(ÍêÕûword°æ)³õÖÐÊýѧ¶þ´Îº¯Êý¾­µä×ۺϴóÌâÁ·Ï°¾í(2) ÏÂÔØ±¾ÎÄ

15¡¢½â£º£¨1£©ÓÉÌâÒâ¿ÉÉèÅ×ÎïÏߵĽâÎöʽΪ£®

Å×ÎïÏß¹ýÔ­µã£¬

£®

£®

Å×ÎïÏߵĽâÎöʽΪ£¬

¼´£®

£¨2£©Èçͼ1£¬µ±ËıßÐÎÊÇÆ½ÐÐËıßÐÎʱ£¬

£®

ÓÉ£¬

µÃ£¬£¬

£¬£®

µãµÄºá×ø±êΪ£®

½«´úÈ룬

µÃ£¬

£»

¸ù¾ÝÅ×ÎïÏߵĶԳÆÐÔ¿ÉÖª£¬ÔÚ¶Ô³ÆÖáµÄ×ó²àÅ×ÎïÏßÉÏ´æÔڵ㣬ʹµÃËıßÐÎÊÇÆ½ÐÐËıßÐΣ¬´ËʱµãµÄ×ø±êΪ

£¬

µ±ËıßÐÎ

?

£¨3£©Èçͼ2£¬ÓÉÅ×ÎïÏߵĶԳÆÐÔ¿ÉÖª£º

ÊÇÆ½ÐÐËıßÐÎʱ£¬µã¼´Îªµã£¬´ËʱµãµÄ×ø±êΪ£®????

£¬£®

ÈôÓëÏàËÆ£¬

±ØÐëÓУ®

Éè½»Å×ÎïÏߵĶԳÆÖáÓڵ㣬

ÏÔÈ»£¬

Ö±ÏߵĽâÎöʽΪ£®

ÓÉ£¬µÃ£¬£®

£®

¹ý×÷Öᣬ

ÔÚÖУ¬£¬£¬

£®

£®£®

Óë²»ÏàËÆ£¬

ͬÀí¿É˵Ã÷ÔÚ¶Ô³ÆÖá×ó±ßµÄÅ×ÎïÏßÉÏÒ²²»´æÔÚ·ûºÏÌõ¼þµÄµã£®

ËùÒÔÔÚ¸ÃÅ×ÎïÏßÉϲ»´æÔڵ㣬ʹµÃÓëÏàËÆ£®

16¡¢½â£º£¨1£©¡ß µãB(-2,m)ÔÚÖ±Ïßy=-2x-1ÉÏ£¬

¡à m=-2¡Á(-2)-1=3. ¡à B(-2,3)

¡ß Å×ÎïÏß¾­¹ýÔ­µãOºÍµãA£¬¶Ô³ÆÖáΪx=2£¬

¡à µãAµÄ×ø±êΪ(4,0) . ÉèËùÇóµÄÅ×ÎïÏß¶ÔÓ¦º¯Êý¹ØÏµÊ½Îªy=a(x-0)(x-4).

½«µãB(-2,3)´úÈëÉÏʽ£¬µÃ3=a(-2-0)(-2-4)£¬¡à .

¡à ËùÇóµÄÅ×ÎïÏß¶ÔÓ¦µÄº¯Êý¹ØÏµÊ½Îª£¬¼´.

£¨2£©¢ÙÖ±Ïßy=-2x-1ÓëyÖá¡¢Ö±Ïßx=2µÄ½»µã×ø±ê·Ö±ðΪD(0,-1) E(2,-5).

¹ýµãB×÷BG¡ÎxÖᣬÓëyÖá½»ÓÚF¡¢Ö±Ïßx=2½»ÓÚG£¬ ÔòBG¡ÍÖ±Ïßx=2£¬BG=4.

ÔÚRt¡÷BGCÖУ¬BC=.

¡ß CE=5£¬ ¡à CB=CE=5.

¢Ú¹ýµãE×÷EH¡ÎxÖᣬ½»yÖáÓÚH£¬ÔòµãHµÄ×ø±êΪH(0,-5).

ÓÖµãF¡¢DµÄ×ø±êΪF(0,3)¡¢D(0,-1)£¬ ¡à FD=DH=4£¬BF=EH=2£¬¡ÏBFD=¡ÏEHD=90¡ã. ¡à ¡÷DFB¡Õ¡÷DHE £¨SAS£©£¬ ¡à BD=DE.

¼´DÊÇBEµÄÖеã. £¨3£©´æÔÚ. ÓÉÓÚPB=PE£¬¡à µãPÔÚÖ±ÏßCDÉÏ£¬

¡à ·ûºÏÌõ¼þµÄµãPÊÇÖ±ÏßCDÓë¸ÃÅ×ÎïÏߵĽ»µã. ÉèÖ±ÏßCD¶ÔÓ¦µÄº¯Êý¹ØÏµÊ½Îªy=kx+b.

½«D(0,-1) C(2,0)´úÈ룬µÃ. ½âµÃ .

¡à Ö±ÏßCD¶ÔÓ¦µÄº¯Êý¹ØÏµÊ½Îªy=x-1.