¾øÃÜ¡ïÆô·â²¢Ê¹ÓÃÍê±Ïǰ
2015ÄêÆÕͨ¸ßµÈѧУÕÐÉúÈ«¹úͳһ¿¼ÊÔ£¨È«¹ú¾í1£©
ÎÄ¿ÆÊýѧ
±¾ÊÔ¾í·ÖµÚ¢ñ¾í£¨Ñ¡ÔñÌ⣩ºÍµÚ¢ò¾í£¨·ÇÑ¡ÔñÌ⣩Á½²¿·Ö¡£µÚ¢ñ¾í1ÖÁ3Ò³£¬µÚ¢ò¾í4ÖÁ6Ò³¡£ ×¢ÒâÊÂÏ
1. ´ðÌâǰ£¬¿¼ÉúÎñ±Ø½«×Ô¼ºµÄ×¼¿¼Ö¤ºÅ¡¢ÐÕÃûÌîдÔÚ´ðÌ⿨ÉÏ¡£¿¼ÉúÒªÈÏÕæºË¶Ô´ðÌ⿨ÉÏÕ³ÌùµÄ
ÌõÐÎÂëµÄ¡°×¼¿¼Ö¤ºÅ¡¢ÐÕÃû¡¢¿¼ÊÔ¿ÆÄ¿¡±Ó뿼Éú±¾ÈË×¼¿¼Ö¤ºÅ¡¢ÐÕÃûÊÇ·ñÒ»Ö¡£
2. µÚ¢ñ¾íÿСÌâÑ¡³ö´ð°¸ºó£¬ÓÃ2BǦ±Ê°Ñ´ðÌ⿨É϶ÔÓ¦ÌâÄ¿µÄ´ð°¸±êºÅÍ¿ºÚ£»ÈçÐè¸Ä¶¯£¬ÓÃÏðƤ
²Á¸É¾»ºó£¬ÔÚѡͿÆäËû´ð°¸±êºÅ¡£µÚ¢ò¾í±ØÐëÓÃ0.5ºÁÃ׺Úɫǩ×Ö±ÊÊéд×÷´ð.ÈôÔÚÊÔÌâ¾íÉÏ×÷´ð£¬´ð°¸ÎÞЧ¡£
3. ¿¼ÊÔ½áÊø£¬¼à¿¼Ô±½«ÊÔÌâ¾í¡¢´ðÌ⿨һ²¢Êջء£
µÚ¢ñ¾í
Ò»¡¢Ñ¡ÔñÌ⣺±¾´óÌâ¹²12СÌ⣬ÿСÌâ5·Ö£¬ÔÚÿСÌâ¸ø³öµÄËĸöÑ¡ÏîÖУ¬Ö»ÓÐÒ»ÏîÊÇ·ûºÏÌâĿҪÇóµÄ¡£
£¨1£©ÒÑÖª¼¯ºÏA={x|x=3n+2,n ?N},B={6,8,12,14},Ôò¼¯ºÏA ?BÖÐÔªËØµÄ¸öÊýΪ
£¨A£©5
£¨B£©4
£¨C£©3
£¨D£©2
£¨2£©ÒÑÖªµãA£¨0,1£©£¬B£¨3,2£©£¬ÏòÁ¿AC=£¨-4£¬-3£©£¬ÔòÏòÁ¿BC=
£¨A£©£¨-7£¬-4£© £¨B£©£¨7,4£© £¨C£©£¨-1,4£© £¨D£©£¨1£¬4£© £¨3£©ÒÑÖª¸´ÊýzÂú×㣨z-1£©i=i+1£¬Ôòz=
£¨A£©-2-I £¨B£©-2+I £¨C£©2-I £¨D£©2+i
£¨4£©Èç¹û3¸öÕûÊý¿É×÷Ϊһ¸öÖ±½ÇÈý½ÇÐÎÈýÌõ±ßµÄ±ß³¤£¬Ôò³ÆÕâ3¸öÊýΪһ×é¹´¹ÉÊý£¬´Ó1£¬2£¬3£¬
4£¬5ÖÐÈÎÈ¡3¸ö²»Í¬µÄÊý£¬Ôò3¸öÊý¹¹³ÉÒ»×é¹´¹ÉÊýµÄ¸ÅÂÊΪ
10111 £¨B£© £¨C£© £¨D£© 3510201£¨5£©ÒÑÖªÍÖÔ²EµÄÖÐÐÄÔÚ×ø±êԵ㣬ÀëÐÄÂÊΪ£¬EµÄÓÒ½¹µãÓëÅ×ÎïÏßC£ºy2=8xµÄ½¹µãÖØºÏ£¬A£¬
2 £¨A£©
BÊÇCµÄ×¼ÏßÓëEµÄÁ½¸ö½¹µã£¬Ôò|AB|= £¨A£©3 £¨B£©6 £¨C£©9 £¨D£©12
£¨6£©¡¶¾ÅÕÂËãÊõ¡·ÊÇÎÒ¹ú¹Å´úÄÚÈݼ«Îª·á¸»µÄÊýѧÃûÖø£¬ÊéÖÐÓÐÈçÏÂÎÊÌâ:¡°½ñÓÐίÃ×ÒÀÔ«Äڽǣ¬ÏÂÖܰ˳ߣ¬¸ßÎå³ß¡£ÎÊ:»ý¼°ÎªÃ×¼¸ºÎ?¡±ÆäÒâ˼Ϊ:¡°ÔÚÎÝÄÚǽ½Ç´¦¶Ñ·ÅÃ×(Èçͼ£¬Ã×¶ÑΪһ¸öÔ²×¶µÄËÄ·ÖÖ®Ò»)£¬Ã׶ѵײ¿µÄ»¡¶ÈΪ8³ß£¬Ã׶ѵĸßΪ5³ß£¬ÎÊÃ׶ѵÄÌå»ýºÍ¶Ñ·ÅµÄÃ׸÷Ϊ¶àÉÙ?¡±ÒÑÖª1õúÃ×µÄÌå»ýԼΪ1.62Á¢·½³ß£¬Ô²ÖÜÂÊԼΪ3£¬¹ÀËã³ö¶Ñ·ÅõúµÄÃ×Ô¼ÓÐ
A.14õú B.22õú C.36õú D.66õú
Êǹ«²îΪ1µÄµÈ²îÊýÁУ¬
Ôò
=4
£¬
=
£¨7£©ÒÑÖª
£¨A£© £¨B£© £¨C£©10 £¨D£©12
£¨8£©º¯Êýf(x)=µÄ²¿·ÖͼÏñÈçͼËùʾ£¬Ôòf(x)µÄµ¥µ÷µÝ¼õÇø¼äΪ
£¨A£©£¨k
-, k
-£©,k
£¨A£©£¨2k-, 2k-£©,k
£¨A£©£¨k-, k-£©,k
£¨A£©£¨2k-, 2k-£©,k
£¨9£©Ö´ÐÐÓÒÃæµÄ³ÌÐò¿òͼ£¬Èç¹ûÊäÈëµÄt=0.01£¬ÔòÊä³öµÄn=
£¨A£©5 £¨B£©6 £¨C£©7 £¨D£©8 £¨10£©ÒÑÖªº¯Êý
£¬ÇÒf£¨a£©=-3£¬Ôòf£¨6-a£©=
£¨A£©-
7531 £¨B£©- £¨C£©- £¨D£©- 4444£¨11£©Ô²Öù±»Ò»¸öÆ½Ãæ½ØÈ¥Ò»²¿·ÖºóÓë°ëÇò£¨°ë¾¶Îªr£©×é³ÉÒ»¸ö¼¸ºÎÌ壬¸Ã¼¸ºÎÌåÈýÊÓͼÖеÄÕýÊÓͼºÍ¸©ÊÓͼÈçͼËùʾ£¬Èô¸Ã¼¸ºÎÌåµÄ±íÃæ»ýΪ16+20¦Ð£¬Ôòr=
£¨A£©1 (B) 2 (C) 4 (D) 8
£¨12£©É躯Êýy=f£¨x£©µÄͼÏñ¹ØÓÚÖ±Ïßy=-x¶Ô³Æ£¬ÇÒf£¨-2£©+f£¨-4£©=1£¬Ôòa= £¨A£©-1 £¨B£©1 £¨C£©2 £¨D£©4
µÚ¢ò¾í
×¢ÒâÊÂÏ
µÚ¢ò¾í¹²3Ò³£¬ÐëÓúÚɫīˮǩ×Ö±ÊÔÚ´ðÌ⿨ÉÏ×÷´ð¡£ÈôÔÚÊÔ¾íÉÏ×÷´ð£¬´ð°¸ÎÞЧ¡£ ±¾¾í°üÀ¨±Ø¿¼ÌâºÍÑ¡¿¼ÌâÁ½²¿·Ö¡£µÚ13Ìâ~µÚ21ÌâΪ±Ø¿¼Ì⣬ÿ¸öÊÔÌ⿼Éú¶¼±ØÐë×÷´ð¡£µÚ22Ìâ~ µÚ24ÌâΪѡ¿¼Ì⣬¿¼Éú¸ù¾ÝÒªÇó×ö´ð¡£
¶þ.Ìî¿ÕÌ⣺±¾´óÌâ¹²4СÌ⣬ÿСÌâ5·Ö
£¨13£©ÔÚÊýÁÐ{an}ÖУ¬ a1=2,an+1=2an, SnΪ{an}µÄǰnÏîºÍ¡£Èô-Sn=126£¬Ôòn=.
£¨14£©ÒÑÖªº¯Êýf(x)=ax+x+1µÄͼÏñÔڵ㣨1£¬f(1)£©´¦µÄÇÐÏß¹ýµã£¨2,7£©£¬Ôòa= .
3
£¨15£©x,yÂú×ãÔ¼ÊøÌõ¼þ
2
£¬Ôòz=3x+yµÄ×î´óֵΪ.
y2£¨16£©ÒÑÖªFÊÇË«ÇúÏßC£ºx-=1µÄÓÒ½¹µã£¬PÊÇCµÄ×óÖ§ÉÏÒ»µã£¬A£¨0,66£©.µ±¡÷APFÖܳ¤8×îСÊÇ£¬¸ÃÈý½ÇÐεÄÃæ»ýΪ