z)£¬Ôò?´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£¼´??????m?AD?0?2y?tz?0£¬´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£ ???2x?tz?0È¡x=t£¬Ôòy=t£¬z=2£¬ËùÒÔm=(t£¬t£¬2)ÎªÆ½ÃæABDµÄÒ»¸ö·¨ÏòÁ¿£® ÓÖÆ½ÃæFADµÄÒ»¸ö·¨ÏòÁ¿Îªn=(0£¬1£¬0)£¬ Ôò|cos|=

1|m?n|t=´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡££¬ ?2|m|?|n|2t2?4?1ËùÒÔt=2´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡££¬¼´EAµÄ³¤¶ÈΪ2´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡££®£¨12·Ö£© ´«Í³·¨ ÓÉ(1)Öª£¬Æ½ÃæABD¼´Æ½ÃæABCD£¬Òò¶ø¶þÃæ½ÇB?AD?F¼´¶þÃæ½ÇC?AD?F£®ÒòÎªÆ½ÃæAEFD¡ÍÆ½ÃæEBCF£¬Æ½ÃæAEFD¡ÉÆ½ÃæEBCF=EF£¬CF?Æ½ÃæEBCF£¬CF¡ÍEF£¬ËùÒÔCF¡ÍÆ½ÃæAEFD£®£¨7·Ö£©

Èçͼ£¬×÷FH¡ÍADÓÚH£¬Á¬½ÓCH£¬ÔòCH¡ÍAD£¬¡ÏCHFΪ¶þÃæ½ÇC?AD?FµÄÆ½Ãæ½Ç£®

14

ÉèEA=t(t>0)£¬ÔòFD=2t£¬ÔÚÈý½ÇÐÎADFÖУ¬AD=t2?4´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡££¬ ÓÉS?ADF=´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£ÕÒµ½ÒýÓÃÔ´¡££®

114t¡Á2t¡Á2=¡Át2?4¡ÁHF£¬µÃHF=´íÎó£¡Î´

222t?4FCt2?4ÔÚÖ±½ÇÈý½ÇÐÎCFHÖУ¬tan¡ÏCHF=£¬ ??3´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£

HFtÒò¶øt+4=3t£¬½âµÃt=2´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡££¬¼´EAµÄ³¤¶ÈΪ2£®£¨12·Ö£© 20£®¡¾½âÎö¡¿(1)ÓÉÒÑÖª£¬x?y=4ÓëxÖá½»ÓÚF1 (?2£¬0)£¬F2 (2£¬0)£¬Ôò|F1F2| =4£¬

2222|PF1|2?|PF2|2?|F1F2|2ÓÉÌâÒâÖª|PF 1|+|PF2|=2a£¬cos ¡ÏF1PF2=

2|PF1||PF2|(|PF1|?|PF2|)2?|F1F2|24a2?16=´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£?1=´íÎó£¡Î´ÕÒµ½Òý

2|PF1||PF2|2|PF1||PF2|84a2?16ÓÃÔ´¡£?1¡Ý´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£?1=1?´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£=?´íÎó£¡

a22a2δÕÒµ½ÒýÓÃÔ´¡££¬µ±ÇÒ½öµ±|PFÒò¶øa=6£¬ÓÉÍÖÔ²µÄ¶¨ÒåÖª£¬1|=|PF2|=aʱµÈºÅ³ÉÁ¢£¬PµÄ¹ì¼£ÎªÍÖÔ²£¬ÇÒF1£¬F2·Ö±ðΪÆä×ó¡¢ÓÒ½¹µã£¬b=a?c=2£¬

222132y2x2ËùÒÔËùÇó¹ì¼£·½³ÌΪ´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£+´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£=1£®£¨6·Ö£©

26 15

(2)Èçͼ£¬ÉèÖ±ÏßlµÄ·½³ÌΪx= my+2£¬A(x1£¬y1)£¬B(x2£¬y2)£¬

?x?my?2?ÓÉ?x2y2´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡££¬µÃ(m2+3)y2+4my?2=0£¬

?1??2?6Ôòy1+y2=?

4m2£¬=?´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡££®£¨8·Ö£© yy12m2?3m2?3¼ÙÉè´æÔÚÕâÑùµÄ¡°ºãµã¡±E(t£¬0)£¬

?????????2???????????ÔòEA?EA?AB=EA?EB=(x1?t£¬y1)¡¤(x2?t£¬y2)

=(my1+2?t£¬y1)¡¤(my2+2?t£¬y2) =(m2+1) y1y2+(2?t)m(y1+y2)+(2?t)2

?2m2?2?4(2?t)m2?=+(2?t)2 22m?3m?3(t2?6)m2?3t2?12t?10=´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡££®

m2?3????2????????ÈôEA?EA?ABÊÇÓëÖ±ÏßlµÄбÂÊÎ޹صֵ͍£¬ÔòÆäΪÓëmÎ޹صֵ͍£¬

Ôò3t?18=3t?12t+10£¬µÃt=´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£´Ëʱ¶¨ÖµÎª(´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£Î´ÕÒµ½ÒýÓÃÔ´¡£

227£¬ 3725)?6=?´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡££¬¡°ºãµã¡±Îª(´íÎó£¡

937£¬0)£®£¨12·Ö£© 321£®¡¾½âÎö¡¿(1)¡ßh(x)=logaxµÄͼÏóÔÚ(1£¬0)´¦µÄÇÐÏß·½³ÌΪx?y?1=0£¬

11£¬¡àh?(1)? =1£¬¡àa=e£¬h(x)=ln x£® xlna1?lnam?12x+1£¬ ¡àf(x)= mh(x)+´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£2h?(x)? 16