ʵÑé3 - ·ÇÏßÐÔ·½³ÌAX=0µÄ½â·¨ ÏÂÔØ±¾ÎÄ

¡¶ÊýÖµ¼ÆËã·½·¨¡·ÊµÑ鱨¸æ

1

ÏßÐÔ·½³Ì×éAX=BµÄÊýÖµ½â·¨

1.ʵÑéÃèÊö

1£®P93.1£¬2,3:ͨ¹ý¾ØÕó¿É±íʾÁ¢·½ÌåµÄ×ø±êλÖã¬ÓëÁíÒ»¾ØÕóÏà³Ë¿ÉʵÏÖÁ¢·½Ìå×ø±êλÖýøÐб任

2£®P108.1:²»Í¨¹ýÐб任¾ÍÄܽâ¾öÈý½ÇÏßÐÔ·½³Ì¡£

3.p109.7£º½«µ¥Î»¾ØÕó±íʾ³ÉÁоØÕó£¬Í¨¹ý¶ÔÄ¿±ê¾ØÕó·Ö±ðÇó½âµÃ³öÁоØÕó´Ó¶øµÃµ½Ä¿±ê¾Ø

ÕóµÄÄæ¾ØÕó¡£

4. 120.3£º½«µ¥Î»¾ØÕó±íʾ³ÉÁоØÕó£¬Í¨¹ý·Ö½â³ÉÉÏÏÂÈý½Ç¾ØÕó¶ÔÄ¿±ê¾ØÕó·Ö±ðÇó½âµÃ³öÁоØÕó´Ó¶øµÃµ½Ä¿±ê¾ØÕóµÄÄæ¾ØÕó¡£ 5.p120.4:Ó¦ÓóÌÐò3.3Çó½â»ù¶û»ô·òµçÁ÷¡£ 6.p129.4:Ó¦Óøß˹-ÈüµÂ¶ûµü´ú·¨Çó½â´ø×´·½³Ì¡£

2.ʵÑéÄÚÈÝ

P93.1.

µ¥Î»Á¢·½ÌåλÓÚµÚÒ»ØÔÏÞ£¬Ò»¸ö¶¥µãÔÚÔ­µã¡£Ê×ÏÈ£¬ÒԽǶÈÔÙÒԽǶÈ

?ÑØyÖáÐýתÁ¢·½Ì壬Ȼºó6?ÑØzÖáÐýתÁ¢·½Ìå¡£ÇóÐýתºóÁ¢·½ÌåµÄ8¸ö¶¥µãµÄ×ø±ê£¬²¢ÓëÀý3.10µÄ½á¹û±È½Ï¡£4ËüÃǵÄÇø±ðÊÇʲô£¿ÊÔͨ¹ý¾ØÕóÒ»°ã²»Âú×ã½»»»ÂɵÄÊÂʵ½øÐнâÊÍ¡£Ê¹ÓÃplot3ÃüÁî»­³ö3¸öͼÐΡ£ P93.2.

?É赥λÁ¢·½ÌåλÓÚµÚÒ»ØÔÏÞ£¬ÆäÖÐÒ»¸ö¶¥µãλÓÚ×ø±êÔ­µã¡£Ê×ÏÈÒԽǶÈÑØxÖáÐýתÁ¢

12?·½Ì壬ȻºóÔÙÒԽǶÈÑØzÖáÐýתÁ¢·½Ìå¡£ÇóÐýתºóÁ¢·½ÌåµÄ8¸ö¶¥µãµÄ×ø±ê¡£Ê¹ÓÃplot3

6»­³öÕâ3¸öÁ¢·½Ìå¡£ P93.3.

ËÄÃæÌåµÄ×ø±êΪ£¨0,0,0£©£¬£¨1,0,0£©£¬£¨0,1,0£©£¬£¨0,0,1£©¡£Ê×ÏÈÒÔ»¡¶È0.15ÑØyÖáÐýת£¬È»ºóÔÙÒÔ»¡¶È-1.5ÑØzÖáÐýת£¬×îºóÒÔ»¡¶È2.7ÑØxÖáÐýת¡£ÇóÐýתºóµÄ¶¥µã×ø±ê¡£Ê¹ÓÃplot3»­³öÕâ4¸öÁ¢·½Ìå¡£ P108.1

.Ðí¶à¿ÆÑ§Ó¦Óðüº¬µÄ¾ØÕó´øÓкܶàÁã¡£ÔÚʵ¼ÊÇé¿öÖкÜÖØÒªµÄÈý½ÇÐÎÏßÐÔ·½³Ì×éÓÐÈçÏÂÐÎʽ£º

d1x1?c1x? b12¡¶ÊýÖµ¼ÆËã·½·¨¡·ÊµÑ鱨¸æ 2

a1x1?d2x2?c2x?3 b a2x2?d3x3?c3x?4 b ¡­¡­

aN?2xN?2?dN?1xN?1?cN?1xN? aN?1xN?1?dNxN?bN

¹¹ÔìÒ»¸ö³ÌÐòÇó½âÈý½ÇÐÎÏßÐÔ·½³Ì×é¡£¿É¼Ù¶¨²»ÐèÒª±ä»»¡£¶øÇÒ¿ÉÓõÚkÐÐÏûÈ¥µÚk+1ÐеÄxk¡£

p109.7

ÏÂÃæµÄϰÌâËäÈ»ÊÇÕë¶Ô3x3ά¾ØÕóµÄ£¬µ«Æä¸ÅÄî¿ÉÓÃÓÚNxNά¾ØÕó¡£Èç¹û¾ØÕóA·ÇÆæÒ죬ÔòA?1´æÔÚ¡£¶øÇÒAA?1?I¡£ÉèC1£¬¶øE1£¬·½³ÌAA?1?IC2£¬C3ÊÇA?1µÄÁУ¬E2£¬E3ÊÇIµÄÁС£¿É±íʾΪA?C1,C2,C3???E1,E2,E3?

ÔòÉÏʽµÈ¼ÛÓÚÈý¸öÏßÐÔ·½³Ì×éAC1?E1£¬AC2?E2£¬AC3?E3 ÕâÑùÇóA?1µÈ¼ÛÓÚÇó½âÈý¸öÏßÐÔ·½³Ì×é¡£

ʹÓóÌÐò2.2»òÉÏÌâÖеijÌÐòÇó½âÏÂÃæÃ¿¸ö¾ØÕóµÄÄæ¡£Í¨¹ý¼ÆËã AA?1 ºÍʹÓÃÃüÁîinv(A)¼ì²é´ð°¸£¬²¢½âÊÍ¿ÉÄܵIJîÒì¡£

N?b?120240?140??16?201???1201200?27001680???? £¨a£©?325? £¨b£©??240?27006480?4200??????1?10?42002800???1401680120.3

Ð޸ijÌÐò3.3£¬Ê¹µÃËü¿ÉÒÔͨ¹ýÖØ¸´Çó½âN¸öÏßÐÔ·½³Ì×é

ACJ?EJ ÆäÖÐJ=1£¬2£¬¡­£¬N À´µÃµ½A?1£¬

Ôò A?C1C2...CN???E1E2...EN?¡¢

¶øÇÒ A?1??C1C2...CN?£¬±£Ö¤¶ÔLU·Ö½âÖ»¼ÆËãÒ»´Î¡£ p120.4

»ù¶û»ô·òµçѹ¶¨ÂÉ˵Ã÷µçÂ·ÍøÂçÖÐÈÎÒâµ¥Ïò±Õ·µÄµçѹºÍΪÁã¡£ÏÖÓÐÈçϵç·ÏßÐÔ·½³Ì£º

¡¶ÊýÖµ¼ÆËã·½·¨¡·ÊµÑ鱨¸æ

3

(R1?R3?R4)I1?R3I2?R4I3?E1R3I1?(R2?R3?R5)I2?R5I3?E2 R4I1?R5I2?(R4?R5?R6)I3?0 Èç¹û

(a)R1?1,R2?1,R3?2,R4?1,R5?2,R6?4,E1?23,E2?29(b)R1?1,R2?0.75,R3?1,R4?2£¬R5?1,R6?4,E1?12,E2?21.5(c)R1?1,R2?2,R3?4,R4?3,R5?1,R6?5,E1?41,E2?38 ʹÓóÌÐòÇó½âµçÁ÷I1,I2,I3¡£ p129.4

ÀûÓøß˹-ÈüµÂ¶ûµü´ú·¨Çó½âÏÂÁдø×´·½³Ì¡£

12x1?2x2?x3?5?2x1?12x2?2x3?x4?5x1?2x2?12x3?2x4?x5?5x2?2x3?12x4?2x5?x6?5??????x46?2x47?12x48?2x49?x50?5x47?2x48?12x49?2x50?5x48?2x49?12x50?5

3.ʵÑé½á¹û¼°·ÖÎö

P93.1: Ëã·¨:

(1) ÁîX=zeros(8,3);X([5:8,11,12,15,16,18,20,22,24])=1;d=[1 2 4 3 1 5 6 8 7 5 6 2 4 8 7 3]; i=0¡£ (2) ÅжÏi>100ÊÇ·ñ³ÉÁ¢£¬Èô³ÉÁ¢£¬Ö´Ðв½Ö裨3£©£»Èô²»³ÉÁ¢£¬ r1=[cos(i*pi/600) -sin(i*pi/600) 0;0 1 0;-sin(i*pi/600) 0 cos(i*pi/600)];U=X*r1';plot3(U(d,1),U(d,2),U(d,3));drawnow£¬i=i+1,·µ»Ø²½Ö裨2£©.\\ (3) i=0.

(4) ÅжÏi>100ÊÇ·ñ³ÉÁ¢£¬Èô³ÉÁ¢£¬Ö´Ðв½Ö裨4£©£»Èô²»³ÉÁ¢£¬r2=[cos(i*pi/400) -sin(i*pi/400) 0;sin(i*pi/400) cos(i*pi/400) 0;0 0 1];W=U*r2';plot3(W(d,1),W(d,2),W(d,3));drawnow£¬i=i+1,·µ»Ø²½Ö裨3£©.

(5) subplot(2,2,1);plot3(X(d,1),X(d,2),X(d,3))subplot(2,2,2);plot3(U(d,1),U(d,2),U(d,3));subplot(2,2,3)£» plot3(W(d,1),W(d,2),W(d,3)); xlabel('x')£»ylabel('y')£»zlabel('z')£»view(3); rotate3d¡£

¡¶ÊýÖµ¼ÆËã·½·¨¡·ÊµÑ鱨¸æ 4

start X=zeros(8,3);X([5:8,11,12,15,16,18,20,22,24])=1;d=[1 2 4 3 1 5 6 8 7 5 6 2 4 8 7 3]; i=0 i=i+1 Y i>100 N r1=[cos(i*pi/600),-sin(i*pi/600),0;0,1,0;-sin(i*pi/600,0 ,cos(i*pi/600)];U=X*r1';plot3(U(d,1),U(d,2),U(d,3));drawnow i=0. i=i+1 Y i>100 N r2=[cos(i*pi/400),-sin(i*pi/400),0;sin(i*pi/400),cos(i*pi/400),0;0,0,1];W=U*r2';plot3(W(d,1),W(d,2),W(d,3));drawnow subplot(2,2,1);plot3(X(d,1),X(d,2),X(d,3))subplot(2,2,2);plot3(U(d,1),U(d,2),U(d,3));subplot(2,2,3)£» plot3(W(d,1),W(d,2),W(d,3)); xlabel('x')£»ylabel('y')£»zlabel('z')£»view(3); rotate3d output end