¾µä½ÌÓý×ÊÔ´
ÏÞʱ¼¯Ñµ£¨Æß£©Èý½Çº¯ÊýµÄͼÏñÓëÐÔÖÊ
»ù´¡¹ý¹Ø
1.ÒÑÖª½Ç¦ÈµÄ¶¥µãÓëÔµãÖØºÏ,ʼ±ßÓëxÖáµÄ·Ç¸º°ëÖáÖØºÏ,Öձ߾¹ýµãP(1,2),Ôò A.- C.-
B. D.
cos
= ( )
2.ÒÑÖªº¯Êýf(x)= ( )
-cos 2x,ÈôÒªµÃµ½º¯Êýg(x)=2sin 2xµÄͼÏñ,Ôò¿ÉÒÔ½«º¯Êýf(x)µÄͼÏñ
A.Ïò×óÆ½ÒÆ¸öµ¥Î»³¤¶È B.ÏòÓÒÆ½ÒƸöµ¥Î»³¤¶È C.Ïò×óÆ½ÒÆ
¸öµ¥Î»³¤¶È
D.ÏòÓÒÆ½ÒƸöµ¥Î»³¤¶È
3.Èôx¡Ê[0,¦Ð],Ôòº¯Êýf(x)=cos x-sin xµÄµ¥µ÷µÝÔöÇø¼äΪ( ) A.C.
B.D.
¸öµ¥Î»³¤¶È,ÔòÆ½ÒÆºóͼÏñµÄ¶Ô³ÆÖáΪ ( )
4.Èô½«º¯Êýy=2sin 2xµÄͼÏñÏò×óÆ½ÒÆA.x=C.x=-(k¡ÊZ) -(k¡ÊZ)
B.x=D.x=+(k¡ÊZ) +(k¡ÊZ)
µÄ²¿·ÖͼÏñÈçͼX7-1Ëùʾ,Ôòf(0)µÄÖµÊÇ ( )
5.º¯Êýf(x)=Asin(¦Øx+¦Õ)A>0,¦Ø>0,0<¦Õ<ͼX7-1
A.C.
B.D.2
cos
6.º¯Êýf(x)=sinx+A.[-1,1]
B.x¡Ê0,µÄÖµÓòÊÇ ( )
¾µä½ÌÓý×ÊÔ´£¨Ò»£©
¾µä½ÌÓý×ÊÔ´
C. D.
(¦Ø>0)µÄ×îСÕýÖÜÆÚΪ¦Ð,ÔòΪÁ˵õ½º¯Êýg(x)=cos ¦ØxµÄͼÏñ,Ö»Ð轫º¯Êý
7.ÒÑÖªº¯Êýf(x)=sinf(x)µÄͼÏñ( ) A.Ïò×óÆ½ÒÆB.ÏòÓÒÆ½ÒÆC.Ïò×óÆ½ÒÆ
¸öµ¥Î»³¤¶È ¸öµ¥Î»³¤¶È ¸öµ¥Î»³¤¶È
D.ÏòÓÒÆ½ÒƸöµ¥Î»³¤¶È
8.É躯Êýf(x)=Asin(¦Øx+¦Õ)(A>0,¦Ø>0,0<¦Õ<¦Ð),ÇÒº¯Êýf(x)µÄ²¿·ÖͼÏñÈçͼX7-2Ëùʾ,ÔòÓÐ( )
ͼX7-2
A.fB.fC.fD.f
9.Èôsin=,¦ÁΪµÚ¶þÏóÏÞ½Ç,Ôòtan(¦Ð-¦Á)= . Ϊżº¯Êý,Ôòcos 2¦ÁµÄֵΪ . 10.Èôº¯Êýf(x)=sinÄÜÁ¦ÌáÉý 11.ÒÑÖªA,BÊǺ¯Êýf(x)=sin ¦Øx+cos ¦ØxµÄͼÏñÓëÖ±Ïßy=2µÄÁ½¸ö½»µã,ÈôABµÄ×îСֵΪ¦Ð,Ôòº¯Êýf(x)µÄͼÏñµÄÒ»Ìõ¶Ô³ÆÖáÊÇ ( ) A.x= C.x= B.x= D.x= ,Èô¶ÔÈÎÒâx¡Ê ,f(x)µÄͼÏñÉϵÄÈÎÒâÒ»µãºãÔÚÖ±Ïßy=3µÄ 12.ÒÑÖªº¯Êýf(x)=2cos(3x+¦Õ)+3ÉÏ·½,Ôò¦ÕµÄȡֵ·¶Î§ÊÇ ( ) A.C. B. D. 13.ÒÑÖªº¯Êýf(x)=sin(¦Øx+¦Õ)+¾µä½ÌÓý×ÊÔ´£¨Ò»£© cos(¦Øx+¦Õ)¦Ø>0,|¦Õ|<µÄ×îСÕýÖÜÆÚΪ¦Ð,ÇÒf=f(x),Ôò ¾µä½ÌÓý×ÊÔ´ ( ) A.f(x)ÔÚB.f(x)ÔÚC.f(x)ÔÚD.f(x)ÔÚ Éϵ¥µ÷µÝ¼õ Éϵ¥µ÷µÝÔö Éϵ¥µ÷µÝÔö Éϵ¥µ÷µÝ¼õ ,Èôº¯Êýy=f(x)+a(a¡ÊR)Ç¡ÓÐÈý¸öÁãµãx1,x2,x3(x1 14.É躯Êýf(x)=sinx¡Ê0,x1+x2+x3µÄȡֵ·¶Î§ÊÇ ( ) A.C. B. D. 15.ÒÑÖªº¯Êýf(x)=sin x+acos x(a¡ÊR)¶ÔÈÎÒâx¡ÊR¶¼Âú×ãf´óֵΪ . =f,Ôòº¯Êýg(x)=sin x+f(x)µÄ×î 16.ÒÑÖªº¯Êýf(x)=sin(¦Øx+¦Õ)(¦Ø>0)µÄͼÏñµÄÒ»¸ö¶Ô³ÆÖÐÐÄΪΪ . ,ÇÒf=,Ôò¦ØµÄ×îСֵ ¾µä½ÌÓý×ÊÔ´£¨Ò»£© ¾µä½ÌÓý×ÊÔ´ ÏÞʱ¼¯Ñµ(Æß) »ù´¡¹ý¹Ø 1.D [½âÎö] ÓÉÌâÖªtan ¦È==2, ¡à¹ÊÑ¡D. ===, 2.C [½âÎö] ÓÉÌâÒâ¿ÉµÃ,º¯Êýf(x)=sin 2x-cos 2x=2sin sin =2sin 2.¹ÊÑ¡C. 3.D [½âÎö] ÓÉÌâÒâµÃf(x)=-sin x+cos x=-(sin x-cos x)=-,Áî2k¦Ð+¡Üx-¡Ü2k¦Ð+,k¡ÊZ, µÃ2k¦Ð+¡Üx¡Ü2k¦Ð+,k¡ÊZ,È¡k=0,µÃ¡Üx¡Ü.ÒòΪx¡Ê[0,¦Ð],ËùÒÔº¯Êýf(x)µÄµ¥µ÷µÝÔöÇø¼äÊǹÊÑ¡D. 4.B [½âÎö] ½«º¯Êýy=2sin 2xµÄͼÏñÏò×óÆ½ÒÆ¸öµ¥Î»³¤¶ÈµÃµ½y=2sin 2ÒÔ2x+=+k¦Ð(k¡ÊZ),½âµÃx=+(k¡ÊZ).¹ÊÑ¡B. 5.C [½âÎö] ÓÉÌâÖÐͼÏñ¿ÉÖªA=,=-=,ËùÒÔT=¦Ð,ËùÒÔ¦Ø=2,ËùÒÔf(x)=.=2sinµÄͼÏñ,Ëù sin(2x+¦Õ),0<¦Õ<.ÒòΪ f=sin=-sin sin+¦Õ=-,ËùÒÔ+¦Õ=+2k¦Ð,k¡ÊZ,ËùÒÔ¦Õ=+2k¦Ð,k¡ÊZ,ÒòΪ0<¦Õ<,ËùÒÔ ¦Õ=,ËùÒÔf(x)=,ËùÒÔf(0)=2 .¹ÊÑ¡C. =+sin 2x=sin 2x-cos 2x+=sin 6.C [½âÎö] ÓÉÌâÒâµÃf(x)=sinx+cos2x-¡Ê +,µ± x¡Êʱ,2x-¡Ê,ËùÒÔsin2x-,ËùÒÔf(x)¡Ê0,.¹ÊÑ¡C. =sin 2 .g(x)=cos 7.A [½âÎö] ÓÉÌâÒâµÃ,T=2x=sin =¦Ð,ËùÒÔ¦Ø=2,ËùÒÔf(x)= sin ,¹ÊÑ¡A. =sin 2x+=sin 2 ¡Á8.D [½âÎö] ÓÉÌâÒâµÃT=0<¦Õ<¦Ð,¡à¦Õ=,¡àf(x)=Asin2x+=¦Ð,¡à¦Ø==2,ÓÖ¡ß2¡Á, +¦Õ=+2k¦Ð,k¡ÊZ,ÇÒ .Ò×Öªf(x)µÄÒ»¸öµ¥µ÷µÝ¼õÇø¼äÊÇ , ,Ò»¸öµ¥µ÷µÝÔöÇø¼äÊÇ ÓÖ f=f,f=f=f=f,f=f,<<<<,¡àf>f>f,¡àf>f>f.¹ÊÑ¡D. 9. [½âÎö] ÓÉÌâÒâµÃcos ¦Á=-sin¦Á-¦Á==-,¡ß¦ÁΪµÚ¶þÏóÏÞ½Ç,¡àsin ¦Á==,Ôòtan =-,¡àtan(¦Ð-¦Á)=-tan ¦Á=. ¾µä½ÌÓý×ÊÔ´£¨Ò»£©