µ­Ë®ÑøÖ³³ØÌÁË®»ª·¢Éú¼°³ØË®¾»»¯´¦Àí ÏÂÔØ±¾ÎÄ

µ­Ë®ÑøÖ³³ØÌÁË®»ª·¢Éú¼°³ØË®¾»»¯´¦

Àí

²ÎÈü¶ÓÔ±£º»Æ»ªºè

²ÎÈü¶ÓÔ±£º³ÂÇ¿

²ÎÈü¶ÓÔ±£ºÍõÓñæÃ

´ø¶ÓÖ¸µ¼ÀÏʦ£º¹Ü Ç¿

2016Äê06ÔÂ07ÈÕ

Ŀ ¼

ÕªÒª.....................................................1 Ò»¡¢ÎÊÌâÖØÊö..............................................2

1.1ÎÊÌâ±³¾°..........................................2 1.2ÎÊÌâÌá³ö..........................................2 ¶þ¡¢ÎÊÌâ·ÖÎö..............................................2 2.1ÎÊÌâÒ»µÄ·ÖÎö......................................2 2.2ÎÊÌâ¶þµÄ·ÖÎö......................................2 2.3ÎÊÌâÈýµÄ·ÖÎö......................................3 2.4ÎÊÌâËĵķÖÎö......................................3 2.5ÎÊÌâÎåµÄ·ÖÎö......................................3 Èý¡¢ÎÊÌâ¼ÙÉè.............................................3 ËÄ¡¢Ä£Ðͽ¨Á¢.............................................3 4.1ÎÊÌâÒ»µÄ½â´ð......................................3

4.1.1Êý¾Ý´¦Àí.................................3 4.1.2Êý¾Ý·ÖÎö......................................3 4.2ÎÊÌâ¶þµÄ½â´ð...............................6 4.2.1Ä£Ðͽ¨Á¢.................................6 4.3ÎÊÌâÈýµÄ½â´ð...............................9 4.4ÎÊÌâËĵĽâ´ð..............................10

1

4.5ÎÊÌâÎåµÄ½â´ð..............................12 Î塢ģÐÍÆÀ¼Û......................................12 5.1Ä£Ð͵ÄÓŵã................................12 5.2Ä£Ð͵Äȱµã................................12 Áù¡¢²Î¿¼ÎÄÏ×.....................................12 ¸½Â¼.............................................13

µ­Ë®ÑøÖ³³ØÌÁË®»ª·¢Éú¼°³ØË®¾»»¯´¦Àí

Õª Òª

ĿǰÔÚÎÒ¹úË®²úÑøÖ³ÖУ¬³ØÌÁÑøÖ³²úÁ¿Ô¼Õ¼µ­Ë®ÑøÖ³µÄ¾ø´ó²¿·Ö¡£µ«ÊÇ£¬Ëæ×ŵ­Ë®Éú̬ϵͳˮÌåÎÛȾºÍ¸»ÓªÑø»¯½ø³ÌµÄ¼Ó¾ç£¬¾­³£µ¼Ö¸¡ÓÎÉúÎï¸ßÃܶȷ¢Éú£¬ÓÕ·¢´óÃæ»ýË®»ª¡£Ë®»ªµÄ·¢Éú²»½ö½öÖ±½ÓÓ°ÏìÁËÑøÖ³¶ÔÏóµÄÕý³£Éú³¤·¢Óý£¬¶øÇÒÔÚÑÏÖØÊ±´óÁ¿ÅÅй·ÏË®»¹»áÔì³Éµ­Ë®×ÊÔ´ÎÛȾ£¬²¢ÆÆ»µÑøÖ³Éú̬ϵͳµÄƽºâ£¬µ¼ÖÂÑøÖ³¶ÔÏóµÄ²»Í¬³Ì¶ÈËÀÍö£¬Ôì³É¾Þ´ó¾­¼ÃËðʧ¡£Îª´ËÎÒÃÇͨ¹ýÑо¿µ­Ë®ÑøÖ³³ØÌÁÏà¹ØÖ÷ÒªÀí»¯Òò×Ó£¬Ö÷Òª¸¡ÓÎÉúÎïÊý¾Ý¼°ÓãϺÉú³ÉµÈÊý¾Ý·ÖÎöË®»ª·¢ÉúµÄÔ­Òò£¬¿ØÖƲ¢Ô¤²âË®»ªµÄ·¢Éú£¬´Ó¶øÌá¸ßÑøÖ³²úÁ¿£¬¼õС»·¾³ÎÛȾµÈ¡£Í¨¹ý¶ÔË®»ª·¢ÉúµÄÁ˽⣬¼ÓÇ¿´ó¼Ò»·±£Òâʶ¡£

Ê×ÏÈ£¬Õë¶ÔÎÊÌâÒ»£¬ÎÒÃǽ«¸÷³ØÖÐÁ½¸öÑù±¾µãÊý¾ÝµÄƽ¾ùÖµ´ú±íÕû¸ö³ØÌÁµÄÊý¾Ý£¬Í¨¹ýExcel½øÐÐÊý¾Ý´¦Àí²¢»æÖÆÖùÐÎͼ£¬´Ó¶øµÃ³öË®Ìå¡¢µ×ÄàÓë¼ä϶ˮÖг£¼ûÖ÷ÒªÀí»¯Òò×ÓÖ®¼äµÄ¹ØÏµ£¬²¢·ÖÎöÔ­Òò¡£Õë¶ÔÎÊÌâ¶þ£¬ÎÒÃÇÖ÷ҪѡȡÈÜÑõ¡¢COD¡¢Ñζȡ¢Í¸Ã÷¶È¡¢×ÜÁ׺Í×ܵªÎªÖ÷ÒªÖ¸±ê¡£ÔËÓÃspssµÄÖ÷³É·Ö·ÖÎöÓë¾ÛÀà·ÖÎö£¬ÎÒÃǵóöÁËËĸö³ØÌÁË®ÌåÖÊÁ¿µÄÓÅÁÓÅÅÐòÓë·ÖÀ࣬ͬʱ·ÖÎö³öϺ³ØÓã³Ø¶ÔË®ÌåµÄÓ°Ïì¡£Õë¶ÔÎÊÌâÈý£¬ÎÒÃÇͨ¹ýÆ«×îС¶þ³Ë·¨½¨Á¢¸¡ÓÎÉúÎïÖº¦ÃܶÈÄ£ÐÍ£¬²¢Çó³ö1ºÅ³Ø·¢ÉúÇá΢ˮ»ªÊ±¸÷¸öÖ÷ÒªÀí»¯Òò×ÓµÄÖÃÐÅÇø¼ä£¬´Ó¶øÔ¤²â³ö·¢ÉúÖØ¶ÈË®»ªÓë²»·¢ÉúË®»ªÊ±£¬¸÷¸öÖ÷ÒªÀí»¯Òò×ӵķ¶Î§¡£Õë¶ÔÎÊÌâËÄ£¬ÎÒÃǸù¾Ý¸½¼þ6µÄÊý¾Ýͨ¹ýmatlabÄâºÏÇó³öÁ½ÖÖÓãÀàµÄÉú³¤º¯Êý£¬´Ó¶ø½¨Á¢Ä£ÐÍ¡£Õë¶ÔÎÊÌâÎ壬Ö÷Ҫͨ¹ý²éÔÄ×ÊÁÏËùµÃ¡£

¹Ø¼ü´Ê£ºExcel¡¢spss¡¢matlab¡¢ÖùÐÎͼ¡¢Ö÷³É·Ö·ÖÎö¡¢ÖÃÐÅÇø¼ä

1

Ò»¡¢ÎÊÌâÖØÊö

1.1 ÎÊÌâ±³¾°

³ØÌÁÑøÖ³²úÁ¿µÄÉÏÉý£¬°éËæ×ÅË®ÌåÎÛȾÓë¸»ÓªÑø»¯½ø³ÌµÄ¼Ó¾ç£¬½ø¶øÈÝÒ×ÓÕ·¢Ë®»ª¡£Ë®»ªµÄ·¢Éú²»½öÓ°Ïì×ÅÑøÖ³ÒµµÄ·¢Õ¹£¬Í¬Ê±»¹´øÀ´µ­Ë®×ÊÔ´µÄÎÛȾÒÔ¼°ÑøÖ³Éú̬ϵͳµÄƽºâ£¬µ¼ÖÂÑøÖ³¶ÔÏóµÄ²»Í¬³Ì¶ÈËÀÍö£¬Ôì³É¾Þ´ó¾­¼ÃËðʧ¡£ 1.2 ÎÊÌâÌá³ö

ÎÊÌâÒ»£º·ÖÎöË®Ìå¡¢µ×ÄàÓë¼ä϶ˮÖг£¼ûÖ÷ÒªÀí»¯Òò×ÓÖ®¼äµÄ¹ØÏµ£¬²¢·ÖÎöÔ­Òò£» ÎÊÌâ¶þ£º¶ÔËĸö³ØÌÁË®ÌåÖÊÁ¿½øÐÐÆÀ¼Û¼°·ÖÀ࣬·ÖÎöϺ³ØÓëÓã³Ø¶ÔË®ÌåµÄÓ°Ï죻 ÎÊÌâÈý£º½¨Á¢Ö÷ÒªÀí»¯Òò×Ӻͳ£¼û¸¡ÓÎÉúÎïÖº¦Ãܶȷ¢Éú¹ØÏµµÄÄ£ÐÍ£¬¸ø³öË®»ª·¢ÉúʱÖ÷ÒªÀí»¯Òò×ӵķ¶Î§£¬Ô¤²âµ­Ë®ÑøÖ³³ØÌÁË®»ª·¢Éú (1ºÅ³Ø·¢ÉúÇá΢ˮ»ª)£»

ÎÊÌâËÄ£º½áºÏÒÔÉÏÎÊÌâ·ÖÎö£¬½¨Á¢ÓãÀàÉú³¤ÓëÌåÖØÏà¹ØÄ£ÐÍ¡£ÔÚÑøÖ³öãÓã¡¢÷«ÓãµÈµÄÉú³¤¹ý³ÌÖпÉÒÔÉãʳ¸¡ÓÎÉúÎ¾»»¯Ä³Ð©ÔåÀ࣬¹¹ÔìÒ»¸öÓë1ºÅ³ØÏàͬ´óСµÄ¾»»¯³Ø£¬Í¨¹ýˮѭ»·£¬²¢·ÅÑøöãÓã»ò÷«Ó㣬·ÅÑø¶àÉÙ²ÅÄܾ»»¯1ºÅ³ØÖеÄÔåÀ࣬¾»»¯Ð§¹ûÈçºÎ£»

ÎÊÌâÎ壺¹¹½¨Ò»ÖÖÉúÌ¬ÑøÖ³Ä£Ê½£¬ÓÐÀûÓÚ³ØË®ÑøÖ³³ØÌÁË®ÌåµÄ×Ô¾»»¯¡£Í¨¹ýÒÔÉÏÑøÖ³´Ó¶øÊ¹µ­Ë®ÑøÖ³¼õÉÙÏò½­ºÓºþº£ÑøÖ³·ÏË®ÅÅ·Å¡£

¶þ¡¢ÎÊÌâ·ÖÎö

2.1 ÎÊÌâÒ»µÄ·ÖÎö

ͨ¹ý¼ÆËã³ö¸÷³ØÖÐÁ½¸öÑù±¾µãÊý¾ÝµÄƽ¾ùÖµµÃµ½¸÷³ØÖг£¼ûÖ÷ÒªÀí»¯Òò×ÓÔÚ³ØË®¡¢¼ä϶ˮ¡¢µ×ÄàÖеĺ¬Á¿¡£ÔËÓÃExcelÇó³ö¸÷³ØÖÐÖ÷ÒªÀí»¯Òò×ÓµÄ×ÜÁ¿¼°ÔÚ³ØË®¡¢¼ä϶ˮ¡¢µ×ÄàÖеÄËùÕ¼±ÈÀý¡£»æÖÆÖùÐÎͼ£¬Í¨¹ý¶Ô±È£¬·¢ÏÖÖ÷ÒªÀí»¯Òò×ÓÔÚ4¸ö³ØÌÁÖеķֲ¼´óÖÂÏàͬ£¬µÃ³öË®Ìå¡¢µ×ÄàÓë¼ä϶ˮÖг£¼ûÖ÷ÒªÀí»¯Òò×ÓÖ®¼äµÄ¹ØÏµ£¬²éÔÄ×ÊÁϵóöÔ­Òò¡£ 2.2 ÎÊÌâ¶þµÄ·ÖÎö

ͨ¹ýÇó³ö¸÷Àà³Ø15ÖÜÀïÆ½¾ùÿÖܵÄÏà¹ØÊý¾Ý£¬²¢ÔËÓÃspssµÄÖ÷³É·Ö·ÖÎö£¬µÃ³öËĸö³ØÌÁµÄ×ۺϵ÷֣¬°´µÃ·Ö¸ßµ½µÍµÄ˳ÐòΪ£¬4ºÅ³Ø£¬3ºÅ³Ø£¬1ºÅ³Ø£¬2

2

ºÅ³Ø£¬ÎÒÃÇÈÏΪµÃ·ÖÔ½¸ßµÄ´ú±íË®ÌåÖÊÁ¿Ô½²î¡£ÔÙÕßͨ¹ý¾ÛÀà·ÖÎöµÃ³öËĸö³ØÌÁµÄ·ÖÀ࣬¼´2ºÅÓë3ºÅ³ØÎªµÚÒ»À࣬1ºÅ³ØÎªµÚ¶þÀ࣬4ºÅ³ØÎªµÚÈýÀࡣͨ¹ýË®ÌåÖÊÁ¿ÆÀ¼ÛµÃµ½Ïº³Ø¶ÔË®ÌåµÄÓ°Ïì±ÈÓã³ØÐ¡¡£

2.3 ÎÊÌâÈýµÄ·ÖÎö

ͨ¹ýÆ«×îС¶þ³Ë·¨½¨Á¢¸¡ÓÎÉúÎïÖº¦ÃܶÈÄ£ÐÍ£¬²¢Çó³ö¸÷¸öÀí»¯Òò×ÓµÄ×ÜÁ¿ÔÚ15ÖÜÖеľùÖµ¼°±ê×¼²î£¬²¢µÃµ½ÔÚ1ºÅ³Ø·¢ÉúÇá΢ˮ»ªÊ±£¬¸÷¸öÖ÷ÒªÀí»¯Òò×ÓµÄÖÃÐÅÇø¼ä£¬´Ó¶øÔ¤²âÔÚÖ÷ÒªÀí»¯Òò×Óº¬Á¿ÔÚ¸ÃÇø¼äÄÚΪ·¢ÉúÇá΢ˮ»ª£¬´óÓÚ¸ÃÇø¼äΪ·¢ÉúÖØ¶ÈË®»ª£¬Ð¡ÓÚ¸ÃÇø¼äΪ²»·¢ÉúË®»ªÏÖÏó¡£ 2.4 ÎÊÌâËĵķÖÎö

Óɸ½¼þ6ÌṩµÄÊý¾Ý£¬Í¨¹ýmatlabÄâºÏµÃµ½Á½ÖÖÓãÀàµÄÉú³¤º¯Êý£¬²¢»­Í¼µÃ³öÄ£ÐÍ£¬´Ó¶øµÃµ½½áÂÛ£ºÓãÀàÉú³¤ÓëÌåÖØ³ÊÕýÏà¹Ø¹ØÏµ¡£ 2.5 ÎÊÌâÎåµÄ·ÖÎö

Õë¶ÔÎÊÌâÎ壬Ö÷Ҫͨ¹ý²éÔÄ×ÊÁÏËùµÃ¡£

Èý¡¢ÎÊÌâ¼ÙÉè

1¡¢¼ÙÉ踽¼þÖеÄÊý¾ÝÕæÊµÓÐЧÇÒÎÞÈκδíÎó 2¡¢¼ÙÉèûÓз¢ÉúÖØ´óÔÖÄÑÓ°ÏìÑøÖ³Òµ·¢Õ¹

ËÄ¡¢Ä£Ðͽ¨Á¢

4.1 ÎÊÌâÒ»µÄ½â´ð 4.1.1Êý¾Ý´¦Àí

ÔÚÎÊÌâÒ»ÖÐÎÒÃÇÏȶÔÿ¸ö³ØµÄÁ½¸öÑù±¾µãÊý¾ÝÇ󯽾ùÖµ£¬´Ó¶øÕûºÏ³É4·ÝÊý¾Ý´ú±íËĸö³ØÌÁ¡£Í¨¹ýÊý¾Ý´¦ÀíµÃ³öÔÚ³ØË®¡¢¼ä϶ˮ¡¢µ×ÄàÖи÷³£¼ûÖ÷ÒªÀí»¯Òò×ӵĺ¬Á¿±ÈÀý£¬²¢»æÖÆÖùÐÎͼ¡£ 4.1.2Êý¾Ý·ÖÎö

ÓÉÊý¾Ý´¦Àíºó£¬µÃ³öÒÔÏÂ6ͼ£¬²¢×÷³öÏàÓ¦·ÖÎöÈçÏ£º

3

ͼ1-1 ¸÷³ØÖÐ×ÜÁ׺¬Á¿·Ö²¼Í¼

ÓÉͼ1-1¿ÉµÃËĸö³ØÌÁÖÐ×ÜÁ×Ö÷Òª´æÔÚÓÚ³ØË®Óë¼ä϶ˮÖУ¬¹Ê×ÜÁ×ÓëË®Ìå¡¢¼ä϶ˮÓйØÏµ£¬Óëµ×Ä༸ºõû¹ØÏµ¡£

ͼ1-2 ¸÷³ØÖÐÁ×ËáÑÎÁ׺¬Á¿·Ö²¼Í¼

ÓÉͼ1-2¿ÉµÃ£¬ÔÚËĸö³ØÌÁÖÐÁ×ËáÑÎÁ×Ö÷Òª´æÔÚÓÚ³ØË®¡¢¼ä϶ˮºÍµ×ÄàÖУ¬Á×Ëá

4

ÑÎÁ×ÓëÕâÈýÕß¶¼ÓйØÏµ£¬µ«ºÍ³ØË®µÄ¹ØÏµ±È½ÏС¡£

ͼ1-3 ¸÷³ØÖÐ×ܵªº¬Á¿·Ö²¼Í¼

ÓÉÉÏͼ¿ÉµÃËĸö³ØÌÁÖÐ×ܵªº¬Á¿»ù±¾´æÔÚÓÚ³ØË®Óë¼ä϶ˮÖУ¬¹Ê×ܵªÓëË®ÌåºÍ¼ä϶ˮÓйØÏµ£¬Óëµ×Äà»ù±¾Î޹ء£

ͼ1-4 ¸ö³ØÖÐÏõ̬µªº¬Á¿·Ö²¼Í¼

ÓÉÉÏͼ¿É¿´³öËĸö³ØÌÁÖÐÏõ̬µª´æÔÚÓÚ³ØË®¡¢¼ä϶ˮºÍµ×ÄàÖУ¬¹ÊÏõ̬µªÓëÕâÈýÕßÓйأ¬µ«ÊǹØÏµÐÔ×î´óµÄÊǵ×Äà¡£ÒòΪµ×Äà¶ÔÏõËá¸ùÀë×ÓµÄÎü¸½×÷ÓúÜС£¬»ù±¾²»Îü¸½£¬Òò´Ëµ×ÄàÖеÄÏõËá¸ùÀë×Ó¿ÉÒÔ³ä·ÖÊÍ·Å¡£Òò´Ëµ×ÄàÖеÄÏõ̬µªº¬Á¿±È

5

½Ï¶à¡£[1]

ͼ1-5 ¸÷³ØÖÐÑÇÏõ̬µªº¬Á¿·Ö²¼Í¼

ÓÉÉÏͼ¿ÉµÃÔÚËĸö³ØÌÁÖÐÑÇÏõ̬µªÖ÷Òª»¹ÊÇ·Ö²¼ÔÚµ×ÄàÖУ¬¹ÊÑÇÏõ̬µªÖ÷ÒªÓëµ×ÄàÓйء£ÒòÑÇÏõËáÑμ«²»Îȶ¨£¬ÔÚºÃÑõÌõ¼þϺܿìת»¯ÎªÏõËáÑΣ¬ËùÒÔÑÇÏõ̬µªÔÚË®ÌåÖк¬Á¿Ïà¶ÔÓÚµ×Äà½ÏÉÙ¡£[1] 4.2.1ÎÊÌâ¶þµÄ½â´ð

Õë¶ÔÎÊÌâ¶þ£¬ÎÒÃÇÖ÷ҪѡȡÈÜÑõ¡¢COD¡¢Ñζȡ¢Í¸Ã÷¶È¡¢×ÜÁ׺Í×ܵªÎªÖ÷ÒªÖ¸±ê£¬Í¨¹ýÇó³öËûÃǵľùÖµ£¬ÓÃÖ÷³É·Ý·ÖÎöµÃ³ö×îÖÕµÄ×ÛºÏÆÀ¼Û£¬¼´»·¾³µÄÓÅÁÓÅÅÐòΪ£º2ºÅ³Ø>1ºÅ³Ø> 3ºÅ³Ø> 4ºÅ³Ø¡£ÓþÛÀà·ÖÎö¶ÔËĸö³ØÌÁ½øÐзÖÀ࣬½á¹ûΪ2ºÅ³ØÓë3ºÅ³ØÎªµÚÒ»À࣬1ºÅ³ØÎªµÚ¶þÀ࣬4ºÅ³ØÎªµÚÈýÀà¡£²¢·ÖÎöϺ³ØÓã³Ø¶ÔË®ÌåµÄÓ°Ïì¡£

4.2.2Ä£Ðͽ¨Á¢ £¨1£©Ë®ÌåÖÊÁ¿ÆÀ¼Û

ͨ¹ýspssµÄÖ÷³É·Ö·ÖÎö²Ù×÷µÃÏÂÒÔÏÂͼ±í£º

±í2-1 ÌØÕ÷¸ùÓë·½²î¹±Ï×ÂÊ

½âÊ͵Ä×Ü·½²î ³õÊ¼ÌØÕ÷Öµ ³É·Ý 1 ºÏ¼Æ 4.073 ·½²îµÄ % 67.884 ÀÛ»ý % 67.884 ºÏ¼Æ 4.073 Ìáȡƽ·½ºÍÔØÈë ·½²îµÄ % 67.884 ÀÛ»ý % 67.884 6

2 3 4 5 6 1.672 .255 8.673E-16 1.735E-16 -3.990E-16 27.863 4.253 1.446E-14 2.892E-15 -6.649E-15 95.747 100.000 100.000 100.000 100.000 1.672 27.863 95.747 ÌáÈ¡·½·¨£ºÖ÷³É·Ý·ÖÎö¡£

´ÓͼƬµÄÌØÕ÷¸ùÓë·½²î¹±Ï×±í¸ø³öÁ˸÷Ö÷³É·Ö½âÊÍԭʼ±äÁ¿×Ü·½²îµÄÇé¿ö£¬´Ó±íÖпÉÒÔ¿´³ö£¬±£ÁôÁË2¸öÖ÷³É·Ö£¬¼¯ÖÐÁËԭʼ±äÁ¿×ÜÐÅÏ¢µÄ95.747%¡£

±í2-2 Òò×ÓÔØºÉÕó ³É·ÝµÃ·ÖϵÊý¾ØÕó ÈÜÑõ COD ÑÎ¶È Í¸Ã÷¶È ×ÜÁ× ×ܵª ³É·Ý 1 -.139 .242 -.182 -.241 .198 .193 ÌáÈ¡·½·¨ :Ö÷³É·Ý¡£ ¹¹³ÉµÃ·Ö¡£ 2 .464 .101 .359 .114 .338 .342 ÓÉÉϱíÎÒÃǵõ½ÒÔÏÂÁ½¸ö¹«Ê½£º

F1=-0.139*x1+0.242*x2-0.182*x3-0.241*x4+0.198*x5+0.193*x6 (1) F2=0.464*x1+0.101*x2+0.359*x3+0.114*x4+0.338*x5+0.342*x6 (2) ¸ù¾ÝËùµÃÊý¾Ý½áºÏ×ۺϵ÷ֵĹ«Ê½£¬¼´

Z=0.67844 * F1+0.27863 * F2 (3)

µÃµ½Êý¾ÝÈçÏÂ±í£º

7

±í2-3 Ëĸö³ØÌÁ×ۺϵ÷ֱí

³Ø

ÈÜÑõ ºÅ

cod

ÑζÈ

͸Ã÷¶È

×ÜÁ×

×ܵª

F1

F2

Z

4 5.33 26.705 1.925 21.5 3 1 2

14.88068.482514.31532413.684056.7404763 7 603 294 494

4.998724.43371.61222.8711.65662.68645112.255805.237431

6.9543

5 5 5 5 3 69 719 842 4.496224.24621.7875 5 5

23

9.964837.208142.34925811.508954.800571

3 7 117 73 451

5.823721.19876.68570-0.8561712.737662.968230

2.325 31.25 9.33491

5 5 7 8297 833 923

¸ù¾ÝÒÔÉÏÊý¾Ý£¬ÎÒÃǵóöZ4 > Z3 > Z1 > Z2£¬ÔòËĸö³ØÌÁË®ÌåÖÊÁ¿ÓÉÓŵ½ÁÓµÄÅÅÐòΪ2ºÅ³Ø>1ºÅ³Ø>3ºÅ³Ø>4ºÅ³Ø¡£ £¨2£©³ØÌÁ·ÖÀà

´Ë´¦Í¨¹ýspssµÄ¾ÛÀà·ÖÎö²Ù×÷µÃµ½ÏÂÈçÏÂͼ£º

8

ͼ2-1 Æ×ϵͼ

´ÓÆ×ϵͼ¿ÉÒÔ¿´³ö·ÖÈýÀà±È½ÏºÏÊÊ£¬ÆäÖУ¬2ºÅ³ØÓë3ºÅ³ØÎªµÚÒ»À࣬1ºÅ³ØÎªµÚ¶þÀ࣬4ºÅ³ØÎªµÚÈýÀà¡£ £¨3£©·ÖÎöÓ°Ïì

Óɸ½¼þ5Öеõ½1ºÅ¡¢2ºÅ³ØÎªÏº³Ø£¬3ºÅ¡¢4ºÅ³ØÎªÓã³Ø£¬Ëĸö³ØÌÁË®ÌåÖÊÁ¿ÓÉÓŵ½ÁÓµÄÅÅÐòΪ2ºÅ³Ø>1ºÅ³Ø>3ºÅ³Ø>4ºÅ³Ø£¬Òò´ËϺ³Ø¶ÔË®ÌåÖÊÁ¿µÄÓ°Ïì±ÈÓã³Ø¶ÔË®ÌåÖÊÁ¿µÄÓ°ÏìС¡£ 4.3 ÎÊÌâÈýµÄ½â´ð

Õë¶ÔÎÊÌâÈýµÄ½â´ð£¬ÎÒÃÇÒÔ1ºÅ³ØÎªÀý¶Ô¸½¼þ1ÖеÄË®³ØÖ÷ÒªµÄÀí»¯Òò×Ӻ͸½¼þ4Öеĸ¡ÓÎÉúÎï×ÜÁ¿²ÉÓÃÆ«×îС¶þ³Ë·¨»Ø¹é½¨Ä££¬°üº¬µÄÊý¾ÝÈç±íÏÂ±í£º

±í3-1 Ö÷ÒªÀí»¯Òò×ÓÓ븡ÓÎÉúÎïÃܶÈͳ¼Æ±í

ÖÜÊý 1

2 3 4 5 6 7 8 9 10 11 12 13 14 15

ÓÉÒÔÉÏÊý¾Ý¼ÆËãÿ¸öÖ÷ÒªÀí»¯Òò×ӵľùÖµÓë±ê×¼²î,ÈçÏÂ±í£º

±í3-2 ÿ¸öÖ÷ÒªÀí»¯Òò×ӵľùÖµÓë±ê×¼²îͳ¼Æ±í

×ÜÁ×

Á×ËáÑÎÁ×

×ܵª

Ïõ̬µª

ÑÇÏõ̬µª

ï§Ì¬µª

¾ù9.964833330.091513337.208146661.4031066621.1191533

4.02909

Öµ 3 3 7 7 3 ±ê

2.298898470.050749131.851776350.556023432.015469635.22528405×¼

4 6 6 7 9 9

²î

9

¸¡ÓÎÉúÎïÁ×ËáÑÎÁ××ܵª×ÜÏõ̬µª×ÜÑÇÏõ̬µªï§Ì¬µª×Ü

×ÜÁ×Á¿

ÃÜ¶È ×ÜÁ¿ Á¿ Á¿ ×ÜÁ¿ Á¿ 52.73 10.18905 0.0674 8.8743 1.1641 296.12 8.3721 0.0432 8.3905 1.2571 274.41 8.744 0.0676 7.81895 1.04295 95.94 9.36255 0.06485 8.3797 0.59715 231.88 8.413 0.0769 8.06715 1.4382 172.29 9.90535 0.0606 6.4773 1.7557 505.65 5.5932 0.0646 2.75755 1.1598 185.53 6.9944 0.06645 4.10125 2.02835 36.24 9.90585 0.077 4.8385 2.31645 262.41 10.88045 0.06955 6.73425 2.5972 466.12 11.86245 0.15585 8.2514 0.80915 290 8.7985 0.06245 8.11765 0.7943 554.71 12.53835 0.0849 9.5958 1.43 1064.82 13.6464 0.19775 8.3491 1.651 954.71 14.26685 0.2136 7.3688 1.00515

3.7467 18.7008 4.17045 20.08185 8.2345 23.6535 6.3333 25.23545 0.20615 22.2213 0.27855 30.3525 5.63715 11.26765 3.69005 16.26835 5.02985 21.6749 4.6825 17.66835 3.14475 27.014 2.1953 12.0263 4.96615 26.76515 4.0322 24.0939 4.08875 19.7633

ÒÔa=0.05ΪÏÔÖøÐÔˮƽ£¬Çó³ö¸÷¸öÀí»¯Òò×ÓµÄÖÃÐÅÇø¼äÈçÏÂ±í£º

±í3-3 ÿ¸öÖ÷ÒªÀí»¯Òò×ÓÖÃÐÅÇø¼äͳ¼Æ±í ×ÜÁ× Á×ËáÑÎÁ× ×ܵª Ïõ̬µª ÑÇÏõ̬µª ï§Ì¬µª

ÒòΪ1ºÅ³ØÌÁΪ·¢ÉúÇá΢ˮ»ª£¬¶øÓÉÉϱíµÃÿ¸öÀí»¯Òò×ÓµÄÖÃÐÅÇø¼äÉÏÏÞÖµ·Ö±ðΪ14.93045404£¬0.201131467£¬11.20798359£¬2.604117291£¬8.382504421£¬32.4057669£¬ÏÂÏÞÖµ·Ö±ðΪ4.99921263£¬-0.018104801£¬3.208309738£¬0.202096042£¬-0.324324421£¬9.832539765¡£Òò´Ë£¬ÎÒÃÇÔ¤²â·¢ÉúÖØ¶ÈË®»ªÊ±µÄÖ÷ÒªÀí»¯Òò×ӵĺ¬Á¿½«´óÓÚÖÃÐÅÇø¼äµÄÉÏÏÞÖµ£¬¶ø²»·¢ÉúË®»ªµÄÖ÷ÒªÀí»¯Òò×Ó·¶Î§Ð¡ÓÚÖÃÐÅÇø¼äµÄÏÂÏÞÖµ¡£ 4.4 ÎÊÌâËĵĽâ´ð ½¨Á¢ÓãÀàÉú³¤Ä£ÐÍ

Õë¶ÔÎÊÌâËÄ£¬Óɸ½¼þ4ÀïÌ峤ºÍÌåÖØµÄÊý¾Ý£¬Í¨¹ýmatlabÀïµÄcftool¹¤¾ß¶Ô÷«ÓãÊý¾Ý½øÐлع顣¾ßÌå´¦Àí½á¹ûÈçÏ£º Linear model Poly3:

f(x) = p1*x^3 + p2*x^2 + p3*x + p4 Coefficients (with 95% confidence bounds):

p1 = 0.0144 (0.01062, 0.01817) p2 = -2.367 (-2.827, -1.906) p3 = 156 (140.5, 171.6) p4 = 891.1 (766.8, 1015)

Goodness of fit: SSE: 9.385e+07 R-square: 0.9154

Adjusted R-square: 0.915 RMSE: 428.6

µÃ³ö·½²îSSEµÄÊýÖµÊÇ9.385e+07£¬Õâ¸öÖµºÜС£¬»Ø¹é¿É¾öϵÊýR=0.9154£¬ËµÃ÷ÄâºÏЧ¹ûºÜºÃ£¬´Ë´Î÷«ÓãµÄÉú³¤ºÍÌåÖØ¹ØÏµÄâºÏ¿ÉÐС£¹Ê

y=0.0144*x^3 -2.367*x^2 + 156*x + 891.1 £¨4£©

10

ÖÃÐÅÇø¼ä1 4.99921263 -0.018104801 3.208309738 0.202096042 -0.324324421 9.832539765

ÖÃÐÅÇø¼ä2 14.93045404 0.201131467 11.20798359 2.604117291 8.382504421 32.4057669

ÓÃmatlab»­³öº¯ÊýͼÏñÈçÏ£º

ͼ4-1 ÷«ÓãÌ峤ÓëÌåÖØº¯Êý¹ØÏµÄâºÏͼ

ͬÀí¶ÔöãÓãµÄÊý¾Ý½øÐÐÄâºÏ£¬Êý¾Ý´¦Àí½á¹ûÈçÏ£º

Linear model Poly3:

f(x) = p1*x^3 + p2*x^2 + p3*x + p4 Coefficients (with 95% confidence bounds):

p1 = 0.006887 (0.006181, 0.007592) p2 = -1.058 (-1.139, -0.9772) p3 = 80.2 (77.58, 82.82) p4 = 106.3 (85.02, 127.6)

Goodness of fit: SSE: 1.461e+06 R-square: 0.9954

Adjusted R-square: 0.9954 RMSE: 53.21

µÃ³ö·½²îSSEµÄÊýÖµÊÇ1.461e+06£¬Õâ¸öÖµºÜС£¬»Ø¹é¿É¾öϵÊýR=0.9954£¬ËµÃ÷ÄâºÏЧ¹ûºÜºÃ£¬´Ë´ÎöãÓãµÄÉú³¤ºÍÌåÖØ¹ØÏµÄâºÏ¿ÉÐС£¹Ê

y=0.006887*x^3 -1.058*x^2 + 80.2*x + 106.3 £¨5£©

ÓÃmatlab»­³öº¯ÊýͼÏñÈçÏ£º

11

ͼ4-2 öãÓãÌ峤ÓëÌåÖØº¯Êý¹ØÏµÄâºÏͼ

ÓÉÒÔÉÏ·ÖÎö¿ÉµÃÓãÀàÉú³¤ÓëÌåÖØ³ÊÏÖÕýÏà¹Ø¹ØÏµ¡£

4.5 ÎÊÌâÎåµÄ½â´ð

ͨ¹ý²éÔÄÍøÂç×ÊÔ´£¬ÎÒÃǵõ½ÓÐÀûÓÚ³ØË®ÑøÖ³³ØÌÁË®ÌåµÄ×Ô¾»»¯µÄ·½·¨Îª¹ãͶι¿ÅÁ£ËÇÑø¡£ÔÚ¼Ó¹¤¿ÅÁ£ËÇÑøÊ±£¬Í¨¹ýÑ¡ÔñËÇÑøÖÐËùº¬µÄÄÜÁ¿ÖµÓëµ°°×º¬Á¿µÄ×î¼Ñ±È£¬¶ÔËÇÑø¸÷ÓªÑøÔªËØÊµÐпÆÑ§Åä±È£¬²¢¸ù¾Ý²»Í¬Æ·ÖÖ¡¢²»Í¬Éú³¤½×¶Î¡¢¸÷ÖÖË®ÌåµÄÑøÖ³Ä£Ê½¡¢Ë®ÓòµÄ»·¾³¶ø²ÉÈ¡²»Í¬µÄÅä·½£¬Âú×ãÑøÖ³¶¯ÎïÉú³¤¹ý³ÌÖжԸ÷ÖÖÓªÑøÔªËØºÍ¸÷ÖÖ΢Á¿ÔªËصÄÒªÇó£¬È·±£ÔÚËÇÑøÉÏÄÜÆðµ½ÔöÇ¿ÌåÖÊ¡¢Ìá¸ß¿¹²¡ÃâÒßÄÜÁ¦¡¢¿ìËÙÉú³¤µÄ×÷Óã¬ÒÔ½µµÍËÇÁϵÄÈÜÉ¢ºÍËðʧ¡£ÔÚͶËÇ·½·¨ÉÏ£¬ÒªÓÃËÇÁĮ̈£¬²¢¶àµãͶ飬°´ÉÙÁ¿¶à´ÎµÄÔ­Ôò½øÐС£ËÇÁÏͶι»ú¿ÉÃÖ²¹È˹¤Í¶Î¹µÄ²»×㣬Ëü¾ßÓÐËÇÁÏÍ¶Î¹Ãæ»ý´ó¡¢·ÖÉ¢¾ùÔÈ£¬ÀûÓÚË®²ú¶¯Îï·ÖÉ¢¡¢¾ùÔÈÉãʳ£¬²¢ÄÜ×öµ½¶¨ÖÊ¡¢¶¨Á¿¡¢¶¨Ê±¡¢¶¨µã¡¢È˹¤ËæÒâÐÔСµÄÓŵ㡣[2]

Î塢ģÐÍÆÀ¼Û

5.1Ä£Ð͵ÄÓŵã

±¾ÎĶÀÌØÐÂÓ±£¬²»À×ͬ£¬²¢Äܹ»ºÜºÃµØÔËÓöàÖÖÈí¼þ½¨Á¢Ä£ÐÍ£¬Ê¹ÎÄÕ½ṹ²»µ¥Ò»¡£Í¨¹ýһϵÁÐͼ±í£¬Ê¹ÔÄÕßÇåÎúÒ×¶®¡£ 5.2Ä£Ð͵Äȱµã

±¾ÎÄ×îÖ÷ÒªµÄȱµãΪûÄÜÈ«ÃæµØ½â¾öÎÊÌ⣬ÓÐЩÎÊÌâû»Ø´ðÍêÕû£¬ÁíÍâÊÇ·ûºÅ˵Ã÷²»È«¡£

Áù¡¢²Î¿¼ÎÄÏ×

[1] Áõ·å£¬ÑøÖ³Ë®ÌåË®»ª·¢ÉúµÄÔ­Òò̽ÌÖ[M]£¬¶«±±Å©Òµ´óѧ£¬µÚ24-35Ò³£¬2007Äê6ÔÂ20ÈÕ£¬

[2]³ö×Ô»ÆÈʹú£¬Ñʥ¡¶Éú²úÑøÖ³¶ÔÉú̬»·¾³ÎÛȾ±íÏÖ¼°¿ØÖÆ´ëÊ©¡·,http://www.doc88.com/p-239402167748.html

12

¸½Â¼£ºload pz.txt

mu=mean(pz);sig=std(pz); rr=corrcoef(pz); data=zscore(pz); n=6;m=1;

x0=pz(:,1:n);y0=pz(:,n+1:end); e0=data(:,1:n);f0=data(:,n+1:end); num=size(e0,1); chg=eye(n); for i=1:n

matrix=e0'*f0*f0'*e0; [vec,val]=eig(matrix); val=diag(val);

[val,ind]=sort(val,'descend'); w(:,i)=vec(:,ind(1)); w_star(:,i)=chg*w(:,i); t(:,i)=e0*w(:,i);

alpha=e0'*t(:,i)/(t(:,i)'*t(:,i)); chg=chg*(eye(n)-w(:,i)*alpha'); e=e0-t(:,i)*alpha'; e0=e;

beta=[t(:,1:i),ones(num,1)]\\f0; beta(end,:)=[];

cancha=f0-t(:,1:i)*beta; ss(i)=sum(sum(cancha.^2)); for j=1:num t1=t(:,1:i);f1=f0;

she_t=t1(j,:);she_f=f1(j,:); t1(j,:)=[];f1(j,:)=[];

betal=[t1,ones(num-1,1)]\\f1; betal(end,:)=[];

cancha=she_f-she_t*betal; press_i(j)=sum(cancha.^2); end

press(i)=sum(press_i); if i>1

Q_h2(i)=1-press(i)/ss(i-1); else

Q_h2(1)=1; end

if Q_h2(i)<0.0975

fprintf('Ìá³öµÄ³É·Ö¸öÊý r=%d',i); r=i; break

13

end end

beta_z=[t(:,1:r),ones(num,1)]\\f0; beta_z(end,:)=[];

xishu=w_star(:,1:r)*beta_z;

mu_x=mu(1:n);mu_y=mu(n+1:end); sig_x=sig(1:n);sig_y=sig(n+1:end); for i=1:m

ch0(i)=mu_y(i)-mu_x./sig_x*sig_y(i)*xishu(:,i); end

for i=1:m

xish(:,i)=xishu(:,i)./sig_x'*sig_y(i); end

sol=[ch0;xish]

save mydata x0 y0 num xishu ch0 xish

Ŀ ¼

1¸ÅÊö ..................................... 1.1×ÔÈ»×´¿ö ............................... 1.2ȼÁÏÏû·ÑÇé¿ö ........................... 2±àÖÆÒÀ¾Ý ................................. 3¹æ»®·½°¸ ................................. 4Êг¡Ç°¾° ................................. 5³ï×ÊÇþµÀ¼°Í¶×ʹ¹³É ....................... 5.1³ï×ÊÇþµÀ ............................... 5.2Ͷ×ʹ¹³É ............................... 6²ÆÎñÆÀ¼Û¼°Ð§Òæ·ÖÎö ....................... 6.1 Ö÷Òª²ÎÊý¼°²âËãÒÀ¾Ý ..................... 6.2 Ð§Òæ·ÖÎö ............................... 7 ÆÀ¼Û½áÂÛ .................................

14

´íÎó£¡Î´¶¨ÒåÊéÇ©¡£´íÎó£¡Î´¶¨ÒåÊéÇ©¡£´íÎó£¡Î´¶¨ÒåÊéÇ©¡£´íÎó£¡Î´¶¨ÒåÊéÇ©¡£´íÎó£¡Î´¶¨ÒåÊéÇ©¡£´íÎó£¡Î´¶¨ÒåÊéÇ©¡£´íÎó£¡Î´¶¨ÒåÊéÇ©¡£´íÎó£¡Î´¶¨ÒåÊéÇ©¡£´íÎó£¡Î´¶¨ÒåÊéÇ©¡£´íÎó£¡Î´¶¨ÒåÊéÇ©¡£´íÎó£¡Î´¶¨ÒåÊéÇ©¡£´íÎó£¡Î´¶¨ÒåÊéÇ©¡£´íÎó£¡Î´¶¨ÒåÊéÇ©¡£

15