工程力学复习题库 判断选择 下载本文

工程力学复习题库

(张问还)

一、

判断题

1-1在力的作用下变形的物体称为变形体。(a)中 1-2物体相对周围物体保持静止称为平衡。(b)中 1-3力是物体间的相互机械作用。(a)易 1-4力只能使物体的运动状态发生改变。(b)难 1-5力只能使物体产生变形。(b)难

1-6力对物体的作用效应取决于:力的大小、方向、力的作用点。(a)易 1-7力是矢量,所以需要表示其大小和方向。(b)难

1-8只要一个力系使物体保持静止,则称该力系为平衡力系。(b)难

1-9若两个力系分别作用于一个物体上,其效应相同,则该二力系为等效力系。(a)难

1-10一个物体受两个力大小相等、方向相反、且作用在同一直线上,则该物体一定平衡。(a)易

1-11如果一物体受两个力作用保持平衡时,这两个力一定是大小相等、方向相反,作用线在同一直线上。(a)中 1-12只受两个力作用而平衡的构件称为二力杆。(a)中

1-13在作用于刚体上的力系,加上或减去一个任意平衡力系,并不改变原力系对刚体的作用效应。(a)中 1-14作用在刚体上的力,可以沿其作用线任意移动而不改变其对刚体的作用效应。(a)中 1-15作用于物体同一点上的两个力,可以用平行四边形法合成为一个力。(a)易 1-16刚体在三个力作用下保持平衡,则此三力一定相交。(b)难 1-17作用力与反作用力同时存在且作用在同一物体上。(b)难 1-18凡是限制某物体运动的周围物体,便称为此物体的约束。(a)难

1-19柔性约束反力,作用在与物体连接点,作用线沿着柔索,指向物体。(b)中 1-20光滑接触面约束反力,只能是拉力。(b)难

1-21光滑接触面约束反力,作用于接触处,沿接触点法线方向,指向物体。(a)中 1-22圆柱铰链约束反力,用通过铰链中心相互垂直的两个分力表示。(a)中 1-23滚动铰链约束反力沿支撑面的法线,通过铰链中心并指向物体。(a)中

1-24分析分离体上有几个作用力及每个力大小、方向、作用线(点)的过程称为受力分析。(a)中 1-25要在研究对象的简图上画出他所受到的全部主动力和约束反力,这种图形称为受力图。(a)中

2-1两个共点力可以合成一个力,解答是唯一的。(a)中 2-2要把一个已知力分解为两个力,其解答是唯一的。(b)难 2-3力在轴上的投影是代数量。(a)中

2-4合力对作用面内任意点之矩,等于该合力在同一平面内各分力对同一点之矩的代数和。(a)中

3-1如果一个力和一个力系等效,则这个力是力系的合力。(a)难 3-2各力作用线在一个平面内且相交,便称该力系为平面汇交力系。(b)难 3-3平面汇交力系平衡的必要和充分条件是力系的合力等于零。(a)中

3-4在平面内,力对点之矩等于力的大小乘以点到力的作用线的垂直距离。(a)中 3-5力对点之矩会因力沿其作用线移动而改变。(b)难

3-6互成平衡的两个力对同一点之矩的代数和不等于零。(b)中

3-7力偶可以和一个力等效。(b)中

3-8力偶可以在其作用面内任意转移。(a)中

3-9力偶不管在什么条件下,都不能从一个平面移到另一个平行平面上去。(b)难 3-10力对点之矩不仅取决于力的大小,而且还与矩心的位置有关。(a)中

4-1各力的作用线任意分布的力系称为任意力系。(a)中

4-2作用于刚体上的力可以有条件地平移到刚体内任意一点。(a)难

4-3平面一般力系的合力对作用面内任一点之矩,等于各分力对同一点之矩的矢量和。( b)难 4-4平面一般力系平衡的必要与充分条件是:该力系的主矢和对任一点的主矩等于零。(a )中

43道判断 二、单选题

1-1固定端约束一般情况有()约束反力。[B] 易 A、二个 B、三个 C、四个 D、没有 1-2力是物体间()作用。[B] 易 A、化学 B、机械 C、磁力 D、电力

1-3物体的平衡是指物体相对于地球处于()状态。[B] 易 A、静止 B、静止或作匀速直线运动 C、加速运动 D、减速运动

1-4作用于刚体上的两个力平衡的充分与必要条件是,这两个力()。[C] 中

A、大小相等 B、大小相等,方向相反 C、大小相等,方向相反,作用在一条直线上D、无关系 1-5静力学中研究的所谓二力杆是()。[A] 中

A、在两个力作用下处于平衡的物体 B、在两个力作用下的物体 C、在三个力作用下的物体 D、在力系作用下的物体

1-6在作用于刚体上的任意一个力系上加上或减去()并不改变原力系对刚体的作用效果。[A] 中 A、任意平衡力系 B、任意力系 C、二个力 D、二个力偶

1-7作用于刚体上某点的力,可沿其作用线()作用点,而不改变该力对刚体的效应。[A] 中 A、任意移动 B、平行移动 C、垂直移动 D、成角度移动

1-8作用于物体上同一点的两个力可以合成为一个力,合力的大小等于两个力的()和。[B] 中 A、代数 B、矢量 C、投影 D、力矩

1-9刚体受不平行的三个力作用而平衡时,此三个力的作用线在同一平面内,且必()。[A] 中 A、汇交于一点 B、代数和为零 C、成力偶 D、平行

1-10约束反力的方向总是与非自由体被约束所限制的运动方向相()。[B] 中 A、同 B、反 C、垂直 D、成任一角度

1-11柔性约束只能限制物体沿柔性约束()位移。[A] 难 A、伸长方向 B、缩短方向 C、垂直方向 D、成任一角度 1-12柔性约束反力其方向沿着柔性约束()被约束物体。[B] 难 A、指向 B、离开 C、垂直 D、成60度角指向

1-13光滑接触面约束反力必须通过接触点沿着接触面在该点公法线()被约束物体。[B] 难 A、离开 B、指向 C、垂直 D、成60度角指向 1-14固定铰支座其约束反力一般用()分量表示。[A] 中 A、两个正交 B、平行 C、一个 D、三个 1-15可动铰支座其约束反力()光滑支撑面。[A] 中 A、垂直 B、平行 C、不一定平行 D、不一定垂直

1-16在力的作用下,不变形的物体称()。[B] 易 A、固体 B、刚体 C、永久体 D、半固体

1-17物体相对地球保持静止或匀速直线运动称()。[A] 易

A、平衡 B、一般状态 C、特殊状态 D、悬浮状态 1-18作用与反作用力是作用在()。[B] 难

A、一个物体上 B、相互作用的两个物体上 C、第三个物体上 D、任意物体上 2-1力在轴上投影是()。[B] 易

A、矢量 B、代数量 C、零 D、不一定是矢量

2-2力在坐标轴上投影等于力的大小乘以力与坐标轴正向夹角的()。[B] 中 A、正弦 B、余弦 C、正切 D、余切

2-3力系的主矢和力系的合力是两各()。[A] 难

A、不同的概念 B、一个概念 C、完全相同的概念 D、有时相同,有时不同的概念 2-4力对点之矩取决于()。[C] 易

A、力的大小 B、力的方向 C、力的大小和矩心位置 D、力的大小和方向 2-5互成平衡的两个力对同一点之矩的代数和为()。[A] 中 A、零 B、常数 C、合力 D、一个力偶

2-6合力对作用面内任意点之矩,等于该力在同一平面内各分力对同一点之矩的()。[A] 中 A、代数和 B、矢量 C、向径 D、导数 3-1平面力偶系合成的结果为一()。[A] 难 A、力偶 B、力 C、零 D、一个力和一个力偶

3-2平面力偶系平衡的必要和充分条件是各力偶矩的代数和等于()。[B] 中 A、常数 B、零 C、不为常数 D、一个力

3-3作用于刚体上的力可()作用线移到刚体上任一点。[B] 中 A、平行于 B、沿着 C、垂直 D、沿60度角

3-4作用于物体同一点的两个力可以合成为一个()。[A] 中 A、合力 B、力偶 C、一个力和一个力偶 D、力矩

3-5平面汇交力系平衡的必要与充分条件是力系的合力()。[A] 中 A、等于零 B、等于常数 C、不一定等于零 D、必要时为零 3-6平面汇交力系平衡的几何条件是()。[A] 易

A、力多边形自行封闭 B、力多边形成圆形 C、力多边形成正方形 D、力多边形成三角形 3-7要把一个力分解为两个力,若无足够的限制条件,其解答是()。[A] 难 A、不定的 B、一定的 C、可能一定 D、假定的

3-8合力在某轴上的投影,等于各分力在同一轴上投影的()。[B] 中 A、矢量和 B、代数和 C、几何和 D、乘积 4-1平面任意力系简化结果一般情况为()。[B] 中

A、一个合力 B、一个主矢和一个主矩 C、零 D、一个力偶 4-2平面任意力系的平衡方程一般情况为()。[C] 中 A、一个 B、两个 C、三个 D、四个

4-3平面一般力系简化的结果,若主矢等于零,主矩也等于零,则力系()。[A] 难 A、平衡 B、为一个力 C、为一个力偶 D、为一个力加上一个力偶

4-4平面一般力系简化的结果,若主矢等于零,主矩不等于零,则力系简化为一个()。[B] 难 A、合力 B、力偶 C、合力加力偶 D、零向量

4-5平面一般力系简化的结果,若主矢不等于零,主矩等于零,则力系为一个()。[B] 难 A、力偶 B、力 C、零向量 D、力矩

4-6平面一般力系简化的结果,若主矢不等于零,主矩不等于零,力系简化为一个()。[A] 难 A、力 B、力偶 C、零向量 D、力矩

4-7平面一般力系的平衡条件是()。[A] 难 A、该力系的主矢和对任一点的主矩等于零 B、该力系各力在坐标轴投影代数和为零 C、各力都相等 D、各力都垂直

4-8根据平面一般力系的平衡条件,可以列出()平衡方程。[B] 中 A、两个 B、三个 C、一个 D、四个 4-9平面平行力系的平衡方程有()。[B] 中 A、三个 B、两个 C、一个 D、四个

41道选择

43道判断 ,41道选择 一:判断题(每小题1分) 静力学 第一章

1.力是标量。( B ) 易

2.平衡是物体机械运动的一种特殊状态。(A ) 易

3.力可以在刚体上任意移动而不改变力对刚体的作用效应。( B ) 易

4.作用力与反作用力同时存在,两力等值、反向、共线、作用在同物体上。( B ) 易 5.力有大小、方向两个要素。( B ) 易

6.二力杆所受的两个力必然沿着两个力作用点的连线。( A ) 易 7.反力的方向总是与该约束所能限制的运动方向相同。( B ) 易 8.柔性约束的约束反力的作用线沿着柔索,指向物体。( B ) 易 第二章

9.平面汇交力系平衡时,力系中的各分力按照一定的次序首尾相接,形成一个封闭的多边形。( A )中 10.平衡力系的平衡条件是合力为零。( A )易

11.首尾相接构成一封闭的力多边形的平面力系是平衡力系。(A )易 12.力偶无合力。( A )易

13.力偶可以在其作用面内任意转移而不影响力偶对刚体的作用效应。( A ) 中 15.力使物体绕矩心作逆时针方向转动时,力矩取正号。( A )易 16.力偶矩的大小与矩心的位置无关,只与力和力偶臂的大小有关。( A )中 17.平面力偶的等效条件只与力偶矩大小有关,而与力偶的转向无关。( B )中 第三章

18.平面任意力系的简化结果一般是一个主失与一个主矩。( A )中 19.两端用光滑铰链连接的构件是二力构件。( B )中 二:选择题。

静力学 第一章

1.力对刚体的作用效果决定于( C ) 易 A、力的大小和力的方向 B、力的方向和力的作用点

C、力的大小、力的方向、力的作用点 D、力的大小、力的作用点 2.下列( B )状态属于平衡状态。 易

A、匀加速直线运动 B、静止状态 C、减速运动 D、定轴加速转动 3.作用于刚体上的力可以(B)作用线移到刚体上的任意一点 易 A、平行于 B、沿着原 C、垂直 D、沿着60 第二章 第三章

28.力偶对刚体的转动效应取决于( D )难

A、力偶矩的大小 B、力偶的转向 C、力偶作用面的方位 D、以上都是 29.在力学上把大小相等、方向相反、作用线相互平行的两个力,称为( B )。 中 A、力矩 B、力偶 C、合力 D、平衡力 30.力对点之矩决定于( C ) 中

A、力的大小 B、力臂的长短 C、力的大小和力臂的长短 D、无法确定 31.力偶对的刚体的作用效应是( B ) 中

A、平动 B、转动 C、既平动又转动 D、无法确定 32.平面任意力系向其作用面内任一点简化,一般可以得到( C ) 中 A、一个力 B、一个力偶 C、一个力和一个力偶 D、无法确定 33.同一个平面内的两个力偶的等效条件是( C )难 A、力偶矩大小相等 B、力偶转向相同

C、力偶矩大小相等且力偶转向相同 D、以上都不是 第三章

42.若作用在A点的两个大小不等的力F1和F2,沿同一直线但方向相反。则其合力可以表示为。 ( C ) 难

A、F1-F2

0

B、F2-F1

C、F1+F2

D、 以上答案不正确

43.作用在一个刚体上的两个力FA、FB,满足FA=-FB的条件,则该二力可能是 。 ( B ) 难

A、作用力和反作用力或一对平衡的力 B、一对平衡的力或一个力偶。 C、一对平衡的力或一个力和一个力偶 D、作用力和反作用力或一个力偶。 44.三力平衡定理是。 ( A ) 难 A、共面不平行的三个力互相平衡必汇交于一点;

B、共面三力若平衡,必汇交于一点; C、三力汇交于一点,则这三个力必互相平衡。 D、以上答案不正确

45.已知F1、F2、F3、F4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此。( D ) 难

A、力系可合成为一个力偶; B、力系可合成为一个力; C、力系简化为一个力和一个力偶; D、力系的合力为零,力系平衡。

46.某平面任意力系向O点简化,得到如图所示的一个力R?和一个力偶矩为Mo的力偶,则该力系的最后合成结果为。 ( C ) 难

A、作用在O点的一个合力; B、合力偶;

C、作用在O点左边某点的一个合力; D、作用在O点右边某点的一个合力。

47.图示三铰刚架受力F作用,则B支座反力的大小为( A )。 难

A、F/2; B、F; C、2F; D、2F。

19道判断,47道选择 62道判断 ,88道选择

《材料力学》卷一题库

一、 单选题:

1、构件承载能力不包括()。[c]

A、足够的强度 B、足够的刚度 C、足够的韧性 D、足够的稳定性 2、变形固体的基本假设中,()没有被采用。[d] A、连续性 B、均匀性 C、各向同性 D、大变形 3、杆件的基本变形中,不包括()。[a]

A、弯-扭变形 B、弯曲 C、剪切与挤压 D、扭转 4、二力杆()。[d]

A、受剪切作用 B、受扭转作用 C、受弯曲作用 D、受拉伸作用 5、求构件内力普遍采用()。[c]

A、几何法 B、实验法 C、截面法 D、估量法 6、轴力最大的轴端,应力()。[c]

A、一定大 B、一定小 C、可能最大,也可能最小 D、一定不会最小 7、轴向拉伸或压缩杆件,与横截面成()的截面上切应力最大。[a] A、45o B、90o C、30o D、60o

8、代表脆性材料强度的指标是()。[d] A、σp B、σe C、σp0.2 D、σb

9、依据材料的伸长率,属于塑性材料的是()。[d]

A、δ=0.5% B、δ=1.5% C、δ=3.5% D、δ=8.5% 10、冷作硬化,提高了材料的()。[b]

A、屈服极限 B、比例极限 C、强度极限 D、应力极限 11、塑性材料的极限应力指的是()。[b] A、σp B、σs或σp0.2 C、σb D、[σ]

12、由塑性材料制成的拉(压)杆,安全因数一般取()。[c] A、10-15 B、0.1-0.5 C、1.5-2.0 D、2.5-3.5 13、强度条件关系式,可用来进行()。[d]

A、强度校核B、尺寸设计C、确定许可载荷D、前三项都可以

14、静不定系统中,多余约束力达到3个,则该系统静不定次数为()。[a] A、3次B、6次C、1次D、不能确定 15、应力集中一般出现在()。[b]

A、光滑圆角处B、孔槽附近C、等直轴段的中点D、截面均匀变化处

16、静不定系统中,未知力的数目达4个,所能列出的静力方程有3个,则系统静不定次数是()。[a] A、1次B、3次C、4次D、12次

17、两段铁轨间预留间隙是为了避免()。[c] A、应力集中 B、装配应力 C、温度应力 D、挤压应力

18、钢结构桥一端采用了可动铰链支座,是为了防止()引起破坏所采取的措施。[d] A、共振

B、弯曲应力 C、装配应力 D、温度应力

19、危险截面是指()。[c]

A、轴力大的截面B、尺寸小的截面C、应力大的截面D、尺寸大的截面

20、低碳钢整个拉伸过程中,材料只发生弹性变形的应力范围是σ不超过( )。 [B] A、σb B、σe C、σp D、σs

21、只有一个剪切面的剪切称为()。[c] A、挤压B、双剪C、单剪D、多剪 22、挤压面面积取()。[b] A、 实际接触面面积B、接触面正投影面面积C、剪切面面积D、实际接触面面积的一半 23、挤压与压缩比较,两者()。[b]

A、完全一样B、不一样C、变形特征一样D、应力特征一样 24、传动轴的主要变形形式是()。[b] A、拉伸B、扭转C、剪切D、弯曲

25、直径为20mm的实心圆轴,对形心的极惯性矩IP为()。[b]

3 4 4 2

A、500πmmB、5000πmmC、2500πmmD、400πmm 26、直径为D的实心圆截面对形心的极惯性矩为()。[b]

3444

A、IP=πD/16 B、IP=πD/32 C、IP=πD/64 D、IP=πD/16 27、圆轴扭转时,最大切应力发生在圆轴的()。[C] A、中心B、半径中点处C、外圆周上D、无法确定 28、等直圆轴扭转时,其截面上()。[A]

A、只存在切应力B、只存在正应力C、既有切应力,又有正应力D、都不对 29、圆轴扭转时,横截面上的切应力沿半径呈现()分布状况。[C] A、均匀B、曲线C、直线线性D、无规律

30、圆轴扭转时,圆周表面各点的切应力()。[C] A、为零B、最小C、最大D、不定

31、在截面面积相同的条件下,空心轴的承载能力比实心轴()。[A] A、大B、小C、一样D、无法确定

32、Wp称为扭转截面系数,其单位是()。[C]

2 3 4

A、mm B、mmC、mmD、mm

33、圆周扭转时的变形以()表示。[b] A、延伸率B、扭转角C、挠度D、线应变

34、在减速箱中,高速轴的直径比低速轴的直径()。[b] A、大B、小C、一样D、不一定

35、扭转圆轴横截面上的切应力方向与该点处半径()。[a] A、垂直B、平行C、无关D、成45o角

36、将扭矩表示为矢量,其方向()时为正。[A] A、离开截面B、指向截面C、平行于截面D、都不对 37、以弯曲为主要变形特征的杆件称为()。[c] A、轴B、变形固体C、梁D、刚体

38、杆件受到与杆轴线相垂直的外力或外力偶的作用,将产生()变形。[d] A、轴向拉伸或压缩B、剪切与挤压C、扭转D、弯曲

39、一端采用固定铰链支座,另一端采用活动铰链支座,该梁属于()。[a] A、简支梁B、外伸梁C、悬臂梁D、多跨梁 40、梁横截面上的内力,通常()。[c]

A、只有剪力FS B、只有弯矩M C、既有剪力FS,又有弯矩M D、只有轴力FN 41、弯曲梁横截面上的剪力,在数值上()。[C] A、由实验确定

B、等于该截面两侧外力的代数和

C、等于该截面左侧所有外力的代数和 D、无法确定

42、有集中力作用的梁,集中力作用处()。[A]

A、剪力发生突变B、弯矩发生突变C、剪力、弯矩同时发生突变D、都不对 43、有集中力偶作用的梁,集中力偶作用处()。[B]

A、剪力发生突变B、弯矩发生突变C、剪力、弯矩不受影响D、都不对 44、剪力图上为水平直线的梁段,弯矩图上图线形状为()。[B] A、一段水平直线B、一段斜直线C、抛物线的一部分D、不一定 45、纯弯曲梁段,横截面上()。[A]

A、仅有正应力B、仅有切应力C、既有正应力,又有切应力D、切应力很小,忽略不计 46、横力弯曲梁,横截面上()。[C]

A、仅有正应力B、仅有切应力C、既有正应力,又有切应力D、切应力很小,忽略不计 47、一正方形截面梁的边长为2a,其对z轴的惯性矩IZ为()。[D]

2 3 4

A、4aB、2a C、2/3aD、4/3a

48、一圆型截面梁,直径d=40mm,其弯曲截面系数WZ为()。[B]

3 3 2 3

A、1000πmmB、2000πmmC、400πmmD、400πmm

49、弯曲梁上的最大正应力发生在危险截面()各点处。[B]

A、中性轴上B、离中性轴最远C、靠近中性轴D、离中性轴一半距离 50、等直截面梁,最大弯曲正应力发生在()的截面处。[D] A、剪力最大B、面积最大C、面积最小D、弯矩最大 51、考虑梁的强度和刚度,在截面面积相同时,对于抗拉和抗压强度相等的材料(如碳钢),最合理的截面形状是()。[D]

A、圆形B、环形C、矩形D、工字型

52、一般情况下,梁的强度由()控制。[B] A、切应力B、正应力C、平均应力D、极限应力 53、两梁的横截面上最大正应力相等的条件是()。[B]

A、MMAX与横截面积A相等B、MMAX与WZ(抗弯截面系数)相等C、MMAX与WZ相等,且材料相同D、都正确 54、圆截面悬臂梁,若其它条件不变,而直径增加一倍,则其最大正应力是原来的()倍。[A] A、1/8 B、8 C、2 D、1/2

55、研究梁的弯曲变形,主要目的是解决梁的()计算问题。[b] A、强度B、刚度C、稳定性D、支座反力

56、当只需确定某些特定截面的转角和挠度,而并不需要求出转角和挠度的普遍方程时,梁的弯曲变形,可用()法求解。[a]

A、叠加法B、微分法C、几何法D、矢量法 57、提高梁的强度和刚度的措施有()。[c]

A、变分布载荷为集中载荷B、将载荷远离支座C、将梁端支座向内侧移动D、撤除中间支座 58、用()衡量梁的弯曲变形程度。[d]

A、弯矩B、剪力C、正应力和切应力D、挠度和转角

59、构件内一点各个不同方位截面上应力的全体,称为该点处的()。[d] A、全反力B、约束反力C、应力D、应力状态

60、单元体各个面上共有9个应力分量。其中,独立的应力分量有()个。[c] A、9 B、3 C、6 D、4 61、主平面上的应力称为()。[d]

A、平均应力B、极限应力C、强度极限D、主应力

62、三向应力状态,是指一点处的()个主应力不为零。[c] A、1 B、2 C、3 D、6

63、二向应力状态,是指一点处的三个主应力中有()个主应力不为零。[b] A、1 B、2 C、3 D、无数个 64、第三强度理论,是指()。[b]

A、最大拉应力理论B、最大切应力理论C、最大伸长线应变理论D、畸变能密度理论 65、第()强度理论认为,塑性材料屈服破坏的主要原因是最大切应力。[c] A、第一强度理论B、第二强度理论C、第三强度理论D、第四强度理论 66、校核塑性材料强度问题,通常采用第()强度理论。[d] A、一B、一、二C、二、三D、三、四 67、齿轮传动轴的变形形式为()。[d]

A、拉-压变形B、扭转变形C、拉-弯组合变形D、弯-扭组合变形 68、处理组合变形的一般步骤是()。[d] A、内力分析-外力分析-应力分析-强度计算 B、应力分析-强度计算-内力分析-外力分析 C、强度计算-外力分析-内力分析-应力分析 D、外力分析-内力分析-应力分析-强度计算

69、在拉-弯组合变形中,危险点的应力状态属于()。[a]

A、单向应力状态B、二向应力状态C、三向应力状态D、应力状态不定 70、在弯-扭组合变形中,危险点的应力状态属于()。[a]

A、平面应力状态B、空间应力状体C、单向应力状态D、都不对 71、两端铰链连接的压杆,其长度系数μ值是()。[a] A、1.0 B、0.7 C、0.5 D、2

72、钢材进入屈服阶段后,表面会沿(C)出现滑移线。

A、横截面 B、纵截面 C、最大剪应力所在的面 D、最大正应力所在面 73、铸铁的抗拉强度比其抗压强度要( B )

A、大 B、小 C、相等 D、无法确定

74、圆轴发生扭转变形时,输入的功率是12kw,转速是240r/min。则外力偶矩是( A、796Nm B、478Nm C、159Nm D、512Nm 75、材料的破坏形式有( C )

A、屈服破坏 B、断裂破坏 C、屈服破坏和脆性断裂 D、以上都不是 76、在下列四种材料中(C)不可以应用各向同性假设。 A、铸钢 B、玻璃 C、松木 D、铸铁

77、下图为某材料由受力到拉断的完整的应力应变曲线,该材料的变化过程无(D)。

?

?

A、弹性阶段,屈服阶段 B、强化阶段,颈缩阶段 C、屈服阶段,强化阶段 D、屈服阶段,颈缩阶段??

78、当低碳钢试件的试验应力?s时,试件将(D) A、 完全失去承载能力 B、破坏 C、发生局部颈缩现象 D、产生很大塑性变形

79、微元体应力状态如图示,其所对应的应力圆有如图示四种,正确的是( A )

B )

80、一铸铁梁,截面最大弯矩为负,其合理截面应为(B)。 A、工字形 B、“T”字形 C、倒“T”字形 D、“L”形

81、两端铰支的圆截面压杆,长1m,直径50mm。其柔度为(C)。 A、60 B、66.7 C、80 D、50。

82、在图示受扭圆轴横截面上的剪应力分布图中,正确答案是( D )。

83、图示等直杆,杆长为3a,材料的抗拉刚度为EA,受力如图。杆中点横截面的铅垂位移有四种答案 ( B )

A、0 B、Pa/(EA) C、2 Pa/(EA) D、3 Pa/(EA)

84、已知一点应力状态如图,其

?r4=( A )

A、72.1Mpa B、50Mpa C、30Mpa D、80Mpa

85、如图所示结构中,圆截面拉杆BD的直径为d,不计该杆的自重,则其横截面上的应力为:( B )ql

2ql8ql4qlA、2?d

2

B、?d2 C、?d2 D、?d2

86、图示A和B的直径都是d,则两者中的最大剪应力为:( B )

2 A、4bP/(a?d) B、4(a?b)P/(a?d2) C、4(a?b)P/(b?d2)2 D、

4aP/(b?d)

87、实心圆轴①和空心圆轴②,它们的横截面面积均相同,受相同扭矩作用,则其最大剪应力有四种答案:( B A、

?max2??max1 B、?max2??max1

C、

?max2??max1 D、无法比较

88、矩形截面简支梁受力如图(a)所示,横截面上各点的应力状态如图(b)所示。关于他们的正确性,现有四种答案:( D )

A、点1、2的应力状态是正确的 B、 点2、3的应力状态是正确的 C、 点3、4的应力状态是正确的 D、 点1、5的应力状态是正确的

89、图示三种截面的截面积相等,高度相同,试按其抗弯截面模量由大到小依次排列( B )

A、ABC B、CBA C、CAB D、BAC

90、由同一种材料组成的变截面杆的横截面面积分别为和A和2A,受力如图所示,E为常数。有下列结论:(A、D截面的位移为0 B、D截面的位移为Pl/(2EA)

C、C截面的位移为Pl/(2EA) D、D截面的位移为Pl/(EA)

B

91、对于图示各点的应力状态,属于单向应力状态的是:( A ) A、a点 B、 b点 C、 c点 D、d点

92、两根杆的长度和横截面面积均相同,两端所受拉力也相同,其中一根为钢杆,另一根为木杆,试问两根杆的横截面上的应力是否相同?( B )

A、不同 B、相同 C、可以相同也可以不同 D、无法确定

93、材料力学所研究的内力是( B ) A、 物体内各质点之间相互作用力 B、物体内各部分之间由于外力作用而引起的附加内力 C、物体内各部分之间的结合力 D、以上都不是 94、应力集中现象会使构件的承载能力有所( B ) A、提高 B、下降 C、不变 D、无法确定 95、在梁的弯曲正应力的计算公式中,EI表示( C ) A、抗扭刚度 B、抗压刚度 C、抗弯刚度 D、抗拉刚度 96、在材料力学中,G称为( C )

A、弹性模量 B、泊松比 C、切变模量 D、重力

97、刚性杆AB的左端铰支,○1、○2两杆为长度相等、横截面面积相等的直杆,其弹性横量分别为2

E1和E2,且有E1=

E2,平衡方程与补充方程可能有以下四种: 正确答案是 ( C )

?N2?P,N1?N2; B、N1?2N2?3P,N2?2N1

N?2N2?3P,N1?N2 D、N1?N2?P,N2?2N1 C、1A、N1

98、如图所示圆轴直径d,l,正确答案是( B )

m1,m2,材料的剪切弹性模量G,此轴B、C两截面的相对扭转角为:

A、

?BC?32m1l?32m2l?G?d4??G?d4 B、BC C、

?BC32(m1?m2)l32m2l???G?d4G?d4 D、BC。

99、:梁发生平面弯曲时,其截面绕( B )旋转

A、梁的轴线 B、截面的中性轴 C、截面的对称轴 D、截面的上(或下)边缘

100、几何形状完全相同的两根梁,一根为铝材,一根为钢材,若两根梁受力状态也相同,则它们的( A ) A、弯曲应力相同,轴线曲率不同 B、弯曲应力不同,轴线曲率相同 C、弯曲应力和轴线曲率均相同 D、弯曲应力和轴线曲率均不同

101、设计钢梁时,宜采用中性轴为( A )的截面

A、对称轴 B、靠近受拉边的非对称轴 C、靠近受压边的非对称轴 D、任意轴

102、等截面直梁在弯曲变形时,挠曲线曲率在最大( D )处一定最大 A、挠度 B、转角 C、剪力 D.弯矩

103、同一材料制成的空心圆轴和实心圆轴,长度和横截面面积均相同,则抗扭 刚度较大的是哪个?正确答案是( B )

A、实心圆轴 B、空心圆轴 C、二者一样 D、无法判断。 104、关于图示梁上a点的应力状态有下列四种答案:正确答案是( D )

222

105、已知等截面直梁在某一段上的挠曲线方程为w(x)=Ax(4lx-6l-x),则该段梁上( B )

A、无分布载荷作用 B、有均布载荷作用 C、分布载荷是x的一次函数 D、分布载荷是x 的二次函数

101道选择

二、判断题

1构件抵抗破坏的能力,称为刚度。(B) 2构件抵抗变形的能力,称为强度。(B)

3构件在原有几何形状下保持平衡的能力,称为构件的稳定性。(A) 4均匀连续性假设,是对变形固体所作的基本假设之一。(A) 5材料沿不同方向呈现不同的力学性能,这一性质称为各向同性。(B) 6材料力学只研究处于完全弹性变形的构件。(b) 7长度远大于横向尺寸的构件,称为杆件。(A) 8研究构件的内力,通常采用实验法。(B)

9求内力的方法,可以归纳为“截-取-代-平”四个字。(A) 10 1MPa=109Pa=1KN/mm2。(B)

11 45o斜截面上切应力为最大,其值为横截面上正应力的一半。(A) 12杆件在拉伸时,纵向缩短,ε<0。(B)

13杆件在压缩时,纵向缩短,ε<0;横向增大,ε'>0。(A) 14 σp是衡量材料强度的重要指标。(B) 15 δ=7%的材料是塑性材料。(A)

16塑性材料的极限应力为其屈服点应力。(A) 17“许用应力”为允许达到的最大工作应力。(A) 18“静不定系统”中一定存在“多余约束力”。(A) 19由装配引起的内力,称为“温度应力”。(B)

20用脆性材料制成的杆件,应考虑“应力集中”的影响。(A)

21进行挤压计算时,挤压面面积取为实际接触面的正投影面面积。(A) 22冲床冲剪工件,属于利用“剪切破坏”问题。(A) 23同一件上有两个剪切面的剪切称为单剪切。(B) 24等直圆轴扭转时,横截面上只存在切应力。(A) 25圆轴扭转时,最大切应力发生在截面中心处。(B)

26在截面面积相等的条件下,空心圆轴的抗扭能力比实心圆轴大。(A)

28工程中承受扭转的圆轴,既要满足强度的要求,又要限制单位长度扭转角的最大值。(A) 29当单元体的对应面上同时存在切应力和正应力时,切应力互等定理失效。(B) 30当截面上的切应力超过比例极限时,圆轴扭转变形公式仍适用。(B)

31弯曲变形梁,其外力、外力偶作用在梁的纵向对称面内,梁产生对称弯曲。(A) 32为了提高梁的强度和刚度,只能通过增加梁的支撑的办法来实现。(B) 33使微段梁弯曲变形凹向上的弯矩为正。(A) 34使微段梁有作顺时针方向转动趋势的剪力为正。(A)

35根据剪力图和弯矩图,可以初步判断梁的危险截面位置。(A) 38纯弯曲梁段,横截面上仅有正应力。(A)

39分析研究弯曲变形,要利用平面假设、连续性假设。(A) 40弯曲截面系数仅与截面形状和尺寸有关,与材料种类无关。(A) 41圆形截面梁,不如相同截面面积的正方形截面梁承载能力强。(A) 42梁的上、下边缘处切应力最大,正应力最小。(B) 43梁的跨度较短时应当进行切应力校核。(A) 44在铰支座处,挠度和转角均等于零。(B)

45选择具有较小惯性距的截面形状,能有效地提高梁的强度和刚度。(B)

46在截面积相同的条件下,工字型截面的惯性矩比圆形截面的惯性距要大。(A) 47构件的应力除了与点的位置有关外,还与通过该点的截面的方位有关。(A) 48主应力的排列顺序是:σ1〈σ2〈σ3。(B) 49分析平面应力状态可采用应力圆法。(A)

50三向应力状态下的最大切应力值为最大与最小主应力之和的一半。(B) 51低碳钢沿与轴线成45o角方向破坏的现象,可用第一强度理论解释。(B) 52机械制造业中广泛应用第三、第四强度理论。(A)

53组合变形时,杆件的应力和变形可以采用叠加原理求解。(A) 54拉-弯组合变形,应力最大值总是发生在梁的最外层上。(A) 55偏心拉伸问题可以归结为拉-弯组合变形问题。(A) 56扭转与弯曲的组合变形是机械工程中最常见的变形。(A)

57传动轴通常采用脆性材料制成,可选用第一或第二强度理论校核强度。(B) 58拉-弯组合变形中,危险点的应力状态属于单向应力状态。(A) 59在弯-扭组合变形中,危险点的应力状态属于平面应力状态。(A)

60细长杆件在轴向压力作用下的失效形式呈现出与强度问题迥然不同的力学本质。(A)

61 悬臂架在B处有集中力作用,则AB,BC都产生了位移,同时AB,BC也都发生了变形。( B )

59道判断

121道判断 ,189道选择

第一章 绪 论

一、是非题

1.1 材料力学主要研究杆件受力后变形与破坏的规律。 ( a ) 1.2 内力只能是力。 ( b )

1.3 若物体各点均无位移,则该物体必定无变形。 ( a) 1.4 截面法是分析应力的基本方法。 ( b ) 二、选择题

1.5 构件的强度是指( c ),刚度是指( a ),稳定性是指( b )。 A、在外力作用下构件抵抗变形的能力

B、在外力作用下构件保持其原有的平衡状态的能力 C、在外力作用下构件抵抗破坏的能力 D、以上答案都不对

1.6 根据均匀性假设,可认为构件的( c )在各点处相同。

A B B’”’ C C’

A、 应力B、应变C、材料的弹性常数D、位移

1.8 ??图示两单元体虚线表示其受力后的变形情况,两单元体剪应变( c ) A、?, B、0,? C、0,2?

D、?,2?

? ?

? ?

第二章 拉伸、压缩与剪切

一、是非题

2.1 使杆件产生轴向拉压变形的外力必须是一对沿杆件轴线的集中力。 ( b ) 2.2 轴力越大,杆件越容易被拉断,因此轴力的大小可以用来判断杆件的强度。 ( b ) 2.3 内力是指物体受力后其内部产生的附加相互作用力。 ( a ) 2.4 同一截面上,σ必定大小相等,方向相同。 ( b ) 2.5 杆件某个横截面上,若轴力不为零,则各点的正应力均不为零。 ( b ) 2.6 δ、? 值越大,说明材料的塑性越大。 ( a ) 2.7 研究杆件的应力与变形时,力可按力线平移定理进行移动。 ( b ) 2.8 杆件伸长后,横向会缩短,这是因为杆有横向应力存在。 ( b ) 2.9 线应变 ? 的单位是长度。 ( b ) 2.10 轴向拉伸时,横截面上正应力与纵向线应变成正比。 ( b )

2.12 在工程中,通常取截面上的平均剪应力作为联接件的名义剪应力。 ( a ) 2.13 剪切工程计算中,剪切强度极限是真实应力。 ( b ) 2.14 轴向压缩应力?与挤压应力?bs都是截面上的真实应力。 ( b )

二、选择题

2.15 变形与位移关系描述正确的是( A )

A、 变形是绝对的,位移是相对的B、变形是相对的,位移是绝对的C、两者都是绝对的 D、两者都是相对的

2.16 轴向拉压中的平面假设适用于( C )

A、整根杆件长度的各处 B、除杆件两端外的各处 C、距杆件加力端稍远的各处 D、杆件两端 2.17 变截面杆如图,设F1、F2、F3分别表示杆件中截面1-1、2-2、3-3上的内力,则下列结论中哪些是正确的(A、F1 ≠ F2 ,F2 ≠ F3 B、F1 = F2 ,F2 > F3

C、F1 = F2 ,F2 = F3

1 2 3 D、F1 = F2 ,F2 < F3

2.18 影响杆件工作应力的因素有( AC )。

2 3 P A、载荷B、材料性质C、截面尺寸D、工作条件

1 24 影响极限应力的因素有( BD )。

A、载荷B、材料性质C、截面尺寸D、工作条件

? 2.19 图示三种材料的应力—应变曲线, 则弹性模量最大的材料是( B ); A 强度最高的材料是( A );

塑性性能最好的材料是( C )。

B

C

?

2.20 长度和横截面面积均相同的两杆,一为钢杆,一为铝杆,在相同的拉力作用下( A )

A、铝杆的应力和钢杆相同,而变形大于钢杆

C )。 B、铝杆的应力和钢杆相同,而变形小于钢杆 C、铝杆的应力和变形都大于钢杆 D、铝杆的应力和变形都小于钢杆

2.21 一般情况下,剪切面与外力的关系是( B )。 A、相互垂直 B、相互平行C、相互成45° D、无规律

2.22 如图所示,在平板和受拉螺栓之间垫上一个垫圈,可以提高( D )强度。 A、螺栓的拉伸B、螺栓的剪切C、螺栓的挤压D、平板的挤压

2.23 图示联接件,若板和铆钉为同一材料,且已知为( C )。

A、d=2t B、d=4t C、d=8t/? D、d=4t/?

第三章 扭 转

??bs??2???,为充分提高材料的利用率,则铆钉的直径 d应

一、是非题

3.1 在单元体两个相互垂直的截面上,剪应力的大小可以相等,也可以不等。 ( b )

???3.2 扭转剪应力公式可以适用于任意截面形状的轴。 ( b ) 3.3 受扭转的圆轴,最大剪应力只出现在横截面上。 ( b ) 3.4 圆轴扭转时,横截面上既有正应力,又有剪应力。 ( b )

二、选择题

3.6 根据圆轴扭转的平面假设,可以认为圆轴扭转时横截面( A )。

T?IpA、形状尺寸不变,直线仍为直线B、形状尺寸改变,直线仍为直线C、形状尺寸不变,直线不保持直线 D、形状尺寸改变,直线不保持直线 3.7 已知图(a)、图(b)所示两圆轴的材料和横截面面积均相等。若图(a)所示B端面相对于固定端A的扭转角是?,则图(b)所示B端面相对于固定端A的扭转角是( D )。 A、? B、2? C、3? D、4?

图 题3.7

第四章 弯 曲 内 力

一 是非题

4.1 按力学等效原则,将梁上的集中力平移不会改变梁的内力分布。 ( b ) 4.2 当计算梁的某截面上的剪力时,截面保留一侧的横向外力向上时为正,向下时为负。 ( b )

4.3 当计算梁的某截面上的弯矩时,截面保留一侧的横向外力对截面形心取的矩一定为正。 ( b )

4.4 梁端铰支座处无集中力偶作用,该端的铰支座处的弯矩必为零。 ( a )

4.6 分布载荷q(x)向上为负,向下为正。 ( b ) 4.7 最大弯矩或最小弯矩必定发生在集中力偶处。 ( b )

4.8 简支梁的支座上作用集中力偶M,当跨长L改变时,梁内最大剪力发生改变,而最大弯矩不改变。 ( a )

4.9 剪力图上斜直线部分可以有分布载荷作用。 ( a ) 4.10 若集中力作用处,剪力有突变,则说明该处的弯矩值也有突变。 (b ) 二.选择题

4.11 用内力方程计算剪力和弯矩时,横向外力与外力矩的正负判别正确的是( A ) A、截面左边梁内向上的横向外力计算的剪力及其对截面形心计算的弯矩都为正 B、截面右边梁内向上的横向外力计算的剪力及其对截面形心计算的弯矩都为正

C、截面左边梁内向上的横向外力计算的剪力为正,向下的横向外力对截面形心计算的弯矩为正 D、截面右边梁内向上的横向外力计算的剪力为正,该力对截面形心计算的弯矩也为正 4.12 对剪力和弯矩的关系,下列说法正确的是( C ) A、同一段梁上,剪力为正,弯矩也必为正 B、同一段梁上,剪力为正,弯矩必为负

C、同一段梁上,弯矩的正负不能由剪力唯一确定 D、剪力为零处,弯矩也必为零 4.13 以下说法正确的是( B ) MO A、集中力作用处,剪力和弯矩值都有突变 B、集中力作用处,剪力有突变,弯矩图不光滑

C C、集中力偶作用处,剪力和弯矩值都有突变

D、集中力偶作用处,剪力图不光滑,弯矩值有突变

a b

第五章 弯 曲 应 力

题4.14图

一、是非题

5.1 梁在纯弯曲时,变形后横截面保持为平面,且其形状、大小均保持不变。 ( b ) 5.2 图示梁的横截面,其抗弯截面系数WZ和惯性矩IZ分别为以下两式:

BH2bh2WZ??66

BH3bh3IZ??1212 ( a )

5.3 梁在横力弯曲时,横截面上的最大剪应力不一定

z b B 题5.2图

发生在截面的中性轴上。 ( a ) 5.4 设梁的横截面为正方形,为增加抗弯截面系数,

提高梁的强度,应使中性轴通过正方形的对角线。 (b ) 二、选择题

5.6 设计钢梁时,宜采用中性轴为( A )的截面。 A、对称轴

B、偏于受拉边的非对称轴 C、偏于受压边的非对称轴 D、对称或非对称轴

5.6 设计铸铁梁时,宜采用中性轴为( B )的截面。 A、对称轴

B、偏于受拉边的非对称轴 C、偏于受压边的非对称轴 D、对称或非对称轴

5.7 图示两根矩形截面的木梁按两种方式拼成一组合梁(拼接的面上无粘胶),梁的两端受力偶矩M0作用,以下结论中(是正确的。

A、两种情况? max 相同

B、两种情况正应力分布形式相同 C、两种情况中性轴的位置相同 D、两种情况都属于纯弯曲

第六章 弯 曲 变 形

一、是非题

6.1 梁内弯矩为零的横截面其挠度也为零。 ( b ) 6.2 梁的最大挠度处横截面转角一定等于零。 ( b ) 6.3 绘制挠曲线的大致形状,既要根据梁的弯矩图,也要考虑梁的支承条件。 ( b )

二、选择题

6.6 等截面直梁在弯曲变形时,挠曲线曲率最大发生在( D )处。 A、挠度最大 B、转角最大 C、剪力最大 D、弯矩最大

6.7 将桥式起重机的主钢梁设计成两端外伸的外伸梁较简支梁有利,其理由是( AC )。 A、减小了梁的最大弯矩值 B、减小了梁的最大剪力值 C、减小了梁的最大挠度值 D、增加了梁的抗弯刚度值

6.8 图示两梁的抗弯刚度EI相同,载荷q相同, 则下列结论中正确的是( C )。 A、两梁对应点的内力和位移相同 B、两梁对应点的内力和位移相同 C、内力相同,位移不同 D、内力不同,位移相同

6.9 图示三梁中fa、fb、fc分别表示图(a)、(b)、 (c)的中点位移,则下列结论中正确的是( A )。

D ) A、fa = fb = 2 fc B、fa > fb = fc C、fa > fb > fc D、fa ? fb = 2 fc

6.10 为提高梁的抗弯刚度,可通过( BD )来实现。 题6.9图 A、选择优质材料

B、合理安排梁的支座,减小梁的跨长 C、减少梁上作用的载荷 D、选择合理截面形状

第八章 应力和应变分析 强度理论

一、是非题

8.1 纯剪切单元体属于单向应力状态。 ( b ) 8.2 纯弯曲梁上任一点的单元体均属于二向应力状态。 ( b )

?1??328.3 不论单元体处于何种应力状态,其最大剪应力均等于。 ( a )

8.4 构件上一点处沿某方向的正应力为零,则该方向上的线应变也为零。 (b )

二、选择题

8.6 过受力构件内任一点,取截面的不同方位,各个面上的( D )。 A、正应力相同,剪应力不同 B、正应力不同,剪应力相同 C、正应力相同,剪应力相同 D、正应力不同,剪应力不同

8.7 在单元体的主平面上( D )。 A、正应力一定最大 B、正应力一定为零 C、剪应力一定最小 D、剪应力一定为零

8.8 当三向应力圆成为一个圆时,主应力一定满足( D )。 A、B、C、D、

?1??2

?2??3

?1??3

?1??2或?2??3

???2,下列结果中正确的是( A )。

8.9 图示单元体,已知正应力为?,剪应力为

3??z?4,E A、

3??max???z??1???2,EB、 1??max???z?2,E C、

????1?max???z??1??E?2? 2,D、

?max??

8.12 以下四种受力构件,需用强度理论进行强度校核的是( BD )。

题8.9图

A、承受水压力作用的无限长水管

B、承受内压力作用的两端封闭的薄壁圆筒 C、自由扭转的圆轴 D、齿轮传动轴

8.13 对于危险点为二向拉伸应力状态的铸铁构件,应使用( A )强度理论进行计算。 A、第一 B、第二

C、第一和第二 D、第三和第四

8.14 图示两危险点应力状态,其中???,按第四强度理论比较危险程度,则( B )。 A、a点较危险

B、两者危险程度相同 C、b点较危险 D、不能判断

(a) (b)

8.15 图示两危险点应力状态,按第三强度理论比较危险程度,则( B )。 A、a点较危险

B、两者危险程度相同

60 MPa C、b点较危险 D、不能判断 120 MPa 120 MPa

(a) (b)

第九章 组 合 变 形

一、是非题

9.1 直径为d的圆轴,其危险截面上同时承受弯矩M、扭矩T及轴力N的作用。若按第三强度理论计算,则危险点处的

?????r3?32M4N?????d3?d2??????32T???d3??2????。 ( a )

2

9.2 图示矩形截面梁,其最大拉应力发生在固定端截面的a点处。 ( a )

二、选择题

9.3 图(a)杆件承受轴向拉力F,若在杆上分别开一侧、两侧切口如图(b)、图(c)所示。令杆(a)、(b)、(c)中的最大拉应力分别为A、B、C、D、

?1max、?2max和?3max,则下列结论中( C )是错误的。

?1max一定小于?2max ?1max一定小于?3max

?3max一定大于?2max ?3max可能小于?2max

第十四章 压 杆 稳 定

一、是非题

14.1 由于失稳或由于强度不足而使构件不能正常工作,两者之间的本质区别在于:前者构件的平衡是不稳定的,而后者构件的平衡是稳定的。 ( a )

14.2 压杆失稳的主要原因是临界压力或临界应力,而不是外界干扰力。 ( a ) 14.3 压杆的临界压力(或临界应力)与作用载荷大小有关。 ( b ) 14.4 两根材料、长度、截面面积和约束条件都相同的压杆,其临界压力也一定相同。 ( b )

14.5 压杆的临界应力值与材料的弹性模量成正比。 ( b ) 二、选择题

14.6在杆件长度、材料、约束条件和横截面面积等条件均相同的情况下,压杆采用图( D )所示的截面形状,其稳定性最好;而采用图( B )所示的截面形状,其稳定性最差。 题14.6图

14.7 一方形横截面的压杆,若在其上钻一横向小孔(如图所示),则该杆与原来相比( B )。 A、稳定性降低,强度不变 B、稳定性不变,强度降低 C、稳定性和强度都降低 D、稳定性和强度都不变 F

14.8 若在强度计算和稳定性计算中取相同的安全系数,则在下列说法中,( B )是正确的。 A、满足强度条件的压杆一定满足稳定性条件 B、满足稳定性条件的压杆一定满足强度条件 C、满足稳定性条件的压杆不一定满足强度条件 D、不满足稳定性条件的压杆不一定满足强度条件

55道判断,42道选择

176道判断 ,231道选择

1、在低碳钢的拉伸??—?曲线中,关于延伸率??的含义,正确的是___B ___。

????????????(A

????(B)

????????(C)

(D

3、对于相同的横截面积,同一梁采用下列何种截面,其强度最高。 正确答案是 B 。

(A)

(B)(C)(D)

4、图示a,b两截面其惯性矩的关系有四种答案,正确答案是 B 。

z a d a (a)

A、(IB、(IC、(ID、(I

z a d a (b)

y y y)a>(Iy)b,(Iz)a=(Iz)b;

yyy)a=(Iy)b,(Iz)a>(Iz)b; )a=(Iy)b,(Iz)a<(Iz)b; )a<(Iy)b,(Iz)a=(Iz)b。

=a的横截面上,点A处切应力??A为哪个答案?

A、

5、矩形截面的外伸梁受载情况如图。在xFAObaaaxh3F3F; B、?; 4bh4bh4F; D、0。 3bh

C、

正确答案是 D 。

6、如图所示直杆,其材料相同,截面和长度相同,支承方式不同,在轴向压力作用下,哪个柔度最大,哪个柔度最小?有4种答案: A、?a大、?c小; B、?b大、?d小;

C、?b大、?c小; D、 ?a大、?b小。

正确答案是 B 。

FFFF7.材料力学中的内力是指( D) A、物体内部的力

B、物体内部各质点间的相互作用力 C、由外力作用引起的变形量

(a)(b)(c)(d) D、由外力作用引起的某一截面两侧各质点间相互作用力的合力的改变量

8.在图所示受力构件中,由力的可传性原理,将力F由位置B移至C,则(A ) A、固定端A的约束反力不变 B、杆件的内力不变,但变形不同 C、杆件的变形不变,但内力不同 D、杆件AB段的内力和变形均保持不变

图 6

9.一拉杆用图示三种方法将杆截开,求内力。N横、 N斜、 N曲 三内力的关系是(C ) A、N横 > N斜 = N曲 B、N横 = N斜 < N曲 C、N横 = N斜 = N曲 D、N横 < N斜 = N曲

图 7

10.图示拉(压)杆1—1截面的轴力为(D ) A、N=P B、N=2P C、N=3P D、N= 6P

图 8

11.图示1—1截面的轴力为(C ) A、70KN B、90KN C、—20KN D、20KN

图 9

12.图示轴力图与以下哪些杆的荷载相对应( B)

图 10

13.构件在拉伸或压缩时的变形特点(C )。 A、仅有轴向变形 B、仅有横向变形

C、轴向变形和横向变形 D、轴向变形和截面转动

14.图11 所示受轴向拉力作用的等直杆,横截面上的正应力为σ,伸长为△L,若将杆长L 变为2 L,横截面积变为2A时,它的σ1与△L1为( B )

A、σ1=2σ △L1= 2△L B、σ1=0.5σ △L1= △L C、σ1=4σ △L1= 4△L D、σ1=4σ △L1= 2△L

15.矩形截面杆两端受轴向荷载作用,其横截面面积为A,则60°方向斜截面上的正应力和剪应力为( C )。

A、 B、

C、 D、

16.三种材料的应力---应变曲线分别如图中a、b、c所示。其中材料的强度最高、弹性模量最大、塑性最好的依次是(C)。

A、a b c B、b c a C、b a c D、c b a

17.材料的许用应力[σ]是保证构件安全工作的(A )。 A、最高工作应力 B、最低工作应力 C、平均工作应力 D、最低破坏应力

18.钢制圆截面阶梯形直杆的受力和轴力图如图所示,d1>d2,对该杆进行强度校核时,应取(

A、AB、BC段 B、AB、BC、CD段 C、AB、CD段 D、BC、CD段

19.塑性材料的极限应力为( C )。

)进行计算。

A A、比例极限 B、弹性极限 C、屈服极限 D、强度极限

20.受力构件n-n截面上的轴力等于( B) A、F B、3F C、2F D、6F

图 14

21.在确定塑性材料的许用应力时,是(C )。 A、 以强度极限应力σb除以安全系数作为许用应力 B、以弹性极限应力σe作为许用应力

C、屈服极限应力σs除以安全系数作为许用应力 D、以弹性极限应力σe除以安全系数作为许用应力 22.脆性材料的极限应力为( D )。 A、比例极限 B、弹性极限 C、屈服极限 D、强度极限

23.剪切强度的实用计算的强度条件为(D ) A、σ= N/A≤[σ] B、τ=Q/A≤[τ] C、σ= Pc/Ac≤[σc] D、 τmax=Mx/Wp≤[τ]

24.螺栓连接两块钢板,当其它条件不变时,螺栓的直径增加一倍,挤压应力将减少(B )倍。 A、1 B、1/2 C、1/4 D、3/4

25.校核图示拉杆头部的挤压强度时,其挤压面积为(D ) A、πD2

/4 B、πd2

/4

C、πhd D、π(D2

-d2

)/4

26.图示木接头,左右两部分形状完全一样,当F拉力作用时,接头的剪切面积等于( D ),挤压面积等于() B

A、ab B、cb C、cl D、.bl

27.图示连接件,插销剪切面上的剪应力为。(A )

A、τ=

2F?d2 B、τ=

4F?d2 C、τ=

F?d2 D、τ=

2Ftd

28.一实心圆轴直径为d,受力如图所示,轴内最大剪应力为 ( A )

A、τmax=

32M?d3 B、τmax=

16M?d3 C、τmax=

32M?d4 D、τmax=

16M?d4

一、判断题

29.如图1截面上,弯矩M和剪力Q的符号是:M为正,Q为负。( b )

30.取不同的坐标系时,弯曲内力的符号情况是M不同,FS相同。( ) 31、 在集中力作用的截面处,FS图有突变,M连续但不光滑。( a ) 32、梁在集中力偶作用截面处,M图有突变,FS图无变化。( a ) 33.梁在某截面处,若剪力FS=0,则该截面的M值一定为零值。( b ) 34.在梁的某一段上,若无载荷q作用,则该梁段上的剪力为常数。( a ) 35.梁的内力图通常与横截面面积有关。( b )

36.应用理论力学中的外力定理,将梁的横向集中力左右平移时,梁的FS图,M图都不变。( 37.将梁上集中力偶左右平移时,梁的FS图不变,M图变化。( a ) 38.图所示简支梁跨中截面上的内力为M≠0,剪力Q=0。( b )

39.梁的剪力图如图所示,则梁的BC段有均布荷载,AB段没有。(a )

40.如图所示作用于B处的集中力大小为6KN,方向向上。( b )

41.右端固定的悬臂梁,长为4m,M图如图示,则在x=2m处,既有集中力又有集中力偶。(a )

42. 右端固定的悬臂梁,长为4m,M图如图示,则在x=2m处的集中力偶大小为6KN·m,转向为顺时针。(b )

43.如图所示梁中,AB跨间剪力为零。( b )

44.中性轴是中性层与横截面的交线。( a )

45.梁任意截面上的剪力,在数值上等于截面一侧所有外力的代数和。( a )

46.弯矩图表示梁的各横截面上弯矩沿轴线变化的情况,是分析梁的危险截面的依据之一。( a )

47.梁上某段无载荷q作用,即q=0,此段剪力图为平行x的直线;弯矩图也为平行x轴的直线。 ( b )

48.梁上某段有均布载荷作用,即q=常数,故剪力图为斜直线;弯矩图为二次抛物线。 ( a ) 49.极值弯矩一定是梁上最大的弯矩。( b )

50.最大弯矩Mmax只可能发生在集中力F作用处,因此只需校核此截面强度是否满足梁的强度条件。 ( b ) 51.截面积相等,抗弯截面模量必相等,截面积不等,抗弯截面模量必不相等。( b )

52.大多数梁都只进行弯曲正应力强度核算,而不作弯曲剪应力核算,这是因为它们横截面上只有正应力存在。( b ) 53.对弯曲变形梁,最大挠度发生处必定是最大转角发生处。( b )

54.两根不同材料制成的梁,若截面尺寸和形状完全相同,长度及受力情况也相同,那么对此两根梁弯曲变形有关量值,有如下判断:最大正应力相同。( a )

55. 两根不同材料制成的梁,若截面尺寸和形状完全相同,长度及受力情况也相同,那么对此两根梁弯曲变形有关量值,有如下判断:最大挠度值相同。( b )

56. 两根不同材料制成的梁,若截面尺寸和形状完全相同,长度及受力情况也相同,那么对此两根梁弯曲变形有关量值,有如下判断:最大转角值不同。( a )

57.两根不同材料制成的梁,若截面尺寸和形状完全相同,长度及受力情况也相同,那么对此两根梁弯曲变形有关量值,有如下判断:最大剪应力值不同。( b )

58. 两根不同材料制成的梁,若截面尺寸和形状完全相同,长度及受力情况也相同,那么对此两根梁弯曲变形有关量值,有如下判断:强度相同。( a )

59.两根材料、截面形状及尺寸均不同的等跨简支梁,受相同的载荷作用,则两梁的反力与内力相同。 ( a ) 60.梁内最大剪力的作用面上必有最大弯矩。( b ) 61.梁内最大弯矩的作用面上剪力必为零。( b )

62.图(a)、(b)中,m-m截面上的中性轴分别为通过截面形心的水平轴与铅垂轴。( a )

63.在均质材料的等截面梁中,最大拉应力 必出现在弯矩值M最大的截面上。( a )

64.对于等截面梁,最大拉应力与最大压应力在数值上必定相等。( b ) 65.对于矩形截面的梁,出现最大正应力的点上,剪应力必为零。( a ) 66.弯曲应力公式

??MyIz? 适用于任何截面的梁。( a )

67.在梁的弯曲正应力公式?MyIz中,

??为梁截面对于形心轴的惯性矩。( a )

68.一悬臂梁及其T形截面如图示,其中c为截面形心,该截面的中性轴??,最大拉应力在上边缘处。( b )

图 14

69.T形截面梁受矩为负值,图示应力分布图完全正确。( b )

图 15

70.匀质材料的等截面梁上,最大正应力∣σ∣max必出现在弯矩M最大的截面上。( a ) 71.对于等截面梁,最大拉应力与最大压应力在数值上必定相等。( b ) 72.对于矩形截面的梁,出现最大正应力的点上,剪应力必为零。( a ) 73.矩形截面梁发生剪切弯曲时,其横截面的中性轴处,σ=0,τ最大。( a )

74.T形梁在发生剪切弯曲时,其横截面上的σmax发生在中性轴上,τmax发生在离中性轴最远的点处。( 75.图所示T形截面外伸梁的最大拉应力发生在A截面处。( b )

76.T截面铸铁梁,当梁为纯弯曲时,其放置形式最合理的方式是A。(a )

b )

图 17

77.大多数梁都只进行弯曲正应力强度校核,而不作弯曲剪应力校核,这是因为它们横截面上只有正应力存在。( b )

78.梁弯曲时最合理的截面形状,是在横截面积相同条件下,获得

WZA值最大的截面形状。( a )

79.矩形截面梁,若其截面高度和宽度都增加一倍,则其强度提高到原来的16倍。( b ) 80.弯曲变形梁,最大挠度发生处,必定是最大转角发生处。( b )

81.图所示脆性材料⊥形截面外伸梁,若进行正应力强度校核,应校核D.B点下边缘。( b )

82.图示悬臂梁,其最大挠度处,必定是最大转角发生处。( b )

83.不同材料制成的梁,若截面尺寸和形状完全相同,长度及受力情况也相同,那么对此两根梁弯曲变形时,它们的最大挠度值相同。( b )

84.EI是梁的抗弯刚度,提高它的最有效,最合理的方法是改用更好的材料。( b )

二、选择题

85.图所示B截面的弯矩值为( b )。

A、PL B、–Pa C、Pa D、–PL 86.图所示简支梁剪力图正确的为( D )。

87.应用截面法计算横截面上的弯矩,其弯矩等于( C )。 A、梁上所有外力对截面力矩的代数和

B、该截面左段梁(或右段梁)上所有外力对任何矩心的代数和

C、该截面左段梁(或右段梁)所有外力(包括力偶)对该截面形心力矩的代数和 D、截面一边所有外力对支座的力矩代数和

88.在集中力作用处剪力图( B )。 A、发生转折 B、发生突变 C、无影响 D、发生弯曲 89.在弯曲的正应力公式??MyIz中,??为梁截面对于( D )的惯性矩。

A、任一轴Z B、形心轴 C、对称轴 D、中性轴

90.梁的截面为T型,z轴通过横截面形心,弯矩图如图示,则有( B )。 A、最大拉应力与最大压应力位于同一截面c或d B、最大抗应力位于截面c,最大压应力位于截面d C、最大拉应力位于截面d,最大压应力位于截面c D、以上说法都不正确

图 20

91.最大弯矩截面最大拉应力等于最大压应力的条件是( B )。 A、梁材料的拉压强度相等 B、截面形状对称于中性轴

C、同时满足以上两条 D、截面形状不对称于中性轴

6、两根载荷、长度、支座相同的梁横截面上最大正应力值相等的条件是( B )。 A、Mmax与截面积分别相等 B、Mmax与Wz分别相等 C、Mmax与Wz分别相等,且材料相同 D、两梁的许用应力相等 92.直梁弯曲强度条件?max?Mmax????中,?max应是( D )上的最大正应力。 Wz A、最大弯矩所在截面 B、梁的最大横截面 C、梁的最小横截面 D、梁的危险截面

93.EI是梁的抗弯刚度,提高它的最有效、最合理的方法是( C ) A、改用更好的材料 B、增加横截面面积

C、采用惯性矩大的截面形状 D、以上作法都不合理

94.由叠加法作图示简支梁的弯矩图,则下述正确的是图( )。

图 21

95.跨中受集中荷载P作用的圆截面简支梁, 它的θA=

,yc之比为 ( A )。

,yc = 。若将L变为2L,d变为2d时,它的

A、

B、

C、

D、

一、判断题

96.刚体是指在外力的作用下大小和形状不变的物体。( √ )

97.在刚体上加上(或减)一个任意力,对刚体的作用效应不会改变。( × ) 98.一对等值、反向,作用线平行且不共线的力组成的力系称为力偶。( √ ) 99.固定端约束的反力为一个力和一个力偶。( × )

100.力的可传性原理和加减平衡力系公理只适用于刚体。( √ )

101.在同一平面内作用线汇交于一点的三个力构成的力系必定平衡。( × ) 102.力偶只能使刚体转动,而不能使刚体移动。( √ ) 103.表示物体受力情况全貌的简图叫受力图。( √ ) 104.图1中F对 O点之矩为Mo(F) = FL 。( × )

图 1

二、选择题

105. 下列说法正确的是( C )

A、 工程力学中我们把所有的物体都抽象化为变形体。 B、在工程力学中我们把所有的物体都抽象化为刚体。 C、稳定性是指结构或构件保持原有平衡状态。

D、工程力学是在塑性范围内,大变形情况下研究其承截能力。

106.下列说法不正确的是( A ) A、力偶在任何坐标轴上的投影恒为零。 B、力可以平移到刚体内的任意一点。

C、力使物体绕某一点转动的效应取决于力的大小和力作用线到该点的垂直距离。 D、力系的合力在某一轴上的投形等于各分力在同一轴上投形的代数和。

107.依据力的可传性原理,下列说法正确的是( D ) A、力可以沿作用线移动到物体内的任意一点。 B、力可以沿作用线移动到任何一点。 C、力不可以沿作用线移动。

D、力可以沿作用线移动到刚体内的任意一点。

108.两直角刚杆AC、CB支承如图,在铰C处受力F作用,则A、B两处约束力与x轴正向所成的夹角α、β分别为: α=___B___,β=___D___。 A、 30°; B、45°; C、 90°; D、135°。

109.下列正确的说法是。( D )

A、工程力学中,将物体抽象为刚体。 B、工程力学中,将物体抽象为变形体。

C、工程力学中,研究外效应时,将物体抽象为刚体。而研究内效应时,则抽象为变形体。 D、以上说法都不正确。

110.关于约束的说法是( D ) A、柔性约束,沿柔体轴线背离物体。

B、光滑接触面约束,约束反力沿接触面公法线,指向物体。 C、固定端支座,反力可以正交分解为两个力方向假设。 D、以上A B正确。

111.力偶的特点,下列说法正确的是( B ) A、力偶可以用力来维持平衡 B、力偶的合成结果仍为一力偶

C、力偶矩大小相等,方向相反的二力偶,互为等效力偶 D、力偶不可以任意搬动

一、 判断题:

112.下图是由平面汇交力系作出的力四边形,这四个力构成力多边形封闭,该力系一定平衡。(b )

图 1

113.图示三个不为零的力交于一点,则力系一定平衡。(b )

114.如图所示圆轮在力F和矩为m的力偶作用下保持平衡,说明力可与一个力偶平衡。(b )

115.图所示力偶在x轴上的投影ΣX=0,如将x轴任转一角度 轴,那么Σ =0。( a)

116.如图所示力偶对a的力矩Ma(F,F')=F·d,如将a任意移到b,则力矩Mb(F,F')将发生变化。( b)

117.图所示物体的A、B、C、D四点各有一力作用,四个力作出的力多边形闭合,则此物体处于平衡状态。(a )

118.如果两个力偶的力偶矩大小相等,则此两个力偶等效。( b)

119.图示构件A点受一力作用,若将此力平移到B点,其作用效果是相同(b )

120.图所示梁,若求支反力 时,用平面一般力系的平衡方程不能全部求出。

121.力在坐标轴上的投影和该力在该轴上分力是相同的。(b )

122.如果将图所示力F由A点等效地平移到B点,其附加力矩M = Fa ( b)。

a )

123.平面任意力系,其独立的二力矩式平衡方程为 ∑Fx=0, ∑MA=0, ∑MB=0,但要求矩心A、B的连线不能与x轴垂直。(a )

二、选择题

124.同一个力在两个互相平行的同向坐标轴上的投影(C )。 A、大小相等,符号不同 B、大小不等,符号不同 C、大小相等,符号相同 D、大小不等,符号相同

125.图所示圆轮由O点支承,在重力P和力偶矩m作用下处于平衡。 这说明(D )。

A、支反力R0与P平衡 B、m与P平衡 C、m简化为力与P平衡

D、R0与P组成力偶,其m(R0,P)=-P·r与m平衡

126. 图所示三铰刚架,在D角处受一力偶矩为m的力偶作用, 如将该力力偶移到E角出,支座A、B的支反力 (A )。

A、A、B处都变化 B、A、B处都不变

C、A处变,B处不变 E、B处变,A处不变

127.图所示一平面上A、B、C、D四点分别有力作用,这四个力 画出的力多边形自行闭合,若向平面内任一点O简化可得(A )。

A、M0=0, R′=0 B、M0≠0, R′=0 C、M0≠0, R′≠0 D、M0=0, R′≠0

128.图所示梁AB一端是固定端支座,另一端无约束,这样的梁称为悬臂梁。已知P=qL,a=的反力。试判断用哪组平衡方程可解。( B )

,梁自重不计,求支座A

A、 B、

C、 D、

129.已知力F在z轴上的投影是z=0,对z轴的力矩MZ≠0,F的作用线与z轴( B )。 A、垂直相交 B、垂直不相交 C、不垂直相交 D、不垂直也不相交

130.依据力的可传性原理,下列说法正确的是(D ) A、力可以沿作用线移动到物体内的任意一点; B、力可以沿作用线移动到任何一点; C、力不可以沿作用线移动;

D、力可以沿作用线移动到刚体内的任意一点。

131.图中的分力F1,F2,F3作用于一点,其合力为R。则以下力的多边形中错误的是( D )

132.如图所示a、b所示两结构,若将结构上作用的力合成为一合力。然后求支座反力。(A)

A、a可求,b不可求。 B、b可求,a不可求。 C、a、b都不可求。 D、a、b都可求。

133.如图所示重量为G的木棒,一端用铰链顶板上A点用一与棒始终垂直的力F在另一端缓慢将木棒提起过程中,F和它对A点之矩的变况是 ( C)

A、力变小,力矩变小 B、力变小,力矩变大 C、力变大,力矩变大 D、力变大,力矩变小

134.关于力对轴的矩,下列说法错误的是(D ) A、力与轴相交,力对轴无矩 B、力与轴平行,力对轴无矩 C、力与轴共面,力对轴无矩 D、力与轴交叉,力对轴无矩

135.简支梁AB受载荷如图(a)、(b)、(c)所示,今分别用 FN1、FN2、FN3表示三种情况下支座的关系应为(C )。

的反力,则它们之间

A、 B、

C、 D、

136.图所示平面系统受力偶矩为M=10kN×m的力偶作用。当力偶M作用于AC杆时,A支座反力的大小为(D ),B支座反力的大小为(D ) ;当力偶M作用于BC杆时,

A支座反力的大小为( B),B支座反力的大小为( B )。

A、4kN B、5kN C、8kN; D、10kN

137.下列命题中正确的是( C )

A、各力作用线在同一平面上的力系,称为平面任意力系。 B、平面任意力系向作用面内任意点简化,主矩与简化中心无关。 C、平面平行力系是平面任意力系的一种特殊情况。 D、对平面汇交力系,也可以使用力矩平衡方程。

138.在图示结构中,如果将作用于构件AC的力偶M搬移到构件BC上,则A、B、C三处约束反力的大小( C )。

A、都不变

B、A、B处约束反力不变,C处约束反力改变 C、都改变

D、A、B处约束反力改变,C处约束反力不变

77道判断,63道选择

253道判断 ,294道选择 547

1、某空间力系若各力作用线均通过某一固定点,则其独立的平衡方程式的最大数目分别为( )A A、3个

B、4个

C、5个

D、6个

2、某空间力系若各力作用线分别平行两固定点的连线:则其独立的平衡方程式的最大数目分别为( )A A、3个

B、4个

C、5个

D、6个

3、已知一正方体,各边长a,沿对角线BH作用一个力F,则该力在X1轴上的投影为( )。A

A、0;

2;

C、F/6;

B、F/D、-F/

3。

4、根据空间任意力系的平衡方程至多可以解出( )未知量。C A、三个 B、四个 C、六个 D、九个 5、空间力系作用下的止推轴承共有( )约束力。B A、二个 B、三个 C、四个 D、六个 6、图示两种结构中,哪一种可将F力沿其作用线移到BC部分上去( D )。 A、图(a)、(b)都可以; B、图(a)、(b)都不可以; C、仅图(a)可以; D、仅图(b)可以。 7、大小相等、方向和作用线均相同的4个力F1、F2、F3、F4对同一点 用 A、O之矩分别 M1、 M2、 M3、 M4表示,则( D ) M1?M2?M3?M4 ;B、 M1?M2?M3?M4; M?M?M?M234; D、 1234。 C、1第一章 8、力在工程上称为载荷。( A ) 9、当结构承载和传递载荷时,各个构件都必须能够正常工作,才能保证整个结构的正常使用。(A) 10、工程力学的研究对象主要为杆件,它有梁、拱、刚架、桁架、组合结构几种类型。(A) 11、作用在结构上的载荷按其作用时间长短可以分为恒载和活载。(A) 12、恒载是指永久作用载结构上的载荷。(A) 13、活载可以分为定位活载和移动活载。(A)

14、根据载荷作用的动力效果大小,又可以分为静力载荷和动力载荷。(A) 15、根据载荷与结构接触面积的大小,载荷可以分为集中载荷和均布载荷。(A) 16、根据载荷与结构的接触情况,载荷可以分为直接载荷和间接载荷。(A) 17、力的矢量可以用它的模和单位矢量的乘积表示。(A) 18、刚体是理想化的力学模型。(A)

19、在已知力系上加上或减去任意力系,并不改变力系对刚体的作用。(B)

20、作用在同一点的两个力,可以合成为一个合力,合力的作用线也在该点,合力的大小、方向由两个力为边构成的平行四边形的对角线确定。(A)

21、当变形体在已知力系作用下处于平衡时,如将此变形体变为刚体,则平衡状态保持不变。(A)

M=M=M=M22、在空间做任意运动的物体称为自由体。(A) 23、位移受到限制的物体称为自由体。(A) 24、约束对物体的作用称为约束反力。(A)

25、力在某轴的投影等于力的模乘以力与投影轴正向夹角的余弦。(A) 第二章

26、平面汇交力系的合力对于平面内任意点之矩等于所有各力对于该点之矩的代数和。(A) 27、只要保持力偶矩的大小和转向不变,可以同时改变力偶中力的大小和力偶臂的长短。(A) 28、车刀夹在刀架上可以简化为固定端约束。(A) 29、电线杆深埋在地下可以简化为固定端约束。(A) 第三章

30、平面任意力系平衡方程的二力矩式,取矩两点连线不能垂直于投影轴。(A) 31、平面任意力系平衡方程的三力矩式,三个矩心在平面内是不共线的三个点。(A) 32、平行力系平衡方程的二力矩式中,矩心两点的连线不能与平行力的作用线平行。(A) 第四章

33、力对轴之矩是力使刚体绕该轴转动效果的量度,是代数量。(A) 34、力对点之矩称为定位矢量。(A)

35、力对点的矩矢在通过该点的某轴上的投影,等于力对该轴的矩。(A) 第五章

36、外力包括载荷和约束力。(A)

37、根据外力作用位置的不同,可以将其分为体积力和表面力。 38、作用在物体表面的力可以分为分布力和集中力。(A) 39、内力是由于构件变形而产生的附加内力。(A)

40、内力随外力的增大而增大,构件的变形也会随之增大。(A)

41、构件的强度、刚度、稳定性与内力的大小和其分布情况有密切关系。(A) 42、在载荷作用下,构件的尺寸和形状发生的变化称为变形。(A) 43、正应力引起正应变,切应力引起切应变。(A) 第六章

44、自行车车轮的辐条的变形是轴向拉伸压缩的实例。(A)

45、外力作用于杆端方式的不同,只会使与杆端距离不大于杆的横向尺寸的范围内受到影响。(A) 46、在动载荷的作用下无论是塑性材料还是脆性材料,应力集中时零件强度都有严重的影响。(A) 47、材料拉伸试验的试件是5倍试件或10倍试件的标准件。(A) 48、低碳钢试件在压缩时,并不发生破裂,因此无法得到抗压强度。(A)

49、在设计工作中,我们应权衡安全和经济两个方面的要求,合力的选择安全系数,力求设计的工件既安全又经济。(A) 第八章

50、扭转变形的的特点是杆内的相邻横截面绕轴线产生相对转动。(A)

51、若作用在轴上的力偶矩有多个时,用图线表示出轴在各个截面上的扭矩变化规律,这种图线称为扭矩图。(A) 52、机械传动轴若产生过大的扭转变形,势必影响其正常工作,因此要对轴单位扭转角加以限制。(A)

????=0.15?0.5?m。(A) 54、一般传动轴????=0.5?1.0?m。(A)

53、精密机械的轴

第九章

55、梁是机械和各工程结构中最为常见的构件,在各类工程中占有重要的地位。(A) 56、工程上常见的梁大多数设计、制造和布置都有对称轴,有纵向对称平面。(A)

57、由于梁的几何、物理特性和载荷都对称于梁的纵向对称平面,因此梁变形侯的轴线为一条在该纵向对称对称平面内的平面曲线,称为平面对称弯曲。(A)

58、应用剪力图和弯矩图可以确定梁的最大剪力和最大弯矩所在截面的位置,这对于分析梁的强度问题是非常重要的。(A) 59、在梁的某一段内,若无分布载荷,剪力等于常数,弯矩图为水平直线。(A)

60、在梁的某一段内,若有分布载荷作用,剪力图为斜直线,而弯矩图为二次抛物线。(A) 61、在梁的某一截面上,若剪力等于零,则在这个点的弯矩有极值。(A) 62、在集中力作用的点,剪力图发生突变,在力偶作用的点,弯矩发生突变。(A) 第十章

63、弯曲正应力计算公式的适用条件是,正应力处于材料的比例极限以内,满足胡克定律。(A) 64、当梁的跨度L远大于其截面的高度h时,最大的弯曲正应力远大于最大弯曲切应力,在强度问题中,弯曲正应力起主导作用。(A) 65、在外力作用下,梁的轴线将由直线变为曲线,弯曲后的梁的轴线称为挠曲线。(A) 66、横截面形心的纵向线位移称为该截面的挠度,用?表示。(A) 67、梁的变形可用横截面形心的纵向线位移和横截面的角位移来表示。(A) 68、横截面的角位移为转角,它等于挠曲线在该截面处的切线与x轴的夹角。(A) 69、挠度和转角的正负号规定为:挠度向下为正,转角顺时针为正。(A) 70、当梁在几个载荷的同时作用时,某一截面的挠度和转角就等于每个载荷单独作用下该截面的挠度和转角的叠加,这就是叠加原理。(A)

71、等直梁的任一截面上的最大正应力发生在离中性轴最远的各点,而这些点的切应力一般为零,因而最大正应力作用点处于单向应

力状态。(A)

72、对于用铸铁等脆性材料制成的梁,由于许用压应力明显高于许用拉应力,则需要分别按拉伸和压缩对其进行强度计算。(A) 73、等直梁的最大切应力一般是在最大剪力所在横截面的中性轴的各点处,这些点的正应力为零,最大切应力所在点处于纯剪切应力状态。(A)

74、对于土木工程中的许多梁,除了要满足强度条件意外,还需要满足刚度条件。(A) 75、如果桥梁挠度多大,则车辆通过时会产生很大的振动,因此需要控制其刚度条件。(A) 76、机床主轴的挠度过大,会影响加工精度,需要控制其刚度。(A)

77、传动轴在滑动轴承处的转角过大,会加速轴承的磨损,因此需要控制刚度。(A)

78、合理的强度计算,就是对于给定的梁材料,合理配置支座位置和载荷作用,尽量降低最大弯矩,采用合理的梁截面,提高抗弯截面系数。(A)

79、对于抗拉和抗压强度相同的塑性材料,采用中性轴为对称的截面(矩形、圆形、工字型);对于抗压强度高于抗拉强度的脆性材料梁,采用中性轴靠近受拉一侧的截面(T形)(A)

80、为了减小梁的位移,提高其刚度,可以采取增大弯曲刚度,减小跨度。(A) 第十一章 81、由于单元体的边长为无穷小,过这一点的单元体各个侧面的应力状态,就能准确表示这一点的应力状况,称为该点处的应力状态。(A)

82、自来水管中的水在冬季严寒的环境下结成了冰,其中的任一点均处于三向应力状态。(A)

83、在单元体的六个侧面中,只有四个相对的侧面有应力作用,剩余的两个侧面是无应力的,而且4各侧面的应力作用线和这两个自由侧面平行,这种应力状态称为平面应力状态。(A)

84、总结应力圆和单元体的关系,可以用“点对面,角加倍,同转向”来概括。(A) 85、在单元体中两个面的夹角为?,在应力圆中相应的两个点的圆心夹角为2?,而且转向相同。(A) 86、低碳钢圆轴试件在扭转屈服时,在其表面纵、横出现滑移线,就与最大剪应力有关。(A)

87、灰口铸铁圆轴试件在扭转破坏时,在与轴线约成45?倾角的螺旋面发生断裂,这与最大拉应力有关。(A) 88、一般,最大拉应力理论和最大拉应变理论适合脆性材料。(A) 89、最大剪应力理论和畸变能理论适合于塑性材料。(A)

90、实际工程中许多构件的危险点往往处于二向或三向应力状态,而二向或三向应力状态的试验是比较困难和复杂的,因此研究材料在复杂应力状态下的破坏规律是非常重要的。(A) 第十二章

91、分析组合变形时,可以先将外力进行简化和分解,把构件上的外力转化成几组静力等效的载荷,其中每一组载荷对应着一种基本变形。(A) 第十三章

92、压杆丧失其直线的平衡形式而过度到曲线的平衡形式,称为失稳,也称屈曲。(A)

93、解决压杆稳定的问题关键是确定其临界载荷,如果将压杆的工作压力控制在由临界载荷所确定的许可范围之内,则压杆将不会发生失稳。(A)

?2E94、对于大柔度的杆,临界应力的计算可以采用欧拉公式?cr?。(A) 2?95、对于中柔度的杆,临界应力的计算可以采用经验公式??a?b?。(A)

?L,?是一个无量纲的量,称为柔度或细长比。

96、??(A)

i97、当???s时,压杆称为小柔度杆。(A)

????s,称为中柔度的杆。

98、介于大柔度杆和小柔度杆之间的压杆,即?p99、稳定条件为n?Fcr(A) ?nst。

F100、因为一些难以避免的因素存在,稳定安全系数一般要高于强度安全系数。(A)