?4?2?3?+cos)+(cos+cos)
5555??2?2?=£Ûcos+cos(¦Ð-)£Ý+£Ûcos+cos(¦Ð-)£Ý
5555??2?2?=(cos-cos)+(cos-cos)=0.
5555½â£º(1)Ôʽ=(cos
(2)Ôʽ=tan10¡ã+tan(180¡ã-10¡ã)+sin1 866¡ã-sin(-606¡ã) =tan10¡ã+
sin(180??10?)+sin(53360¡ã+66¡ã)-sin£Û£¨-2£©3360¡ã+114¡ã£Ý
cos(180??10?)=tan10¡ã-tan 10¡ã+sin66¡ã-sin66¡ã=0. ÀàÌâÑÝÁ·2 »¯¼ò£º
sin[??(2n?1)?]?sin[??(2n?1)?](n¡ÊZ).
sin(??2n?)?cos(??2n?)sin(???)?sin(???)?2sin?2???.
sin??cos?sin??cos?cos?˼··ÖÎö£º¿¼²éÓÕµ¼¹«Ê½µÄÓ¦Ó㬹ؼüÔÚÓÚÈ¥µô¡°n¡±. ½â£ºÔʽ=
±äʽÌáÉý2
sin2??2sin?cos??cos2?(1)ÒÑÖªtan(¦Ð-¦Á)=2,ÇóµÄÖµ. 224cos??3sin??1˼··ÖÎö£ºÊ×ÏÈÇó³ötan¦Á,Æä´Î½«ËùÇóʽ×Ó¡°ÏÒ»¯ÇС±»¯¼ò. ½â£ºÓÉtan(¦Ð-¦Á)=2µÃtan¦Á=-2.
sin2??2sin?cos??cos2?tan2??2tan??1?ÔòÔʽ= 2225cos??2sin?5?2tan?=?7. 3?3?-2¦Á)=m,Çócos(2¦Á+)µÄÖµ.
44?3?˼··ÖÎö£º¸ù¾Ý£¨-2¦Á£©Ó루2¦Á+£©ÊÇ»¥²¹µÄ½Ç£¬Êʵ±Ñ¡ÔñÓÕµ¼¹«Ê½¼ÆËã.
44?3?½â£º¡ß£¨-2¦Á£©+(2¦Á+)=¦Ð,
443??¡àcos(2¦Á+)=cos£Û¦Ð-(-2¦Á)£Ý
44?=-cos(-2¦Á)=-m.
4(2)ÒÑÖª£ºcos(
ÀàÌâÑÝÁ·3
ÇóÖ¤sin£¨¦Ð-¦Á£©=sin¦Á,cos£¨¦Ð-¦Á£©=-cos¦Á,tan(¦Ð-¦Á)=-tan¦Á. Ö¤Ã÷£ºÉèÈÎÒâ½Ç¦ÁµÄÖÕ±ßÓ뵥λԲµÄ½»µã×ø±êΪP1£¨x,y£©£¬ÓÉÓڽǣ¨¦Ð-¦Á£©µÄÖÕ±ßÓë½Ç¦ÁµÄÖձ߹ØÓÚyÖá¶Ô³Æ£¬½Ç£¨¦Ð-¦Á£©µÄÖÕ±ßÓë½Ç¦ÁµÄÖձ߹ØÓÚxÖá¶Ô³Æ£¬½Ç£¨¦Ð-¦Á£©µÄÖÕ±ßÓ뵥λԲµÄ½»µãP2ÓëµãP1¹ØÓÚyÖá¶Ô³Æ£¬Òò´ËµãP2µÄ×ø±êÊÇ£¨-x,y£©£¬ÓÉÈý½Çº¯ÊýµÄ¶¨
23
ÒåµÃ£º
sin¦Á=y,cos¦Á=x,tan¦Á=
y; xy; xsin(¦Ð-¦Á)=y,cos(¦Ð-¦Á)=-x,tan(¦Ð-¦Á)=-
´Ó¶øµÃsin(¦Ð-¦Á)=sin¦Á,cos(¦Ð-¦Á)=-cos¦Á,tan(¦Ð-¦Á)=-tan¦Á. ±äʽÌáÉý3 ÇóÖ¤£ºsin(
??-¦Á)=cos¦Á,cos(-¦Á)=sin¦Á. 22?-¦ÁµÄÖÕ±ßÓë½Ç¦Á2Ö¤Ã÷£ºÉèÈÎÒâ½Ç¦ÁµÄÖÕ±ßÓ뵥λԲµÄ½»µãP1µÄ×ø±êΪ£¨x,y£©.ÓÉÓڽǵÄÖձ߹ØÓÚÖ±Ïßy=x¶Ô³Æ£¬½Ç
?-¦ÁµÄÖÕ±ßÓ뵥λԲµÄ½»µãP2ÓëµãP1¹ØÓÚÖ±Ïßy=x¶Ô³Æ£¬2Òò´ËµãP2µÄ×ø±êÊÇ£¨y,x£©.ÓÚÊÇÎÒÃÇÓУº cos¦Á=x,sin¦Á=y;
??-¦Á)=y,sin(-¦Á)=x. 22??´Ó¶øµÃsin£¨-¦Á£©=cos¦Á,cos(-¦Á)=sin¦Á.
22cos(
ÀàÌâÑÝÁ·4
ÔÚ¡÷ABCÖУ¬¢Ùsin£¨A+B+C£©£»¢Úsin£¨A+B£©+sinC£»¢Ûcos£¨A+B£©+cosC£»¢Ütan
A?BC2tan;¢Ýtan(A+B)-tanC,ÆäÖбíʾ³£ÊýµÄÓÐ_______________. 22½âÎö£º¢Ùsin(A+B+C)=sin¦Ð=0.
¢Úsin(A+B)+sinC=sin(¦Ð-C)+sinC=2sinC.
¢Ûcos(A+B)+cosC=cos(¦Ð-C)+cosC=-cosC+cosC=0. ¢Ütan
A?BCCCCC2tan=tan(90¡ã-)tan=cot2tan=1. 222222¢Ýtan(A+B)-tanC=tan(¦Ð-C)-tanC=-tanC-tanC=-2tanC.
¹ÊÓ¦Ìî¢Ù¢Û¢Ü. ´ð°¸£º¢Ù¢Û¢Ü ±äʽÌáÉý4
Èôf(sinx)=cos17x£¬Çóf(
1)µÄÖµ. 2˼··ÖÎö£º´ËÀàÌâÄ¿ÊÇÓÕµ¼¹«Ê½Ó뺯ÊýÖ®¼äµÄÒ»ÖÖ»ìºÏÔËË㣬ÔÚÔËËãµÄ¹ý³ÌÖУ¬ÒªÀí½âº¯Êý±í´ïʽµÄÒâÒ壬Áé»îÔËÓÃÓÕµ¼¹«Ê½. ½â£ºf(
1?17?5?5???3)=f(sin)=cos=cos(2¦Ð+)=cos=cos(¦Ð?)=-cos=?.
66626662 24
1£®3.1 Èý½Çº¯ÊýµÄÖÜÆÚÐÔ
¿ÎÌõ¼Ñ§
ÈýµãÆÊÎö
1.ÖÜÆÚº¯ÊýÓëÖÜÆÚµÄÒâÒå
¡¾Àý1¡¿ ÇóÏÂÁÐÈý½Çº¯ÊýµÄÖÜÆÚ. £¨1£©y=sin(x+
?x?);£¨2£©y=3sin(+). 325?,¶øsin(2¦Ð+z)=sinz, 3˼··ÖÎö£ºÔËÓÃÖÜÆÚº¯ÊýµÄ¶¨Òå¼´¿É. ½â£º£¨1£©Áîz=x+
¼´f(2¦Ð+z)=f(z), f£Û(2¦Ð+x)+
??£Ý=f(x+). 33¡àÖÜÆÚT=2¦Ð. (2)Áîz=
x?+, 25Ôòf(x)=3sinz =3sin(z+2¦Ð)
x?++2¦Ð) 25x?4???) =3sin(
25=3sin(
=f(x+4¦Ð).
¡àT=4¦Ð. ÎÂܰÌáʾ
Àí½âºÃÖÜÆÚº¯ÊýÓëÖÜÆÚµÄÒâÒå.¶Ô¶¨ÒåÖеÄÈÎÒâÒ»¸öxÂú×ãf(x+T)=f(x),¶ø·Çijһ¸öxÖµ.Ò²¿ÉÓù«Ê½T=
2?ÇóÖÜÆÚ. ?2.ÅжϺ¯ÊýÊÇ·ñ¾ßÓÐÖÜÆÚÐÔºÍÇóÖÜÆÚ ¡¾Àý2¡¿ ÇóÖ¤£º£¨1£©y=cos2x+sin2xµÄÖÜÆÚΪ¦Ð; (2)y=|sinx|+|cosx|µÄÖÜÆÚΪ
?. 2˼··ÖÎö£º¹Û²ìÌØÕ÷£¬ÔËÓö¨Òå. Ö¤Ã÷£º£¨1£©f(x+¦Ð)=cos2(x+¦Ð)+sin2(x+¦Ð)=cos(2¦Ð+2x)+sin(2¦Ð+2x)=cos2x+sin2x=f(x), ¡ày=cos2x+sin2xµÄÖÜÆÚÊǦÐ.
???)=|sin(x+)|+|cos(x+)|=|cosx|+|-sinx|=|sinx|+|cosx|=f(x), 222?¡ày=|sinx|+|cosx|µÄÖÜÆÚÊÇ.
2(2)f(x+
ÎÂܰÌáʾ
¡°f(x+T)=f(x)¡±ÊǶ¨ÒåÓòÄڵĺãµÈʽ£¬¼´¶Ô¶¨ÒåÓòÄÚµÄÿһ¸öÖµ¶¼³ÉÁ¢.¿ÉÒÔÓÃÉÏʽÑéÖ¤Ò»¸öÁ¿ÊÇ·ñÊÇÒ»¸öº¯ÊýµÄÖÜÆÚ.
25
3.ÅжϺ¯ÊýÊÇ·ñ¾ßÓÐÖÜÆÚÐÔ
¡¾Àý3¡¿Ö¤Ã÷y=sin|x|²»ÊÇÖÜÆÚº¯Êý. ˼··ÖÎö£ºÔËÓö¨Òå½øÐÐÖ¤Ã÷.
Ö¤Ã÷£º¼ÙÉèy=sin|x|ÊÇÖÜÆÚº¯Êý£¬ÇÒÖÜÆÚΪT£¬Ôòsin|x+T|=sin|x|(x¡ÊR).
?ʱ£¬ 2??Áîx=,µÃsin|+T|
22???=sin||?sin(+T)=sin?cosT=1;
222???Áîx=-,µÃsin|-+T|=sin|-|
222???sin(-+T)=sin
22?-cosT=1?cosT=-1.
?Óɴ˵Ã1=-1,Õâһì¶Ü˵Ã÷T¡Ý²»¿ÉÄÜ.
2?(2)µ±T¡Ü-ʱ,
2Áîx=x¡ä-TµÃ,sin|x¡ä-T+T|=sin|x¡ä-T|?sin|x¡ä-T|=sin|x¡ä|,¼´-TÊǺ¯ÊýµÄÖÜÆÚ.µ«
?-T¡Ý,ÓÉ(1)ÖªÕâÊDz»¿ÉÄܵÄ.
2??(3)µ±-£¼T£¼Ê±,
22Áîx=0µÃ,sin|T|=sin|0|?sinT=0?T=0(ÖÜÆÚ²»ÎªÁã).
(1)µ±T¡Ý
ÓÉ´Ë¿ÉÖªÔº¯ÊýÎÞÖÜÆÚ,¹Êy=sin|x|²»ÊÇÖÜÆÚº¯Êý. ÎÂܰÌáʾ
½øÒ»²½Àí½â¶¨Òå,¢Ù´æÔÚÒ»¸ö³£ÊýT¡Ù0;¢Úµ±xÈ¡¶¨ÒåÓòÄÚÿһ¸öֵʱ(¶ø²»ÊÇijһ¸ö),¶¼ÓÐf(x+T)=f(x)ºã³ÉÁ¢. ¸÷¸ö»÷ÆÆ ÀàÌâÑÝÁ·1
ÇóÏÂÁк¯ÊýµÄ×îСÕýÖÜÆÚ. £¨1£©f(x)=3sinx; (2)f(x)=sin2x; (3)f(x)=2sin(
1?x?). 24½â£º£¨1£©f(x)=3sinx=3sin(x+2¦Ð)=f(x+2¦Ð),º¯ÊýµÄ×îСÕýÖÜÆÚΪ2¦Ð.
(2)f(x)=sin2x=sin(2x+2¦Ð)=sin2(x+¦Ð)=f(x+¦Ð), º¯ÊýµÄ×îСÕýÖÜÆÚΪ¦Ð. (3)f(x)=2sin(
1?1?1??x?)=2sin(x?+2¦Ð)£½2sin£Û(x+)+£Ý=f(x+4¦Ð),º¯ÊýµÄ2424244×îСÕýÖÜÆÚΪ4¦Ð.
±äʽÌáÉý1
¶¨ÒåÔÚRÉϵĺ¯Êýf(x)¼ÈÊÇżº¯ÊýÓÖÊÇÖÜÆÚº¯Êý,Èôf(x)µÄ×îСÕýÖÜÆÚÊǦÐ,ÇÒµ±x¡Ê
26