2020½ì¸ß¿¼Êýѧ(ÎÄ)Ò»ÂÖ¸´Ï°½²Òå µÚ3Õ ¸ß¿¼×¨ÌâÍ»ÆÆ1 µÚ2¿Îʱ µ¼ÊýÓë·½³Ì ÏÂÔØ±¾ÎÄ

µÚ2¿Îʱ µ¼ÊýÓë·½³Ì

ÌâÐÍÒ» Çóº¯ÊýÁãµã¸öÊý

1

Àý1 É躯Êýf(x)£½x2£­mln x£¬g(x)£½x2£­(m£«1)x£¬

2µ±m¡Ý1ʱ£¬ÌÖÂÛf(x)Óëg(x)ͼÏóµÄ½»µã¸öÊý£® ½â ÁîF(x)£½f(x)£­g(x)

1

£½£­x2£«(m£«1)x£­mln x£¬x>0£¬

2ÎÊÌâµÈ¼ÛÓÚÇóº¯ÊýF(x)µÄÁãµã¸öÊý£® ?x£­1??x£­m?

F¡ä(x)£½£­£¬

x

µ±m£½1ʱ£¬F¡ä(x)¡Ü0£¬º¯ÊýF(x)Ϊ¼õº¯Êý£¬ 3

×¢Òâµ½F(1)£½>0£¬F(4)£½£­ln 4<0£¬

2ËùÒÔF(x)ÓÐΨһÁãµã£®

µ±m>1ʱ£¬Èô0m£¬ÔòF¡ä(x)<0£» Èô10£¬

ËùÒÔº¯ÊýF(x)ÔÚ(0,1)ºÍ(m£¬£«¡Þ)Éϵ¥µ÷µÝ¼õ£¬ÔÚ(1£¬m)Éϵ¥µ÷µÝÔö£¬ 1

×¢Òâµ½F(1)£½m£«>0£¬F(2m£«2)£½£­mln(2m£«2)<0£¬

2ËùÒÔF(x)ÓÐΨһÁãµã£®

×ÛÉÏ£¬º¯ÊýF(x)ÓÐΨһÁãµã£¬¼´Á½º¯ÊýͼÏó×ÜÓÐÒ»¸ö½»µã£®

˼άÉý»ª (1)¿ÉÒÔͨ¹ý¹¹Ô캯Êý£¬½«Á½ÇúÏߵĽ»µãÎÊÌâת»¯Îªº¯ÊýÁãµãÎÊÌ⣮

(2)Ñо¿·½³Ì¸ùµÄÇé¿ö£¬¿ÉÒÔͨ¹ýµ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ¡¢×î´óÖµ¡¢×îСֵ¡¢±ä»¯Ç÷ÊÆµÈ£¬²¢½èÖúº¯ÊýµÄ´óÖÂͼÏóÅжϷ½³Ì¸ùµÄÇé¿ö£® m

¸ú×ÙѵÁ·1 É躯Êýf(x)£½ln x£«£¬m¡ÊR.

x

(1)µ±m£½e(eΪ×ÔÈ»¶ÔÊýµÄµ×Êý)ʱ£¬Çóf(x)µÄ¼«Ð¡Öµ£» x

(2)ÌÖÂÛº¯Êýg(x)£½f¡ä(x)£­µÄÁãµãµÄ¸öÊý£®

3e

½â (1)ÓÉÌâÉ裬µ±m£½eʱ£¬f(x)£½ln x£«£¬

xx£­e

Ôòf¡ä(x)£½2(x>0)£¬ÓÉf¡ä(x)£½0£¬µÃx£½e.

x

¡àµ±x¡Ê(0£¬e)ʱ£¬f¡ä(x)<0£¬f(x)ÔÚ(0£¬e)Éϵ¥µ÷µÝ¼õ£¬ µ±x¡Ê(e£¬£«¡Þ)ʱ£¬f¡ä(x)>0£¬f(x)ÔÚ(e£¬£«¡Þ)Éϵ¥µ÷µÝÔö£¬ e

¡àµ±x£½eʱ£¬f(x)È¡µÃ¼«Ð¡Öµf(e)£½ln e£«£½2£¬

e¡àf(x)µÄ¼«Ð¡ÖµÎª2.

x1mx

(2)ÓÉÌâÉèg(x)£½f¡ä(x)£­£½£­2£­(x>0)£¬

3xx31

Áîg(x)£½0£¬µÃm£½£­x3£«x(x>0)£®

31

Éè¦Õ(x)£½£­x3£«x(x¡Ý0)£¬

3

Ôò¦Õ¡ä(x)£½£­x2£«1£½£­(x£­1)(x£«1)£¬

µ±x¡Ê(0,1)ʱ£¬¦Õ¡ä(x)>0£¬¦Õ(x)ÔÚ(0,1)Éϵ¥µ÷µÝÔö£»

µ±x¡Ê(1£¬£«¡Þ)ʱ£¬¦Õ¡ä(x)<0£¬¦Õ(x)ÔÚ(1£¬£«¡Þ)Éϵ¥µ÷µÝ¼õ£®

¡àx£½1ÊǦÕ(x)µÄΨһ¼«Öµµã£¬ÇÒÊǼ«´óÖµµã£¬Òò´Ëx£½1Ò²ÊǦÕ(x)µÄ×î´óÖµµã£¬ 2

¡à¦Õ(x)µÄ×î´óֵΪ¦Õ(1)£½.

3

ÓÖ¦Õ(0)£½0£¬½áºÏy£½¦Õ(x)µÄͼÏó(Èçͼ)£¬¿ÉÖª

2

¢Ùµ±m>ʱ£¬º¯Êýg(x)ÎÞÁãµã£»

3

2

¢Úµ±m£½Ê±£¬º¯Êýg(x)ÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£»

32

¢Ûµ±0

3¢Üµ±m¡Ü0ʱ£¬º¯Êýg(x)ÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£® 2

×ÛÉÏËùÊö£¬µ±m>ʱ£¬º¯Êýg(x)ÎÞÁãµã£»

3

2

µ±m£½»òm¡Ü0ʱ£¬º¯Êýg(x)ÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£»

32

µ±0

3

ÌâÐͶþ ¸ù¾Ýº¯ÊýÁãµãÇé¿öÇó²ÎÊý·¶Î§

1?

Àý2 (2018¡¤¸§Ë³Ä£Äâ)ÒÑÖªº¯Êýf(x)£½2ln x£­x2£«ax(a¡ÊR)£®Èôº¯Êýg(x)£½f(x)£­ax£«mÔÚ??e£¬e?

ÉÏÓÐÁ½¸öÁãµã£¬ÇóʵÊýmµÄȡֵ·¶Î§£® ½â g(x)£½2ln x£­x2£«m£¬

£­2?x£«1??x£­1?2

Ôòg¡ä(x)£½£­2x£½. xx

1?

ÒòΪx¡Ê??e£¬e?£¬ËùÒÔµ±g¡ä(x)£½0ʱ£¬x£½1. 1

µ±¡Üx<1ʱ£¬g¡ä(x)>0£»µ±10£¬??1

½âµÃ1

˼άÉý»ª º¯ÊýµÄÁãµã¸öÊý¿Éת»¯Îªº¯ÊýͼÏóµÄ½»µã¸öÊý£¬È·¶¨²ÎÊý·¶Î§Ê±Òª¸ù¾Ýº¯ÊýµÄÐÔÖÊ»­³ö´óÖÂͼÏ󣬳ä·ÖÀûÓõ¼Êý¹¤¾ßºÍÊýÐνáºÏ˼Ï룮

¸ú×ÙѵÁ·2 ÒÑÖªº¯Êýf(x)£½xln x£¬g(x)£½£­x2£«ax£­3(aΪʵÊý)£¬Èô·½³Ìg(x)£½2f(x)ÔÚÇø¼ä

?1£¬e?ÉÏÓÐÁ½¸ö²»µÈʵ¸ù£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

?e?

½â ÓÉg(x)£½2f(x)£¬

3

¿ÉµÃ2xln x£½£­x2£«ax£­3£¬a£½x£«2ln x£«£¬

x3

Éèh(x)£½x£«2ln x£«(x>0)£¬

x

23?x£«3??x£­1?

ËùÒÔh¡ä(x)£½1£«£­2£½. xxx2

1?

ËùÒÔxÔÚ??e£¬e?Éϱ仯ʱ£¬h¡ä(x)£¬h(x)µÄ±ä»¯Çé¿öÈçÏ£º

x h¡ä(x) ?1£¬1? ?e?£­ 1 0 (1£¬e) £«