红外遥控器编码协议总结 下载本文

目录

1)MIT-C8D8 (40k) 2) MIT-C8D8(33K) 3)SC50560-001,003P 4)M50462

5)M50119P-01 6)M50119L 7)RECS80 8)M3004 9)LC7464M 10)LC7461-C13

11)IRT1250C5D6-01 12)Gemini-C6-A 13)Gemini-C6

14) Gemini-C17(31.36K)-1 15)KONKA KK-Y261 16)PD6121G-F 17)DATA-6BIT 18)Custum-6BIT 19)M9148-1

20)SC3010 RC-5 21) M50560-1(40K) 22) SC50560-B1 23)C50560-002P 24)M50119P-01 25)M50119P-1 26)M50119P

27)IRT1250C5D6-02 28)HTS-C5D6P 29)Gemini-C17 30)Gemini-C17 -2 31)data6bit-a 32)data6bit-c 33)X-Sat

34)Philips RECS-80 35)Philips RC-MM 36)Philips RC-6 37)Philips RC-5 38)Sony SIRC 39)Sharp

40)Nokia NRC17 41)NEC 42)JVC 43)ITT

1

44)SAA3010 RC-5(36K)45)SAA3010 RC-5(38K)46)NEC2-E2 47) NEC-E3 48) RC-5x 49) NEC1-X2 50) _pid:$0060 51) UPD1986C 52) UPD1986C-A 53) UPD1986C-C 54) MV500-01 55) MV500-02 56) Zenith S10

2

1) MIT-C8D8(40K)

MIT-C8D8(40K)是一种常见的红外遥控编码格式。该格式出现在万能遥控器ZC-18A(600-917)中。

Features 基本特点

1,8位地址码,8位数据码,结束码;2,脉宽调制方式(PWM);3,载波:40.0 KHZ;

4,逻辑位时间长度是1.215ms或2.436 ms。Modulation 调制逻辑“0”(Logical“0”)是由935us的无载波间隔和280us的40KHZ载波组成。(图中表示的是有载波和无载波间隔的总长度。)逻辑“1”(Logical“1”)是由280us的40KHZ载波和2156us的无载波间隔组成。

Protocol 协议

从上图中可看到,MIT-C8D8(40K)一帧码序列是由8位地址码,8位数据码和结束码组成。.

长按键不放,发出的码波形序列如下图:即将整个波形以周期44.78ms进行重复。

3

2) MIT-C8D8(33K)

MIT-C8D8(33K) 是一种常见的编码格式。

该格式来源于OMEGA万能遥控器,码组号为0138及祝成万能遥控器ZC-18A码组号为644、735、736.

Features 基本特点:

1、8位地址码,8位数据码;2、脉宽调制方式(PWM);3、载波:33KHZ;

4、逻辑位的时间长度是1.215ms或2.436ms。Modulation 调制:1、逻辑“0”(Logical“0”)是由280us的33KHZ载波和935us的无载波间隔组成;表示的是有载波和无载波间隔的总长度)2、逻辑“1”(Logical“1”)是由280us的33KHZ载波和2156us的无载波间隔组成。

Protocol 协议

从上图可以看到MIT-C8D8(33K) 一帧码序列是由8位地址码,8位数据码。长按键不放,发出的码波形序列如下图。就是将第一帧波形以周期

50.1ms进行重复

4

(图中3) SC50560-001,003P 分割码(未有数据标注)

SC50560-001,003P是一种常见的红外遥控编码格式。该格式出现在CL311,URC-8910,RM-123C,RM-139S的062码组,ZC-18A(600-917),ZC-18A(400-481),RM-301C,VT3620A,VT3630,RM-402C的TV-012码组Features 基本特点

1,引导码,8位地址码,分割码(未有数据标注),8位数据码,结束码;2,脉宽调制方式(PWM);3,载波:38KHZ;

4,逻辑位时间长度是2.08ms或1.04ms。Modulation 调制逻辑“0”(Logical“0”)是由520us的38KHZ载波和520us的无载波间隔组成。(图中表示的是有载波和无载波间隔的总长度。)逻辑“1”(Logical“1”)是由520us的38KHZ载波和1560us的无载波间隔组成。

Protocol 协议

从上图中可看到,SC50560-001,003P一帧码序列是由引导码(8ms的载波和4ms的间隔) ,8位地址码,分割码,8位数据码和结束码组成。

长按键不放,发出的码波形序列如下图:即将整个波形以周期120.02ms进行重复。

5

4) M50462

M50462是一种常见的红外遥控编码格式。该格式出现在(600-917),RM-301C,VT3620A,VT3630,RM-402C Features 基本特点

RM-123C,RM-139S,ZC-18A

1,8位地址码,8位数据码,结束码;2,脉宽调制方式(PWM);3,载波:38 KHZ;

4,逻辑位时间长度是2.059ms或1.04ms。Modulation 调制逻辑“0”(Logical“0”)是由260us的38KHZ载波和780us的无载波间隔组成。(图中表示的是有载波和无载波间隔的总长度。)逻辑“1”(Logical“1”)是由260us的38KHZ载波和1799us的无载波间隔组成。

Protocol 协议

从上图中可看到,M50462一帧码序列是由8位地址码,8位数据码和结束码组成. 长按键不放,发出的码波形序列如下图:即将整个波形以周期45ms进行重复。

6

5) M50119P-01(42K)分割码(未有数据标注)

M50119P-01(42K)是一种常见的红外遥控编码格式。该格式出现在URC-8910#CBL-0009,ZC-18A(600-917)的736码组,ZC-18A(400-481),VT3630的SAT-001码组。Features 基本特点

1,数据帧(4位地址码,6位数据码,分割码,4位地址码相同码,6位数据码相同码,结束码),重复帧(用户码相同码,结束码)2,脉宽调制方式(PWM);3,载波:41.8 KHZ;

4,逻辑位时间长度是3.868ms或1.934ms。Modulation 调制逻辑“0”(Logical“0”)是由967us的41.8KHZ载波和967us的无载波间隔组成。(图中表示的是有载波和无载波间隔的总长度。)逻辑“1”(Logical“1”)是由967us的41.8KHZ载波和2901us的无载波间隔组成。

Protocol 协议

从上图中可看到,M50119P-01(42K)两帧码序列是由数据帧(4位地址码,6位数据码,分割码,4位地址码相同码,6位数据码相同码,结束码),重复帧(地址码相同码,结束码)长按键不放,后续发出的波形如下:

长按键不放发出的码波形序列如下图.就是将重复帧波形以周期62.855ms进行重复.

7

6)M50119L

M50119L是一种常见的红外遥控编码格式。该格式出现在万能遥控器CL311,URC-8910#VCR-0041,INTER DIGI-SAT,VT3630中Features 基本特点

1,3位地址码,7位数据码,结束码;2,脉宽调制方式(PWM);3,载波:37.9 KHZ;

4,逻辑位时间长度是1.04ms或2.08ms。Modulation 调制逻辑“0”(Logical“0”)是由260us的37.9KHZ载波和780us的无载波间隔组成。(图中表示的是有载波和无载波间隔的总长度。)逻辑“1”(Logical“1”)是由260us的37.9KHZ载波和1820us的无载波间隔组成。

Protocol 协议

从上图中可看到,M50119L一帧码序列是由3位地址码,7位数据码和结束码组成长按键不放,发出的码波形序列如下图:即将整个波形以周期25.5ms进行重复。

. 8

7) RECS80(68)

RECS80(68)是一种常见的红外遥控编码格式。该格式来源于URC8910的CD-0764码组。Features 基本特点

1,2位控制码,3位地址码,6位数据码,结束码;2,脉宽调制方式(PWM);3,载波:33KHZ;

4,逻辑位时间长度是5.76ms或8.64ms。Modulation 调制逻辑“0”(Logical“0”)是由160us的33KHZ载波和5600us的无载波间隔)组成。(图中表示的是有载波和无载波间隔的总长度。)逻辑“1”(Logical“1”)是由160us的33KHZ载波和8480us的无载波间隔组成。

Protocol 协议

从上图中可看到,RECS80(68)一帧码序列是由2位控制码,3位地址码,6位数据码,结束码组成的。

长按键不放,发出的码波形序列如下图:整个波形以周期138.3ms进行重复。

9

8)M3004 Carrier

M3004 Carrier是一种常见的红外遥控编码格式。该格式出现在遥控器CL311,RM-123C,RM-139S#148,ZC-18A(600-917),ZC-18A(400-481),RM-301C,INTER-DIGI-SAT,VT3620A,VT3630,RM-402C#TV-060中。Features 基本特点

1,引导码,1位翻转码,3位地址码,6位数据码,结束码;2,脉宽调制方式(PWM);3,载波:38KHZ;

4,逻辑位时间长度是5.06ms或7.59ms。Modulation 调制逻辑“0”(Logical“0”)是由141us的38KHZ载波和4919us的无载波间隔组成。(图中表示的是有载波和无载波间隔的总长度。)逻辑“1”(Logical“1”)是由141us的38KHZ载波和7449us的无载波间隔组成。

Protocol 协议

从上图中可看到,M3004 Carrier一帧码序列是由1位引导码, 1位翻转码,3位地址码,6位数据码,结束码组成的。

长按键不放,发出的码波形序列如下图:整个波形以周期121.651ms进行重复。

10

9) LC7464M 校验码怎么算的

LC7464M是一种常见的红外遥控编码格式。该格式出现在万能遥控器CL311,URC-8910,RM-139S,ZC-18A(600-917),ZC-18A(400-481),VT3620A,VT3630。Features 基本特点

1,引导码,15位地址码,4位校验码,4位地址码2,8位数据码,8位校验码,结束码;2,脉宽调制方式(PWM);3,载波:38KHZ;

4,逻辑位时间长度是1.68ms或0.84ms。Modulation 调制逻辑“0”(Logical“0”)是由420us的38KHZ载波和420us的无载波间隔组成。(图中表示的是有载波和无载波间隔的总长度。)逻辑“1”(Logical“1”)是由420us的38KHZ载波和1260us的无载波间隔组成。

Protocol 协议

从上图中可看到,LC7464M一帧码序列是由引导码(3.38ms的载波和1.69ms的间隔), 15位地址码,4位校验码,4位地址码2,8位数据码,8位校验码,结束码组成。长按键不放,发出的码波形序列如下图:整个波形以

82.97ms的周期进行重复。

11

10) LC7461-C13

LC7461-C13是一种常见的红外遥控编码格式。该格式出现在万能遥控器CL311,URC-8910,RM-123C,RM-139S#101,ZC-18A(600-917),RM-301C,VT3630,RM-402C的TV-131码组。

Features 基本特点

1,数据帧(引导码,13位地址码,13位地址码-反码,8位数据码,8位数据码反码,结束码),重复帧;

2,脉宽调制方式(PWM);3,载波:38KHZ;

4,逻辑位时间长度是2.24ms或1.12ms。Modulation 调制逻辑“0”(Logical“0”)是由560us的38KHZ载波和560us的无载波间隔)组成。(图中表示的是有载波和无载波间隔的总长度。)逻辑“1”(Logical“1”)是由560us的38KHZ载波和1680us的无载波间隔组成。

Protocol 协议数据帧:

从上图中可看到,LC7461-C13一帧码序列是由引导码(9-ms的载波和4.5ms的间隔), 13位地址码,13位地址码-反码,8位数据码,8位数据码反码,结束码组成。重复帧:由结束码组成。

长按键不放,发出的后续波形如下图:

其发出的整个码波形序列如下图:由重复帧开始,以周期108.11ms进行重复。

12

11) IRT1250C5D6-01(0Hz)IRT1250C5D6-01(0Hz)是一种常见的红外遥控编码格式。该格式出现在万能遥控器中。

Features 基本特点

1,引导码,5位地址码,6位数据码,结束码;2,脉宽调制方式(PWM);3,载波:0.0 KHZ;

4,逻辑位时间长度是0.116ms或0.384ms。

VT3620A

Modulation 调制逻辑“0”(Logical“0”)是由16us的0.0KHZ载波和160us的无载波间隔组成。(图中表示的是有载波和无载波间隔的总长度。)逻辑“1”(Logical“1”)是由16us的0.0KHZ载波和368us的无载波间隔组成。

Protocol 协议

从上图中可看到,IRT1250C5D6-01(0Hz)一帧码序列是由引导码(0.016 ms的载波和0.545ms的间隔), 5位地址码,6位数据码,结束码(16,-543,16,-593136)us组成.

长按键不放,发出的码波形序列如下图:即将整个波形以周期596.208ms进行重复。

13

12) Gemini-C6-A(40K)

Gemini-C6-A(40K)是一种常见的红外遥控编码格式。该格式出现在万能遥控器VT3630的SAT-034码组。Features 基本特点

1,地址帧(引导码,7位地址码2,结束码),数据帧(引导码相同码,7位数据码,结束码),地址帧相同帧,数据帧相同帧2,脉宽调制方式(PWM);3,载波:40.0 KHZ;

4,逻辑位时间长度是1.05ms。Modulation 调制逻辑“0”(Logical“0”)是由525us的无载波间隔和525us的40KHZ载波组成。(图中表示的是有载波和无载波间隔的总长度。)逻辑“1”(Logical“1”)是由525us的40KHZ载波和525us的无载波间隔组成。

Protocol 协议

从上图中可看到,Gemini-C6-A(40K)由四帧码组成:

地址帧码序列由引导码(0.525ms的载波和2.625ms的间隔),7位地址码和结束码组成;

数据帧码序列由引导码相同码(0.525ms的载波和2.625ms的间隔),7位数据码和结束码组成;地址帧相同帧同地址帧;数据帧相同帧同数据帧。

长按键不放,发出的码波形序列如下:

其整个码波形序列如下图,就是将第三、第四帧波形以周期69.3ms进行重复.

14

13) Gemini-C6(31.36)

Gemini-C6(31.36)是一种常见的红外遥控编码格式。该格式出现在万能遥控器CL311与VT3620A中。Features 基本特点

1,引导码,7位数据码,结束码;2,脉宽调制方式(PWM);3,载波:31.0 KHZ;

4,逻辑位时间长度是0.992ms或0.992ms。Modulation 调制逻辑“0”(Logical“0”)是由496us的无载波间隔和496us的31KHZ载波组成。(图中表示的是有载波和无载波间隔的总长度。)逻辑“1”(Logical“1”)是由496us的31KHZ载波和496us的无载波间隔组成。

Protocol 协议

从上图中可看到,Gemini-C6(31.36)一帧码序列是由引导码(0.53ms的载波和2,65ms的间隔),7位和结束码组成。

长按键不放,发出的码波形序列如下图:即将整个波形以周期90.724ms进行重复。

15

14) Gemini-C17(31.36K)-1

Gemini-C17(31.36K)-1是一种常见的红外遥控编码格式。该格式来源于CL311。Features 基本特点

1,引导帧(引导码,10位地址码,结束码),地址帧(引导码相同码,10位地址码2,结束码),引导帧相同帧,数据帧(引导码相同码,10位数据码,结束码),引导帧相同帧;2,脉宽调制方式(PWM);3,载波:30.4KHZ;

4,逻辑位时间长度是1.06ms。

Modulation 调制逻辑“0”(Logical“0”)是由530us的30.4KHZ载波和530us的无载波间隔)组成。(图中表示的是有载波和无载波间隔的总长度。)逻辑“1”(Logical“1”)是由530us的无载波间隔和530us的30.4KHZ载波组成。

Protocol 协议

从上图中可看到,Gemini-C17(31.36K)-1帧码其依次为:

引导帧码序列是由引导码(0.53ms的载波和2.65ms的间隔), 10位地址码与结束码(20.6ms)组成;

用户帧码序列是由引导码-相同码(0.53ms的载波和2.65ms的间隔), 10位地址码2与结束码(102.5ms)组成;

引导帧-相同帧码与引导帧码相同;

数据帧码序列是由引导码-相同码(0.53ms的载波和2.65ms的间隔), 10位数据码与结束码(117.14ms)组成;

引导帧-相同帧码与引导帧码相同;

长按键不放,后续发出的波形如下:

其整个码波形序列如下图.就是将第四、第五帧波形以周期165.3ms进行重复.

16

15) KONKA KK-Y261

KONKA KK-Y261是一种常见的红外遥控编码格式。该格式来源于RM-123C,RM-139S的113码组,RM-301C,RM-402C的204码组。Features 基本特点

1,引导码,8位地址码,8位数据码,结束码;2,脉宽调制方式(PWM);3,载波:38KHZ;

4,逻辑位时间长度是3ms或2ms。Modulation 调制逻辑“0”(Logical“0”)是由500us的38KHZ载波和1500us的无载波间隔)组成。(图中表示的是有载波和无载波间隔的总长度。)逻辑“1”(Logical“1”)是由500us的38KHZ载波和2500us的无载波间隔组成。

Protocol 协议

从上图中可看到,KONKA KK-Y261一帧码序列是由引导码(3ms的载波和3ms的间隔), 8位地址码, 8位数据码,结束码组成.

长按键不放,发出的码波形序列如下图:即将整个波形以周期6.6ms进行重复。

17

16) PD6121G-F

PD6121G-F是一种常见的红外遥控编码格式。Features 基本特点

1,引导码,8位地址码,8位地址码2,8位数据码,8位数据码反码;2,脉宽调制方式(PWM);3,载波:38KHZ;

4,逻辑位时间长度是2.256ms或1.128ms。Modulation 调制逻辑“0”(Logical“0”)是由564us的38KHZ载波和564us的无载波间隔)组成。(图中表示的是有载波和无载波间隔的总长度。)逻辑“1”(Logical“1”)是由564us的38KHZ载波和1692us的无载波间隔组成。

Protocol 协议

从上图中可看到,PD6121G-F一帧码序列是由引导码(9.024ms的载波和4.512ms的间隔), 8位地址码,8位地址码2,8位数据码,8位数据码反码组成。长按键不放,发出的码波形序列如下图:即将整个波形以周期108ms进行重复。

18

17) DATA-6BIT

DATA-6BIT是一种常见种常见的红外遥控编码格式。该格式来源于RM-301C,RM-402C(195)。

Features 基本特点1,6位数据码;

2,脉宽调制方式(PWM);3,载波:38KHZ;

4,逻辑位时间长度是3.802ms或1.98ms。Modulation 调制逻辑“0”(Logical“0”)是由440us的38KHZ载波和1540us的无载波间隔)组成。示的是有载波和无载波间隔的总长度。)逻辑“1”(Logical“1”)是由440us的38KHZ载波和3362us的无载波间隔组成。

Protocol 协议

从上图中可看到,DATA-6BIT一帧码序列仅是由6位数据码组成。长按键不放,发出的码波形序列如下图:即将第一帧波形以周期28ms进行重复。

19

(图中表18) CUSTUM6BIT

Custum-6BIT是一种常见的红外遥控编码格式。该格式出现在CL311,URC-8910,RM-123C,RM-139S#148,ZC-18A(600-917),ZC-18A(400-481),RM-301C,INTER-DIGI-SAT,VT3620A,VT3630,RM-402C。Features 基本特点1,6位数据码;

2,脉宽调制方式(PWM);3,载波:38KHZ;

4,逻辑位时间长度是3.98ms或1.99ms。

20

19)M9148-1

M9148-1是一种常见的编码格式。

Features 基本特点:

1、3位地址码,1位控制码,8位数据码;2、脉宽调制方式(PWM);3、载波:38.168KHZ;4、逻辑位的时间长度是Modulation 调制:

1.848ms

1、逻辑“0”(Logical“0”)是由462us的38.168KHZ载波和1386us的无载波间隔组成;(图中表示的是有载波和无载波间隔的总长度)

2、逻辑“1”(Logical“1”)是由1386us的38.168KHZ载波和462us的无载波间隔组成。

Protocol 协议

从上图可以看到M9148-1一帧码序列是由3位地址码,1位控制码,8位数据码。长按键不放,发出的码波形序列如下图。就是将第一帧波形以周期

56.023ms进行重复

21

20) SC3010RC-5

SC3010 RC-5是一种常见的编码格式。

该格式来源于众合万能遥控器RM-139S,码组号为013、208、215、216、218及万能遥控器祝成ZC-18A,码组号为682、684、685、854、691、709. Features 基本特点:

1、2位控制码,1为翻转码,5位地址码,6位数据码;2、脉宽调制方式(PWM);3、载波:38KHZ;

4、逻辑位的时间长度是1.688ms Modulation 调制:1、逻辑“0”(Logical“0”)是由844us的38 KHZ载波和844us的无载波间隔组成;(图中表示的是有载波和无载波间隔的总长度)2、逻辑“1”(Logical“1”)是由844us的38KHZ载波和844us的无载波间隔组成。

Protocol 协议

从上图可以看到SC3010 RC-5一帧码序列是由2位控制码、1位翻转码、5位地址码、6位数据码。

长按键不放,发出的码波形序列如下图。就是将第一帧波形以周期127.156ms进行重复

22

21) M50560-1(40K)

M50560-1(40K) 是一种常见的编码格式。

该格式来源于万能遥控器众合RM139-S码组号为040、069、076、083、068、125、127、268及万能遥控器众合RM-33C码组号为0016、0067、0072、0073. Features 基本特点:

1、8位地址码,8位数据码;2、脉宽调制方式(PWM);3、载波:40KHZ;

4、逻辑位的时间长度是1ms或2ms。Modulation 调制:1、逻辑“0”(Logical“0”)是由500us的40KHZ载波和500us的无载波间隔组成;表示的是有载波和无载波间隔的总长度)2、逻辑“1”(Logical“1”)是由500us的40KHZ载波和1500us的无载波间隔组成。

Protocol 协议

从上图可以看到M50560-1(40K) 一帧码序列是由8位地址码,8位数据码。长按键不放,发出的码波形序列如下图。就是将第一帧波形以周期67.8ms进行重复。

23

(图中22) SC50560-B1

SC50560-B1是一种常见的编码格式。Features 基本特点:1、5位数据码;

2、脉宽调制方式(PWM);3、载波:38KHZ;

4、逻辑位的时间长度是2.6ms或4.68ms。Modulation 调制:1、逻辑“0”(Logical“0”)是由520us的38KHZ载波和2080us的无载波间隔组成;(图中表示的是有载波和无载波间隔的总长度)2、逻辑“1”(Logical“1”)是由520us的38KHZ载波和4160us的无载波间隔组成。

Protocol 协议:

从上图可以看到SC50560-B1一帧码序列是由5位数据码。长按键不放,发出的码波形序列如下图。就是将第一帧波形以周期

120ms进行重复。

24

23)C50560-002P

C50560-002P是一种常见的编码格式。

该格式来源于视贝万能DVB遥控器,码组号为195. Features 基本特点:

1、8位地址码,8位数据码;2、脉宽调制方式(PWM);3、载波:38KHZ;

4、逻辑位的时间长度是1.04ms或2.08ms。Modulation 调制:1、逻辑“0”(Logical“0”)是由520us的38KHZ载波和520us的无载波间隔组成;(图中表示的是有载波和无载波间隔的总长度)2、逻辑“1”(Logical“1”)是由520us的38KHZ载波和1560us的无载波间隔组成。

Protocol 协议

从上图可以看到M50560-002P 一帧码序列是由8位地址码,8位数据码。长按键不放,发出的码波形序列如下图。就是将第一帧波形以周期360.06ms进行重复。

25

24)M50119P-01(38K)

M50119P-01(38K) 是一种常见的编码格式。Features 基本特点:

1、4位地址码、4位地址码的相同码、6位数据码、6位数据码的相同码;2、脉宽调制方式(PWM);3、载波:38KHZ;

4、逻辑位的时间长度是1.934ms或3.868ms。Modulation 调制:1、逻辑“0”(Logical“0”)是由967us的38KHZ载波和967us的无载波间隔组成;(图中表示的是有载波和无载波间隔的总长度)2、逻辑“1”(Logical“1”)是由967us的38KHZ载波和2901us的无载波间隔组成。

Protocol 协议

从上图可以看到M50119P-01(38K)一数据帧码序列是由4位地址码、6位数据码、4位地址码相同码、6位数据码相同码,一重复帧由4位地址码相同码。长按键不放,发出的码波形序列如下图。就是将第一帧波形以周期385.156ms进行重复。

26

25)M50119P-1(40K)

M50119P-1(40K) 是一种常见的编码格式。

该格式来源于OMEGA万能遥控器码组号为0041. Features 基本特点:

1、3位地址码,7位数据码;2、脉宽调制方式(PWM);3、载波:40KHZ;

4、逻辑位的时间长度是1ms或2ms。Modulation 调制:1、逻辑“0”(Logical“0”)是由500us的40KHZ载波和500us的无载波间隔组成;表示的是有载波和无载波间隔的总长度)2、逻辑“1”(Logical“1”)是由500us的40KHZ载波和1500us的无载波间隔组成。

Protocol 协议

从上图可以看到M50119P-1(40K)一帧码序列是由3位地址码、7位数据码。长按键不放,发出的码波形序列如下图。就是将第一帧波形以周期27.5ms进行重复。

27

(图中26)M50119P

M50119P是一种常见的编码格式。

该格式来源于OMEGA万能遥控器码组号为0384及众合万能遥控器RM-139S码组号为041. Features 基本特点:

1、3位地址码,7位数据码;2、脉宽调制方式(PWM);3、载波:37.91KHZ;

4、逻辑位的时间长度是1ms或2ms。Modulation 调制:1、逻辑“0”(Logical“0”)是由500us的37.9KHZ载波和500us的无载波间隔组成;(图中表示的是有载波和无载波间隔的总长度)2、逻辑“1”(Logical“1”)是由500us的37.9KHZ载波和1500us的无载波间隔组成。

Protocol 协议

从上图可以看到M50119P一帧码序列是由3位地址码、7位数据码。长按键不放,发出的码波形序列如下图。就是将第一帧波形以周期

30ms进行重复。

28

27)IRT1250C5D6-02(0Hz)

IRT1250C5D6-02(0Hz)是一种常见的编码格式。Features 基本特点:

1、5位地址码,6位数据码;2、脉宽调制方式(PWM);3、载波:无载波;

4、逻辑位的时间长度是0.238ms或0.496ms。Modulation 调制:1、逻辑“0”(Logical“0”)是由16us的无载波和224us的无载波间隔组成;(图中表示的是无载波和无载波间隔的总长度)2、逻辑“1”(Logical“1”)是由16us的36KHZ载波和480us的无载波间隔组成。

Protocol 协议

从上图可以看到IRT1250C5D6-02(0Hz)一帧码序列是由引导码(0.016ms的无载波和0.732ms的间隔),5位地址码、6位数据码。

长按键不放,发出的码波形序列如下图。就是将第一帧波形以周期597.251ms进行重复。

29

28)HTS-C5D6P

HTS-C5D6P是一种常见的编码格式。该格式来源于OMEGA万能遥控器0277、0321、0444. Features 基本特点:

1、5位地址码,6位数据码,1位校验码;2、脉宽调制方式(PWM);3、载波:38KHZ;

4、逻辑位的时间长度是1.496ms或2.992或4.624ms。Modulation 调制:1、逻辑“0”(Logical“0”)是由136us的38KHZ载波和1360us的无载波间隔组成;(图中表示的是有载波和无载波间隔的总长度)2、逻辑“1”(Logical“1”)是由136us的38KHZ载波和2856us的无载波间隔组成。3、逻辑“3”(Logical“3”)是由136us的38KHZ载波和4488us的无载波间隔组成。

Protocol 协议

从上图可以看到HTS-C5D6P一帧码序列是引导码(0.136ms的载波和5.962ms的间隔),5位地址码,6位用户码,1位校验码。长按键不放,后续发出波形如下:

长按键不放,发出的码波形序列如下图。就是将第一帧波形以周期89.381ms进行重复。

30

29)Gemini-C17 (31.36K)

Gemini-C17 (31.36K)是一种常见的编码格式。该格式主要来源于OMEGA万能遥控器,码组号分别为:0134.、0225、0289、0322、0397、0400、0451、0458、0859。Features 基本特点:

1、10位地址码,引导码的相同码,10位数据码;2、脉宽调制方式(PWM);3、载波:30.4KHZ;

4、逻辑位的时间长度是1.06ms。Modulation 调制1、逻辑“0”(Logical“0”)是由530us的30.4KHZ载波和530us的无载波间隔组成;(图中表示的是有载波和无载波间隔的总长度)2、逻辑“1”(Logical“1”)是由530us的30.4KHZ载波和530us的无载波间隔组成。

Protocol 协议

从上图可以看到Gemini-C17 (31.36K)用户帧码序列是由引导码(0.53ms的载波和2.65ms的间隔),10位地址码,数据帧码序列由引导码的相同码,10位数据码。长按键不放后,仍发出如下波形:

长按键不放出码的波形序列如下图,就是将第一帧以周期199.97ms进行重复。

31

30)Gemini-C17 (31.36K)-2

Gemini-C17 (31.36K)-2是一种常见的编码格式。该格式主要来源于OMEGA万能遥控器,码组号分别为:0135、0376。Features 基本特点:

1、16位地址码,16位数据码;2、脉宽调制方式(PWM);3、载波:31KHZ;

4、逻辑位的时间长度是1.06ms。Modulation 调制1、逻辑“0”(Logical“0”)是由530us的31KHZ载波和530us的无载波间隔组成;(图中表示的是有载波和无载波间隔的总长度)2、逻辑“1”(Logical“1”)是由530us的31KHZ载波和530us的无载波间隔组成。

Protocol 协议

从上图可以看到Gemini-C17 (31.36K)-2用户帧码序列是由引导码(0.53ms的载波和2.65ms的间隔),16位地址码,数据帧码序列由引导码(0.53ms的载波和2.65ms的间隔),16位数据码。

长按键不放后,仍发出如下波形:

长按键不放出码的波形序列如下图,就是将第一帧以周期216.09ms进行重复。

32

31)data6bit-a

data6bit-a是一种常见的编码格式。

该格式来源于祝成万能遥控器ZC-18A码组号673. Features 基本特点:1、6位数据码;

2、脉宽调制方式(PWM);3、载波:33.3KHZ;

4、逻辑位的时间长度是2.396ms或4.776ms。Modulation 调制1、逻辑“0”(Logical“0”)是由576us的33.3KHZ载波和1820us的无载波间隔组成;(图中表示的是有载波和无载波间隔的总长度)2、逻辑“1”(Logical“1”)是由576us的33.3KHZ载波和4200us的无载波间隔组成。

Protocol 协议

从上图可以看到data6bit-a一帧码序列是6位数据码。

长按键不放,发出的码波形序列如下图。就是将第一帧波形以周期

58.092ms进行重复。

33

32)data6bit-c

Features 基本特点:1、6位数据码;

2、脉宽调制方式(PWM);3、载波:20KHZ;

4、逻辑位的时间长度是2 ms或4ms。Modulation 调制1、逻辑“0”(Logical“0”)是由1000us的20KHZ载波和1000us的无载波间隔组成;(图中表示的是有载波和无载波间隔的总长度)2、逻辑“1”(Logical“1”)是由1000us的20KHZ载波和3000us的无载波间隔组成。

Protocol 协议

从上图可以看到data6bit-c一帧码序列是6位数据码构成。

长按键不放,发出的码波形序列如下图。就是将第一帧波形以周期

72.5ms进行重复。

34

33)X-Sat Protocol X-Sat Protocol

I call this the X-Sat protocol because it is used in the X-Sat CDTV 310 Satellite receiver made by the French company Xcom. This protocol is probably also used in other X-Sat receivers, but I have no means to verify that. I haven't seen this protocol anywhere else but that doesn't guarantee that it is unique to the X-Sat brand. Features

8 bit address and 8 bit command length Pulse distance modulation Carrier frequency of 38kHz Bit time of 1ms or 2ms Modulation

The X-Sat protocol uses pulse distance encoding of the bits. Each pulse is a 526祍long 38kHz carrier burst (about 20 cycles). A logical \1.0ms. The recommended carrier duty cycle is 1/4 or 1/3.

Protocol

The picture above shows a typical pulse train of the X-Sat protocol. With this protocol the LSB is transmitted first. In this case Address $59 and Command $35 is transmitted. A message is started by a 8ms AGC burst, which was used to set the gain of the earlier IR receivers. This AGC burst is then followed by a 4ms space, which is then followed by the Address and Command. A peculiar property of the X-Sat protocol is the 4ms gap between the address and the command. The total transmission time is variable because the bit times are variable.

An IR command is repeated 60ms for as long as the key on the remote is held down.

35

34)Philips RECS-80 Protocol 38kHz carrier

This protocol is designed by Philips and transmitters are produced by Philips (SAA3008) and ST (M3004). Personally I have never seen this protocol being used in real applications. All information on this page is derived from the data sheet of the Philips SAA3008 and the ST M3004 (10624.pdf).

There are 2 small differences between the two competitor ICs. The Philips IC has two modes of operation, one which is compatible with the ST chip and one which can handle up to 20 sub-system addresses. The ST chip has the capability of switching the modulation carrier off. Features

7 or 20 sub-system addresses, 64 commands per sub-system address 1 or 2 toggle bits to avoid key bounce Pulse distance modulation

Carrier frequency of 38kHz, or unmodulated

Bit time logic \

Command repetition rate 121.5ms (55296 periods of the main oscillator) Manufacturer Philips & ST Modulation 1/3 duty cycle

Normal Protocol

The drawing below shows a typical pulse train of a normal RECS-80 message. This example transmits command 36 to address 4.

Usually the first pulse is a reference pulse, with a value of \the exact bit length.

The next bit is a toggle bit. Its value is toggled whenever a key is released, which results in a different code every time a new key is pressed. This allows the receiver to discriminate between new key presses and key repetitions.

Only the ST chip M3004 can disable its carrier, in which case the REF pulse is interpreted as a second

36

toggle bit. The 2-bit toggle value is incremented every time a key is released. Thus only in this mode there is no real REF pulse.

The next 3 pulses S2 to S0 represent the sub-system address bits, sent with MSB first. This would allow for 8 different

sub-system

addresses

but both the SAA3008

and the M3004

can only generate

7

sub-system addresses in normal mode. Next come the 6 command bits F to A, also sent with MSB first allowing for 64 different commands per sub-system address.

The pulse train is terminated by a last pulse, otherwise there is no way to know the duration of bit A. The entire command is repeated (with unchanged toggle bits) for as long as the key is held down. The repetition rate is 121.5ms (55296 periods of the oscillator).

Address assignments are a bit odd with this protocol. You can not simply convert the binary value to a decimal

value. Below you see a table explaining

the relationship

between

the binary

and decimal

sub-system address values.

Extended Protocol

If you need more than 7 sub-system addresses you can use the extended protocol which allows 13 additional sub-system addresses only if you use the SAA3008. The drawing below shows an extended message. This example transmits command 36 to address 10.

The first two pulses are a special start sequence. The total duration of these pulses is equal to a normal \

The next bit is a toggle bit. Its value is toggled whenever a key is released, which results in a different code every time a new key is pressed. This allows the receiver to discriminate between new key presses and key repetitions.

The next 4 pulses S3 to S0 represent the sub-system address bits. This would allow for an additional 16 different sub-system addresses, although the SAA3008 can only generate 13 additional sub-system addresses in this mode. Next come the 6 command bits F to A, also sent with MSB first.

The pulse train is terminated by a last pulse, otherwise there is no way to know the duration of bit A. The entire command is repeated (with unchanged toggle bits) for as long as the key is held down. The repetition rate is 121.5ms (55296 periods of the oscillator).

37

Address assignments are a bit odd with this protocol. You can not simply convert the binary value to a decimal

value. Below you see a table explaining

the relationship

between

the binary

and decimal

sub-system address values.

38

35)Philips RC-MM Protocol

RC-MM was defined by Philips to be a multi-media IR protocol to be used in wireless keyboards, mice and game pads. For these purposes the commands had to be short and have low power requirements. Whether the protocol is actually used for these purposes today is unknown to me. What I do know is that some Nokia digital satellite receivers use the protocol (9800 series).

Features

12 bits or 24 bits per message

Pulse position coding, sending 2 bits per IR pulse Carrier frequency of 36kHz

Message time ranges from 3.5 to 6.5 ms, depending on data content Repetition time 28 ms (36 messages per second) Manufacturer Philips

Transmission timing

In this diagram you see the most important transmission times. The message time is the total time of a message, counting form the beginning of the first pulse until the end of the last pulse of the message. This time can be 3.5 to 6.5 ms, depending on the data content and protocol used.

The signal free time is the time in which no signal may be sent to avoid confusion with foreign protocols on the receiver's side. Philips recommends 1 ms for normal use, or 3.36 ms when used together with RC-5 and RC-6 signals.

Since you can never tell whether

a user has other remote

controls

in use

together with an RC-MM controlled device I would recommend always to use a signal free time of 3.36 ms.

The frame time is the sum of the message time and the signal free time, which can add up to just about 10 ms per message.

Finally the repetition time is the recommended repetition time of 27.778 ms, which allows 36 messages per second. This is only a recommendation and is mainly introduced to allow other devices to send their commands during the dead times.

No provision is made for data collisions between two or more remote controls! This means that there is no guarantee that the messages get across.

39

Modulation

With this protocol a 36 kHz carrier frequency is used to transmit the pulses. This helps to increase the noise immunity at the receiver side and at the same time it reduces power dissipated by the transmitter LED. The duty cycle of the pulses is 1:3 or 1:4.

Each message is preceded by a header pulse with the duration of 416.7 followed by a space of 277.8

s (15 pulses of the carrier), μ

s (10 periods of the carrier). This header is followed by 12 or 24 bits of data. μ

By changing the distance between the pulses two bits of data are encoded per pulse. Below you find a table with the encoding times.

Protocol

RCMM comes in 3 different flavours, called modes. Each mode is intended for a particular purpose and differs mainly in the number of bits which can be used by the application. All data is sent with MSB first.

The 12 bit mode is the basic mode, and allows for 2 address bits and 8 data bits per device family. There are 3 different device families defined: keyboard, mouse and game pad. The 2 address bits provide for a way to use more than 1 device simultaneously. The data bits are the actual payload data.

The 24 bit mode, also know as extended mode, allows more data to be transmitted per message. For instance for multi-lingual keyboards or a high resolution mouse.

In the OEM mode the first 6 bits are always 0 0 0 0 1 1. The next 6 bits are the customer ID (OEM manufacturer).

My observation

showed

that Nokia used the code 1 0 0 0 0 0

for their 9800 series

digital satellite receivers.

Finally the last 12 bits are the actual pay load data.

40

36) Philips RC-6 Protocol

RC-6 is, as may be expected, the successor of the RC-5 protocol. Like RC-5 the new RC-6 protocol was also defined by Philips. It is a very versatile and well defined protocol. Because of this versatility its original

definition

is many pages long. Here on

my page I will only summarize

the most important

properties of this protocol.

Features

Different modes of operation, depending on the intended use Dedicated Philips modes and OEM modes

Variable command length, depending on the operation mode Bi-phase coding (aka Manchester coding) Carrier frequency of 36kHz Manufacturer Philips

Modulation

RC-6 signals are modulated on a 36 between 25% and 50%.

Data is modulated using Manchester coding. This means that each bit (or symbol) will have both a mark and space in the output signal. If the symbol is a \half is a space. If the symbol is a \Please note that this is the opposite of the RC-5 protocol!

The main timing unit is 1t, which is 16 times the carrier period (1/36k * 16 = 444With RC-6 a total of 5 different symbols are defined:

s).

μ

kHz Infra Red carrier. The duty cycle of this carrier has to be

The leader pulse, which has a mark time of 6t (2.666ms) and a space time of 2t (0.889ms). This leader pulse is normally used to set the gain of the IR receiver unit.

41

Normal bits, which have a mark time of 1t (0.444ms) and space time of 1t (0.444ms). A \and \

Trailer bits, which have a mark time of 2t (0.889ms) and a space time of 2t (0.889ms). Again a \

The leader and trailer symbols are only used in the header field of the messages, which will be explained in more detail below.

RC-6 Mode 0

I can only describe operation mode 0 because I have never actually seen other modes in use than the one my Philips TV understands. The way I understand it the other modes can vary extremely from mode 0.

Mode 0 is a dedicated Philips Consumer Electronics mode. It allows control of up to 256 independent devices, with a total of 256 commands per device.

The command is a concatenation of different information. I will cover these different components from left to right. Header field

The Header field consists of 3 different components.

First the leader symbol LS is transmitted. Its purpose is to adjust the gain of the IR receiving unit.

This leader symbol is followed by a start bit SB which always has the value \to calibrate the receiver's timing.

The mode bits mb2 ... mb0 determine the mode, which is 0 in this case, thus all three bits will be \

Finally the header is terminated by the trailer bit TR. Please note that the bit time of this symbol is twice as long as normal bits! This bit also serves as the traditional toggle bit, which will

42

be inverted whenever a key is released. This allows the receiver to distinguish between a new key or a repeated key.

Control Field

This field holds 8 bits which are used as address byte. This means that a total of 256 different devices can be controlled using mode 0 of RC-6. The msb is transmitted first. Information Field

The information field holds 8 bits which are used as command byte. This means that each device can have up to 256 different commands. The msb is transmitted first. Signal Free Time

The Signal Free time is a period in which no data may be transmitted (by any device). It is important for the receiver to detect the signal free time at the end of a message to avoid incorrect reception. The signal free time is set to 6t, which is 2.666ms.

43

37) Philips RC-5 Protocol

The RC-5 code from Philips is possibly the most used protocol by hobbyists, probably because of the wide availability of cheap remote controls. The protocol

is well

defined

for different

device

types

ensuring

compatibility

with

your

whole

entertainment system. Lately Philips started using a new protocol called RC-6 which has more features.

Features

5 bit address and 6 bit command length (7 command bits for RC5X) Bi-phase coding (aka Manchester coding) Carrier frequency of 36kHz

Constant bit time of 1.778ms (64 cycles of 36 kHz) Manufacturer Philips

Modulation

The protocol uses bi-phase modulation (or so-called Manchester coding) of a 36kHz IR carrier frequency. All bits are of equal length of 1.778ms in this protocol, with half of the bit time filled with a burst of the 36kHz carrier and the other half being idle. A logical zero is represented by a burst in the first half of the bit time. A logical one is represented by a burst in the second half of the bit time. The pulse/pause ratio of the 36kHz carrier frequency is 1/3 or 1/4 which reduces power consumption.

Protocol

The drawing below shows a typical pulse train of an RC-5 message. This example transmits command $35 to address $05.

44

The first two pulses are the start pulses, and are both logical \elapsed before the receiver will notice the real start of the message.

Extended RC-5 uses only one start bit. Bit S2 is transformed to command bit 6, providing for a total of 7 command bits. The value of S2 must be inverted to get the 7th command bit though!

The 3rd bit is a toggle bit. This bit is inverted every time a key is released and pressed again. This way the receiver can distinguish between a key that remains down, or is pressed repeatedly.

The next 5 bits represent the IR device address, which is sent with MSB first. The address is followed by a 6 bit command, again sent with MSB first.

A message consists of a total of 14 bits, which adds up to a total duration of 25 ms. Sometimes a message may appear to be shorter because the first half of the start bit S1 remains idle. And if the last bit of the message is a logic \

As long as a key remains down the message will be repeated every 114ms. The toggle bit will retain the same logical level during all of these repeated messages. It is up to the receiver software to interpret this auto repeat feature.

PS: I had rather a big error on this page for quite some time. For some mysterious reason the LSB and MSB of the address and command were reversed. I can recall correcting this error before, but somehow an old version of the description must have sneaked its way up to the internet again

45

38) Sony SIRC Protocol

I've collected and combined some information found on the internet about the Sony SIRC protocol. I must

admit

that I have never worked

with this particular

protocol,

so I could

not verify

that all

information is valid for all situations. It appears

that 3 versions

of the protocol

exist:

12-bit

(described

on this page),

15-bit

and 20-bit

versions. I can only assume that the 15-bit and 20-bit versions differ in the number of transmitted bits per command sequence.

Please note that a lot of confusing documentation about the SIRC protocol exists on the internet. At first I contributed to the confusion by assuming the correctness of the source documents I found myself, until someone with some SIRC experience informed me about my errors. I double checked his story with a universal remote control and a digital storage oscilloscope, and found that the bit and word order I documented were indeed wrong.

The protocol information on this page is according to my own measurements and should be correct now.

Features

12-bit, 15-bit and 20-bit versions of the protocol exist (12-bit described here) 5-bit address and 7-bit command length (12-bit protocol) Pulse width modulation Carrier frequency of 40kHz Bit time of 1.2ms or 0.6ms

Modulation

The SIRC protocol uses a pulse width encoding of the bits. The pulse representing a logical \long burst of the 40kHz carrier, while the burst width for a logical \separated by a 0.6ms long space interval. The recommended carrier duty-cycle is 1/4 or 1/3.

Protocol

46

The picture above shows a typical pulse train of the SIRC protocol. With this protocol the LSB is

transmitted first. The start burst is always 2.4ms wide, followed by a standard space of 0.6ms. Apart from signalling the start of a SIRC message this start burst is also used to adjust the gain of the IR receiver. Then the 7-bit Command is transmitted, followed by the 5-bit Device address. In this case Address 1 and Command 19 is transmitted.

Commands are repeated every 45ms(measured from start to start) for as long as the key on the remote control is held down.

47

39) Sharp Protocol

I only have little information on this protocol. It is used in VCRs that are produced by Sharp, that is why I gave it the name Sharp protocol.

Features

8 bit command, 5 bit address length Pulse distance modulation Carrier frequency of 38kHz Bit time of 1ms or 2ms

Modulation

The Sharp protocol uses a pulse distance encoding of the bits. Each pulse is a 320burst (about

12 cycles).

A logical

\takes 2ms to transmit,

while a logical

s long 38kHz carrier μ\is only 1ms. The

recommended carrier duty-cycle is 1/4 or 1/3.

Protocol

In the picture above you see a typical pulse train sending the command $11 and address $03. The Address is sent first and consists of 5 bits. Next comes the 8 bit command. In both cases the LSB of the data is sent first.

I don't exactly know the purpose of the Expansion and Check bits that follow the command. Both bits were fixed in the example that I had at hand.

I can only guess that the Check bit is used to find out whether we are receiving a normal or inverted message.

48

One complete command sequence consist of 2 messages. The first transmission is exactly as described above. The second transmission follows the first one after a delay of 40ms, and basically contains the same information. The only difference is that all bits, except those from the address field, are inverted. This way the receiver can verify if the received message is reliable or not.

49

40) Nokia NRC17 Protocol

The Nokia Remote

Control protocol

uses 17

bits to

transmit

the IR commands,

which immediately

explains the name of this protocol.

The protocol was designed for Nokia consumer electronics. It was used during the last few years in which Nokia produced TV sets and VCRs. Also the sister

brands like Finlux and Salora used this protocol.

Nowadays the protocol is mainly used in Nokia satellite receivers and set-top boxes.

Features

8 bit command, 4 bit address and 4 bit sub-code length Bi-phase coding

Carrier frequency of 38kHz Constant bit time of 1ms Battery empty indication possible Manufacturer Nokia CE

Modulation

The protocol uses bi-phase (or so-called NRZ - Non Return to Zero) modulation of a 38kHz IR carrier frequency. All bits are of equal length of 1ms in this protocol, with half of the bit time filled with a burst of the 38kHz carrier and the other half being idle. A logical one is represented by a burst in the first half of the bit time. A logical zero is represented by a burst in the second half of the bit time.

The pulse/pause ratio of the 38kHz carrier frequency is 1/4 which helps to reduce power consumption.

Protocol

The drawing below shows a typical pulse train of an NRC17 message. This example transmits command $5C to address $6 sub-code $1.

50