ʱ¼äÐòÁлعéÄ£ÐÍ
1 ¸ÉÔ¤·ÖÎö
1.1 ¸ÅÄî¼°Ä£ÐÍ
BoxºÍTiaoÒýÈëµÄ¸ÉÔ¤·ÖÎöÌṩÁ˶ÔÓÚ¸ÉÔ¤Ó°Ïìʱ¼äÐòÁеÄЧ¹û½øÐÐÆÀ¹ÀµÄÒ»¸ö¿ò¼Ü£¬¼ÙÉè¸ÉÔ¤ÊÇ¿ÉÒÔͨ¹ýʱ¼äÐòÁеľùÖµº¯Êý»òÕßÇ÷ÊÆ¶ø¶Ô¹ý³ÌÊ©¼ÓÓ°Ï죬¸ÉÔ¤¿ÉÒÔ×ÔÈ»²úÉúÒ²¿ÉÒÔÈËΪʩ¼ÓµÄ£¬Èç¹ú¼ÒµÄºê¹Ûµ÷¿ØµÈ¡£ ÆäÄ£ÐÍ¿ÉÒÔÈçϱíʾ£º
ÆäÖÐmt´ú±í¾ùÖµµÄ±ä»¯£¬NtÊÇARIMA¹ý³Ì¡£
1.2 ¸ÉÔ¤µÄ·ÖÀà
½×ÌÝÏìÓ¦¸ÉÔ¤
Âö³åÏìÓ¦¸ÉÔ¤
1.3 ¸ÉÔ¤µÄʵÀý·ÖÎö 1.3.1 Ä£Ðͳõ̽
¶ÔÊý»¯º½¿Õ¿ÍÔËÀï³ÌµÄ¸ÉԤģÐ͵ĹÀ¼Æ
> data(airmiles) >
acf(as.vector(diff(diff(window(log(airmiles),end=c(2001,8)),12))),lag.max=48)#ÓÃwindowµÃµ½ÔÚ911ʼþÒÔǰµÄδ°®¸ÉÔ¤µÄʱ¼äÐòÁÐ×Ó¼¯
¶ÔÔÝÓõÄÄ£ÐͽøÐÐÕï¶Ï
>fitmode<-arima(airmiles,order=c(0,1,1),seasonal=list(order=c(0,1,0)))
> tsdiag(fitmode)
´ÓÕï¶Ïͼ¿ÉÒÔ¿´³ö´æÔÚÈý¸öÒì³£µã£¬acfÔÚ12½×´æÔڸ߶ÈÏà¹ØÒò´ËÔÚ¼¾½ÚÖмÓÈëMA£¨1£©ÏµÊý¡£
1.3.2 ÄâºÏ´øÓиÉÔ¤ÐÅÏ¢µÄÄ£ÐÍ
º¯Êý£º
arimax(x, order = c(0, 0, 0), seasonal = list(order = c(0, 0, 0), period = NA),
xreg = NULL, include.mean = TRUE, transform.pars = TRUE, fixed = NULL, init = NULL, method = c(\list(),
kappa = 1e+06, io = NULL, xtransf, transfer = NULL)
arimaxº¯ÊýÀ©Õ¹ÁËarimaº¯Êý£¬¿ÉÒÔ´¦Àíʱ¼äÐòÁÐÖиÉÈÅ·ÖÎö¼°Òì³£Öµ¡£¼ÙÉè¸ÉÈÅÓ°Ïì¹ý³ÌµÄ¾ùÖµ£¬Ïà¶ÔδÊܸÉÈŵÄÎÞ¼ÛÖµº¯ÊýµÄÆ«ÀëÓÃһЩбäÁ¿µÄARMAÂ˲¨Æ÷µÄÊä³öÕâÖÖÀ´±íʾ£¬Æ«²î±»³Æ×÷´«µÝº¯Êý¡£¹¹Ôì´«µÝº¯ÊýµÄбäÁ¿Í¨¹ýxtransf²ÎÊýÒÔ¾ØÕó»òÕßdata.frameµÄÐÎʽ´úÈëarimaxº¯Êý¡£
air.m1=arimax(log(airmiles),order=c(0,1,1),seasonal=list(order=c(0,1,1),
period=12),xtransf=data.frame(I911=1*(seq(airmiles)==69), I911=1*(seq(airmiles)==69)),
transfer=list(c(0,0),c(1,0)),xreg=data.frame(Dec96=1*(seq(airmiles)==12),
Jan97=1*(seq(airmiles)==13),Dec02=1*(seq(airmiles)==84)),method='ML')
> air.m1
Call:
arimax(x = log(airmiles), order = c(0, 1, 1), seasonal = list(order = c(0, 1,
1), period = 12), xreg = data.frame(Dec96 = 1 * (seq(airmiles) == 12), Jan97 = 1 *
(seq(airmiles) == 13), Dec02 = 1 * (seq(airmiles) == 84)), method = \
xtransf = data.frame(I911 = 1 * (seq(airmiles) == 69), I911 = 1 * (seq(airmiles) ==
69)), transfer = list(c(0, 0), c(1, 0)))
Coefficients:
ma1 sma1 Dec96 Jan97 Dec02 I911-MA0 I911.1-AR1 I911.1-MA0
-0.3825 -0.6499 0.0989 -0.0690 0.0810 -0.0949 0.8139 -0.2715
s.e. 0.0926 0.1189 0.0228 0.0218 0.0202 0.0462 0.0978 0.0439
sigma^2 estimated as 0.0006721: log likelihood = 219.99, aic = -423.98
»Í¼
plot(log(airmiles),ylab=\points(fitted(air.m1))
Nine11p=1*(seq(airmiles)==69) plot(ts(Nine11p*(-0.0949)+
filter(Nine11p,filter=.8139,method='recursive',side=1)*(-0.2715), frequency=12,start=1996),type='h',ylab='9/11 Effects') abline(h=0)
´ÓÉÏͼ¿ÉÒÔ¿´³öÔÚ2003Äêµ×ºó£¬911ʼþµÄÓ°ÏìЧӦ²ÅƽϢ£¬º½°à¿ÍÔËÁ¿»Ö¸´ÁËÕý³£¡£
2 Òì³£Öµ
ÔÚʱ¼äÐòÁÐÖÐÒì³£ÓÐÁ½ÖÖ£¬¿É¼ÓÒì³£ºÍÐÂÏ¢Òì³££¬·Ö±ð¼ÇAOºÍIO¡£
2.1 Ò쳣ֵʾÀý 2.1.1 Ä£ÄâÊý¾Ý
Ä£ÄâÒ»°ãµÄARIMA£¨1£¬0£¬1£©£¬È»ºó¹ÊÒ⽫µÚ10¸ö¹Û²âÖµ±ä³ÉÒì³£Öµ10.
> set.seed(12345) > y=arima.sim(model=list(ar=0.8,ma=0.5),n.start=158,n=100) > y
Time Series: Start = 1 End = 100
Frequency = 1
[1] 0.49180881 -0.22323665 -0.99151270 -0.73387818 -0.67750094 -1.14472133 -2.14844671 -2.49530794
[9] -1.50355358 -2.12615253 -0.55651713 0.41326344 0.51869129 1.86210605 2.19935472 2.60210165
[17] 0.79130003 0.26265426 2.93414857 3.99045889 3.60822678 1.17845765 -0.87682948 -1.20637799
[25] -1.39501221 -0.18832171 1.22999827 1.46814850 2.66647491 3.23417469 2.60349624 1.49513215
[33] 1.48852142 0.95739219 1.30011654 1.73444053 2.84825103 3.73214655 4.23579456 3.37049790
[41] 2.02783955 1.41218929 -0.29974176 -1.58712591 -1.34080878 0.10747609 1.44651081 1.67809487
[49] -0.34663129 -0.50291459 0.01739605 -0.01426474 0.94217204 0.39046221 -0.39883530 1.60638918
[57] 1.70668201 1.37518194 1.91824534 0.14254056 -2.88169481 -3.30372327 -1.74068408 -3.24868057
[65] -3.89415683 -3.45920240 -1.11042078 0.67959744 0.67051084 0.44394061 1.89536060 2.36063873
[73] 2.00559443 0.86443324 0.46847572 0.72338498 1.60215098 1.25922277 1.53180859 0.96289779
[81] 1.07712188 1.42386354 0.56318008 -0.46689543 -0.91861106 -1.92947085 -2.18188785 -1.02759087
[89] 2.31088272 3.13847319 3.01237881 3.43454807 2.31539494 2.44909873 2.91589141 1.12648908
[97] -0.08123871 0.44412579 0.26116418 -0.45815484 > y[10]<-10
2.1.2 Ä£Ðͳõ²½ÅжÏ
> acf(y)
> pacf(y)
> eacf(y) AR/MA
0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 x x o o o o o o o o o o o o 1 o o o o o o o o o o o o o o 2 o o o o o o o o o o o o o o 3 o x o o o o o o o o o o o o 4 o x o o o o o o o o o o o o 5 x x o o o o o o o o o o o o 6 x o o o o o o o o o o o o o 7 o x o o o o o o o o o o o o
´ÓÈý¸öµÄ½á¹ûÀ´¿´£¬¿ÉÒÔ³õ²½·ÖÎöyÊÇAR£¨1£©Ä£ÐÍ
2.1.3 ¶ÔÄ£ÐÍʱÐÐÄâºÏ
> m1=arima(y,order=c(1,0,0)) > m1
Call:
arima(x = y, order = c(1, 0, 0))
Coefficients:
ar1 intercept 0.5419 0.7096 s.e. 0.0831 0.3603
2.1.4 ¶ÔÄ£ÄâÄ£ÐͽøÐÐÒ쳣ֵ̽²â
> detectAO(m1)
[,1] [,2] [,3] ind 9.000000 10.000000 11.000000 lambda2 -4.018412 9.068982 -4.247367
> detectAO(m1,robust=F) [,1] ind 10.000000 lambda2 7.321709 > detectIO(m1)
[,1] [,2] ind 10.000000 11.00000 lambda1 7.782013 -4.67421
AO̽²â½á¹ûÈÏΪµÚ9£¬10£¬11.¿ÉÄܳöÏÖÒì³£Öµ¡£IO̽²âÈÏΪµÚ10£¬11¿ÉÄܳöÏÖÁËÒì³£Öµ¡£ÓÉÓÚ¼ìÑéͳ¼ÆÁ¿µÄ×î´óȡֵ³öÏÖÔÚ10ÇÒAO¡µIO£¬ËùÒÔ¸üÈÏΪ³öÏÖÒì³£ÖµÔÚµÚ10ÊÇAOÒì³£
2.1.5 ¿¼ÂÇÒì³£ÖµµÄʱ¼äÐòÁÐÄâºÏ
>
m2=arima(y,order=c(1,0,0),xreg=data.frame(AO=seq(y)==10)) > m2
Call: arima(x = y, order = c(1, 0, 0), xreg = data.frame(AO = seq(y) == 10))
Coefficients:
ar1 intercept AO 0.8072 0.5698 10.9940 s.e. 0.0570 0.5129 0.8012
sigma^2 estimated as 1.059: log likelihood = -145.29, aic = 296.58
> detectAO(m2)
[1] \> detectIO(m2)
[1] \
2.1.6 ±È½ÏÓÐÎÞÒì³£ÖµµÄÁ½Ä£ÐÍ
ÔٴνøÐÐÒ쳣ֵ̽²âʱ£¬Ã»Óз¢ÏÖÒì³£Öµ£¬ÑéÖ¤×î³õÐòÁÐÒì³£³öÏÖÔÚ10µÄ²Â²â ¶Ô±ÈÄ£ÐÍ1ºÍ2µÄÄâºÏЧ¹û > tsdiag(m2)
> tsdiag(m1)
ËäȻģÐͶþµÄ²Ð²îͨ¹ýÒýÈëÒì³£ÖµºóÕýÌ«ÐÔÊÇÏÔÐԵ쬵«ÊÇÆäacfºÍPÖµ½á¹ûÏÔʾÒýÈëMA£¨1£©ÊDZØÒªµÄ¡£
2.1.7 ÖØÐÂÄâºÏÊʵ±Ä£ÐÍ
>
m3=arima(y,order=c(1,0,1),xreg=data.frame(AO=seq(y)==10)) > detectAO(m3)
[1] \> detectIO(m3)
[1] \> tsdiag(m3) > m3
Call:
arima(x = y, order = c(1, 0, 1), xreg = data.frame(AO = seq(y) == 10))
Coefficients:
ar1 ma1 intercept AO 0.6596 0.6154 0.5850 11.1781 s.e. 0.0799 0.0796 0.4132 0.4755
sigma^2 estimated as 0.793: log likelihood = -131.16, aic = 270.33
Ä£Ð͵ÄÄâºÏЧ¹ûÊÇÏÔÖøÌá¸ß¡£AcfºÍP Öµ¼ìÑéÒ²Ò»²½Í¨¹ý¡£
> plot(y,type='b')
> arrows(40,7,11,9.8,length=0.8,angle=30)
2.2 ÁíÒ»¸öÏÖʵÀý×Ó
Êý¾Ý°üÖеÄco2
>
m1.co2=arima(co2,order=c(0,1,1),seasonal=list(order=c(0,1,1),period=12)) > m1.co2
Call:
arima(x = co2, order = c(0, 1, 1), seasonal = list(order = c(0, 1, 1), period = 12))
Coefficients:
ma1 sma1 -0.5792 -0.8206 s.e. 0.0791 0.1137
sigma^2 estimated as 0.5446: log likelihood = -139.54, aic = 283.08
> detectAO(m1.co2) [1] \> detectIO(m1.co2) [,1] ind 57.000000 lambda1 3.752715
ÄâºÏº¬ÓÐÐÂÏ¢Òì³£µÄÄ£ÐÍ
>
m4.co2=arimax(co2,order=c(0,1,1),seasonal=list(order=c(0,1,1),period=12),io=c(57)) > m4.co2
Call:
arimax(x = co2, order = c(0, 1, 1), seasonal = list(order = c(0, 1, 1), period = 12), io = c(57))
Coefficients:
ma1 sma1 IO-57 -0.5925 -0.8274 2.6770 s.e. 0.0775 0.1016 0.7246
sigma^2 estimated as 0.4869: log likelihood = -133.08, aic = 272.16
Ä£ÐÍÏÔʾAICÏà±È֮ǰģÐÍÒ»¸üСÁË¡£¶øÇÒIOЧӦµÄP Öµ=2.677/0.7246ÊÇÏÔÖøµÄ.
3 αÏà¹Ø
ÔÚʱ¼äÐòÁÐÖÐÒýÈëбäÁ¿£¬Èç·ÇÖÞÄÁ²Ý²úÁ¿Í¨³£ÓëÄ³Ð©ÆøºòÖ¸±êÃÜÇÐÏà¹Ø£¬ÔÚÕâÖÖ·¢ÎÊÏÂÔÚͨ¹ýÔÚʱ¼äÐòÁÐÄ£ÐÍÖÐÄÉÈëÏà¹ØµÄбäÁ¿£¬½«ÓÐÖúÓÚ¸üºÃµÄÁ˽â»ù´¡¹ý³ÌÒÔ¼°µÃµ½¸üΪ׼ȷµÄÔ¤²â¡£
3.1 Ä£ÄâÊý¾Ý
set.seed(12345) X=rnorm(105)
Y=zlag(X,2)+.5*rnorm(105)
X=ts(X[-(1:5)],start=1,freq=1) Y=ts(Y[-(1:5)],start=1,freq=1) ccf(X,Y,ylab='CCF')
´ÓccfÖпÉÒÔ¿´³öÁ½Ñù±¾ÔÚÖͺó2ÆÚ´æÔÚÃ÷ÏÔµÄÏà¹ØÐÔ¡£
3.2 Ä̲úÁ¿Óë¶ÔÊý»¯·¢µçÁ¿µÄαÏà¹Ø
data(milk)
data(electricity)
milk.electricity=ts.intersect(milk,log(electricity))# intersectº¯Êý½«¶à¸öʱ¼äÐòÁкϲ¢ÔÚÒ»¸öÈÝÆ÷ÖС£
ccf(as.numeric(milk.electricity[,1]),as.numeric(milk.electricity[,2]),
main='milk & electricity',ylab='CCF')
Á½ÕßÏà¹ØÐÔËÆºõ·Ç³£µÄÇ¿£¬µ«Êµ¼ÊÉÏÕâÊÇÒòΪËûÃǵĸ÷×Ô´æÔÚºÜÇ¿µÄ×ÔÏà¹ØÐÔ¡£
4 Ô¤°×»¯ÓëËæ»ú»Ø¹é
¶ÔÓÚ¾ßÓÐÇ¿×ÔÏà¹ØµÄÊý¾Ý¶øÑÔ£¬ºÜÄÑÆÀ¹ÀÁ½¸ö¹ý³Ì֮ǰÊÇ·ñ´æÔÚÒÀÀµ¹ØÏµ£¬Òò¶ø£¬Ò˽«xºÍyÖ®¼äµÄÏßÐÔ¹ØÏµ¹ØÁª´ÓÆä¸÷×ÔÏà¹Ø¹ØÏµÖаþÀë³öÀ´¡£Ô¤°×»¯ÕýÊÇΪÁË´ïµ½´ËÄ¿µÄµÄÒ»¸öÓÐЧ¹¤¾ß¡£
4.1 Å£ÄÌÓëµçÁ¿µÄCCFÔ¤°×»¯Ð£Õý
> data(milk) >
me.dif=ts.intersect(diff(diff(milk,12)),diff(diff(log(electricity),12))) >
prewhiten(as.vector(me.dif[,1]),as.vector(me.dif[,2]),ylab='CCf')
ÔٴηÖÎöÁ½ÕßµÄÏà¹ØÐÔ£¬´Ëʱ³ýÁËʱÖÍ-3¾ßÓбßÔµÏÔÖøÍ⣬ÆäËûµØ·½Ã»ÓÐÒ»¸öÏà¹ØÏµÊýÊÇÏÔÖøµÄ¡£»Ï¶¯·ÀÕð Õâ¸ø³öµÄ35¸öÑù±¾»¥Ïà¹ØÏµÂ¦ÖдóÔ¼»á³öÏÖ 1.75=35x0.05¸öÐé¼Ù¾¯±¨£¬¼´Õâ¸ö-3ϵÊýµÄÏÔÖø¿ÉÄܾÍÊÇÒ»¸öÐé¼ÙµÄÐÅÏ¢¡£Òò´Ë£¬Å£ÄÌÓëºÄµçÁ¿ÐòÁÐʵ¼ÊÉÏÊÇ»ù±¾²»Ïà¹ØµÄ¡£´Ó¶øÈÏΪ֮ǰÔÚÔʼÊý¾ÝÐòÁÐÖз¢ÏÖµÄÇ¿»¥Ïà¹ØÊÇαÏà¹ØµÄ¡£
4.2 Log£¨ÏúÊÛÁ¿£©Óë¼Û¸ñÊý¾ÝµÄÏà¹ØÐÔ·ÖÎö 4.2.1 Ô¤°×»¯´¦Àí
plot(bluebird,yax.flip=T)#»Á½ÕßµÄʱ¼äÐòÁжԱÈͼ
Ô¤°×»¯´¦Àí
prewhiten(y=diff(bluebird)[,1],x=diff(bluebird)[,2],ylab='ccf')
´ÓCCFͼ¿ÉÒÔ¿´³öÁ½ÕßÖ®¼äÖ»ÔÚʱÖÍ0´¦ÊÇÏÔÖøµÄ¡£¼´¼Û¸ñÓëÏúÊÛÁ¿Ö®¼ä´æÔÚןÜÇ¿µÄͬÆÚ¸ºÏà¹Ø¹ØÏµ¡£¼´µ±ÆÚÌá¸ß¼Û¸ñ½«µ¼ÖÂÏúÊÛÁ¿µÄµ±ÆÚϽµ¡£
4.2.2 Ò»°ãÏßÐԻعé·ÖÎö
> sales=bluebird[,1] > price=bluebird[,2]
> chip.m1=lm(sales~price) > summary(chip.m1)
Call:
lm(formula = sales ~ price)
Residuals:
Min 1Q Median 3Q Max
-0.54950 -0.12373 0.00667 0.13136 0.45170
Coefficients:
Estimate Std. Error t value Pr(>|t|) (Intercept) 15.890 0.217 73.22 <2e-16 *** price -2.489 0.126 -19.75 <2e-16 *** ---
Signif. codes: 0 ¡®***¡¯ 0.001 ¡®**¡¯ 0.01 ¡®*¡¯ 0.05 ¡®.¡¯ 0.1 ¡® ¡¯ 1
Residual standard error: 0.188 on 102 degrees of freedom Multiple R-squared: 0.7926, Adjusted R-squared: 0.7906 F-statistic: 389.9 on 1 and 102 DF, p-value: < 2.2e-16
> acf(residuals(chip.m1),ci.type='ma')
ÓÉÓڻعéºóµÄ²Ð²î×ÔÏà¹ØÔÚËĽ×ÊÇÏÔÖøµÄ£¬Òò´ËÎÒÃÇÒª¶ÔÆä½øÐÐÔÙÒ»²½µÄ·ÖÎö
> eacf(residuals(chip.m1)) AR/MA
0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 x x x x o o x x o o o o o o 1 x o o x o o o o o o o o o o 2 x x o x o o o o o o o o o o 3 x x o x o o o o o o o o o o 4 o x x o o o o o o o o o o o 5 x x x o x o o o o o o o o o 6 x x o x x x o o o o o o o o 7 x o x o o o o o o o o o o o
EacfÍÆ¼öÆä²Ð²î°üº¬Ò»¸öÒÔ£¨1£¬4£©Îª¶¥µãΪµÄÁãÖµÈý½ÇÐΣ¬´Ó¶ø±íÃ÷ÆäΪarma£¨1£¬4£©Ä£ÐÍ£¬Òò´Ë¿É½«¶ÔÊý»¯ÏúÊÛÁ¿ÄâºÏ³É¶ÔÓÚ¼Û¸ñÐòÁеĴøÓÐARMA£¨1£¬4£©Îó²îµÄ»Ø¹éÄ£ÐÍ¡£
4.2.3 Ä£ÄâARMA£¨1£¬4£©³õ̽
> chip.m2=arima(sales,order=c(1,0,4),xreg=data.frame(price)) > chip.m2
Call:
arima(x = sales, order = c(1, 0, 4), xreg = data.frame(price))
Coefficients:
ar1 ma1 ma2 ma3 ma4 intercept price 0.1989 -0.0554 0.2521 0.0735 0.5269 15.7792 -2.4234 s.e. 0.1843 0.1660 0.0865 0.1084 0.1376 0.2166 0.1247
sigma^2 estimated as 0.02556: log likelihood = 42.35, aic = -70.69 ½á¹û±íÃ÷ma1,ma3µÄϵÊý²¢²»ÏÔÖø£¬¼´¿ÉÈÏΪÆäϵÊýΪ0
4.2.4 µ÷ÕûÄ£ÐÍ
>chip.m3=arima(sales,order=c(1,0,4),xreg=data.frame(price),fixed=c(NA,0,NA,0,NA,NA,NA))#µÚÒ»¸öNAÖ¸´úAR1µÄϵÊý£¬µÚÒ»¸ö0Ö¸ma1µÚ¶þ¸öNAÖ¸µÄÊÇma2µÚ¶þ¸ö0Ö¸µÄÊÇma3µÄϵÊý¡£µÚÈý¸önaÖ¸ma4£¬µ¹ÊýµÚ¶þ¸önaÊÇÖ¸½Ø¾àÏî¶ÔÓ¦µÄϵÊý£¬×îºóÒ»¸önaÖ¸µÄÊÇprice¶ÔÓ¦µÄϵÊý¡£ > chip.m3
Call:
arima(x = sales, order = c(1, 0, 4), xreg = data.frame(price), fixed = c(NA,
0, NA, 0, NA, NA, NA))
Coefficients:
ar1 ma1 ma2 ma3 ma4 intercept price 0.1444 0 0.2676 0 0.5210 15.8396 -2.4588 s.e. 0.0985 0 0.0858 0 0.1171 0.2027 0.1166
sigma^2 estimated as 0.02572: log likelihood = 42.09, aic = -74.18 ´ËÄ£Ð͵ÄAR1ϵÊýÏî²¢²»ÏÔÖø£¬ËùÒÔÔٴε÷ÕûÄ£ÐÍ >
chip.m4=arima(sales,order=c(0,0,4),xreg=data.frame(price),fixed=c(0,NA,0,NA,NA,NA)) > chip.m4
Call:
arima(x = sales, order = c(0, 0, 4), xreg = data.frame(price), fixed = c(0, NA, 0, NA, NA, NA))
Coefficients:
ma1 ma2 ma3 ma4 intercept price 0 0.2884 0 0.5416 15.8559 -2.4682 s.e. 0 0.0794 0 0.1167 0.1909 0.1100
sigma^2 estimated as 0.02623: log likelihood = 41.02, aic = -74.05 ´ËʱģÐͽ¨Á¢Íê³É£¬ÓëÒ»°ãÏßÐԻعé±È½Ï£¬Á½Ä£Ð͵ĽؾàÏîÓë¼Û¸ñÏîϵÊýÊÇÏàËÆµÄ£¬µ«ÊÇÓÃʱ¼äÐòÁйÀ¼ÆµÄ±ê×¼Îó²î±ÈÓüòµ¥OLS»Ø¹éËùµÃµÄ½á¹û´óÔ¼µÍ10%£¬Õâ²ûÃ÷ÁËÈçϵĽáÂÛ£¬¼´¼òµ¥µÄOLS¹À¼ÆÁ¿¾ßÓÐÒ»ÖÂÐÔ£¬µ«Ïà¹ØÁªµÄ±ê×¼Îó²îÒ»°ãÈ´ÊDz»¿É¿¿µÄ¡£
4.2.5 ¶Ô×îÖÕÄ£ÐͽøÐÐÕï¶Ï·ÖÎö
tsdiag(chip.m4)
5 ¸½
m2=arima(days,order=c(0,0,2),xreg=data.frame(AO=seq(days)==129))#ÄâºÏº¬ÓÐAOֵʱÓÃxregÉèÖã¬ÈôÎÞIO¿ÉÖ±½ÓÓÃarimaÄâºÏ
m3=arimax(days,order=c(0,0,2),xreg=data.frame(AO=seq(days)== 129),io=c(63))#ÄâºÏº¬ÓÐIOÖµµÄÒªÓÃarimax¡£