µÚÎåÕ ÊýÀíͳ¼ÆµÄ»ù´¡ÖªÊ¶
5.1
ÊýÀíͳ¼ÆµÄ»ù±¾¸ÅÄî
ϰÌâÒ»
ÒÑÖª×ÜÌåX·þ´Ó[0,¦Ë]ÉϵľùÔÈ·Ö²¼(¦Ëδ֪), X1,X2,?,XnΪXµÄÑù±¾£¬Ôò().
(A)1n¡Æi=1nXi-¦Ë2ÊÇÒ»¸öͳ¼ÆÁ¿£» (B)1n¡Æi=1nXi-E(X)ÊÇÒ»¸öͳ¼ÆÁ¿£» (C)X1+X2ÊÇÒ»¸öͳ¼ÆÁ¿£» (D)1n¡Æi=1nXi2-D(X)ÊÇÒ»¸öͳ¼ÆÁ¿.
½â´ð£º Ӧѡ(C).
ÓÉͳ¼ÆÁ¿µÄ¶¨Ò壺Ñù±¾µÄÈÎÒ»²»º¬×ÜÌå·Ö²¼Î´Öª²ÎÊýµÄº¯Êý³ÆÎª¸ÃÑù±¾µÄͳ¼ÆÁ¿.(A)(B)(D)Öоùº¬Î´Öª²ÎÊý.
ϰÌâ2
¹Û²ìÒ»¸öÁ¬ÐøÐÍËæ»ú±äÁ¿£¬³éµ½100ÖꡰԥũһºÅ¡±ÓñÃ×µÄËëλ(µ¥Î»£ºcm), µÃµ½ÈçϱíÖÐËùÁеÄÊý¾Ý. °´Çø¼ä[70,80),[80,90),?,[150,160), ½«100¸öÊý¾Ý·Ö³É9¸ö×飬Áгö·Ö×éÊý¾Ý¼Æ±í(°üÀ¨ÆµÂʺÍÀÛ»ýƵÂÊ), ²¢»³öƵÂÊÀÛ»ýµÄÖ±·½Í¼. ½â´ð£º ·Ö×éÊý¾Ýͳ¼Æ±í
×éÐòºÅ ×éÏÞ ×éÖÐÖµ ×鯵ÂÊ ×鯵ÂÊ% ÀÛ¼ÆÆµÂÊ% ×éÐòºÅ ×éÏÞ ×éÖÐÖµ ×鯵ÂÊ ×鯵ÂÊ% ÀÛ¼ÆÆµÂÊ% 1 2 3 4 5 70¡«80¡«90¡«100¡«110105161661 110¡«120115262667 8075333 90859912 10095131325 6 7 8 9 120¡«130125202087 130¡«1401357794 140¡«1501454498 150¡«16015522100 ƵÂÊÖ±·½Í¼¼ûͼ(a),ÀÛ»ýƵÂÊÖ±·½Í¼¼ûͼ(b). ϰÌâ3 ²âµÃ20¸öëÅ÷ÖØÁ¿(µ¥Î»£ºg),ÁгÉÈçϼò±í£º ëÅ÷ÖØÁ¿ 185187192195200202205206 ƵÊý 11111211 ëÅ÷ÖØÁ¿ 207208210214215216218227 ƵÊý 21112121 ½«Æä°´Çø¼ä[183.5,192.5),?,[219.5,228.5)×飬Áгö·Ö×éͳ¼Æ±í£¬²¢»³öƵÂÊÖ±·½Í¼. ½â´ð£º ·Ö×éͳ¼Æ±í¼û±í ×éÐòºÅ ×éÏÞ ×éÖÐÖµ ×鯵Êý ×鯵ÂÊ/% 12345 183.5,¡«192.5192.5,¡«201.5201.5,¡«210.5210.5,¡«219.5219.5,¡«228.518819720621522432861151040305 ƵÂÊÖ±·½Í¼¼ûÏÂͼ ϰÌâ4 ijµØÇø³éÑùµ÷²é200¸ö¾ÓÃñ»§µÄÔÂÈ˾ùÊÕÈ룬µÃÈçÏÂͳ¼Æ×ÊÁÏ£º ÔÂÈ˾ùÊÕÈë(°ÙÔª) 5-66-77-88-99-1010-1111-12 ºÏ¼Æ »§Êý 18357624191414 200 ÇóÑù±¾ÈÝÁ¿n,Ñù±¾¾ùÖµX¡¥£¬Ñù±¾·½²îS2. ½â´ð£º ¶ÔÓڳ鵽µÄÿ¸ö¾ÓÃñ»§µ÷²é¾ùÊÕÈ룬¿É¼ûn=200. ÕâÀûÓиø³öÔʼÊý¾Ý£¬¶øÊǸø³öÁËÕûÀí¹ýµÄ×ÊÁÏ(ƵÂÊ·Ö²¼), ÎÒÃÇÊ×ÏȼÆËã¸÷×éµÄ¡°×éÖÐÖµ¡±£¬È»ºó¼ÆËãX¡¥ºÍS2µÄ½üËÆÖµ£º ÔÂÈ˾ùÊÕÈë(°ÙÔª) 5-66-77-88-99-1010-1111-12 ºÏ¼Æ ×éÖÐÖµak »§Êýfk 5.56.57.58.59.510.511.5 18357624191414 - 200 X¡¥=1n¡Ækakfk=1200(5.5¡Á18+?+11.5¡Á14)=7.945, S2¡Ö1n-1¡Æk(ak-X¡¥)2fk=1n-1¡Ækak2fk-X¡¥2 =1199(5.52¡Á18+?+11.52¡Á14)-7.9452 ¡Ö66.0402-63.123025=2.917175. ϰÌâ5 Éè×ÜÌåX·þ´Ó¶þÏî·Ö²¼B(10,3100),X1,X2,?,XnΪÀ´×Ô×ÜÌåµÄ¼òµ¥Ëæ»úÑù±¾£¬ X¡¥=1n¡Æi=1nXiÓëSn2=1n¡Æi=1n(Xi-X¡¥)2
·Ö±ð±íʾÑù±¾¾ùÖµºÍÑù±¾¶þ½×ÖÐÐľأ¬ÊÔÇóE(X¡¥),E(S2). ½â´ð£º
ÓÉX¡«B(10,3100), µÃ
E(X)=10¡Á3100=310,D(X)=10¡Á3100¡Á97100=2911000,
ËùÒÔ
E(X¡¥)=E(X)=310,E(S2)=n-1nD(X)=291(n-1)1000n.
ϰÌâ6
ÉèijÉ̵ê100ÌìÏúÊÛµçÊÓ»úµÄÇé¿öÓÐÈçÏÂͳ¼Æ×ÊÁÏ
ÈÕÊÛ³ǫ̈Êýk 2 3 4 5 6 ºÏ¼Æ ÌìÊýfk 20 30 10 25 15 100 ÇóÑù±¾ÈÝÁ¿n,¾Ñé·Ö²¼º¯ÊýFn(x). ½â´ð£º (1)Ñù±¾ÈÝÁ¿n=100; (2)¾Ñé·Ö²¼º¯Êý Fn(x)={0,x<20.20,2¡Üx<30.50,3¡Üx<40.60,4¡Üx<50.85,5¡Üx<61,x¡Ý6. ϰÌâ7 Éè×ÜÌåXµÄ·Ö²¼º¯ÊýΪF(x), ¸ÅÂÊÃܶÈΪf(x),X1,X2,?,XnΪÀ´×Ô×ÜÌåXµÄÒ»¸öÑù±¾£¬¼Ç X(1)=min1¡Üi¡Ün(Xi),X(n)=max1¡Üi¡Ün(Xi), ÊÔÇóX(1)ºÍX(n) ¸÷×Եķֲ¼º¯ÊýºÍ¸ÅÂÊÃܶÈ. ½â´ð£º ÉèX(1)µÄ·Ö²¼º¯ÊýºÍ¸ÅÂÊÃܶȷֱðΪF1(x)ºÍf1(x), X(n)µÄ·Ö²¼º¯ÊýºÍ¸ÅÂÊÃܶȷֱðΪFn(x)ºÍfn(x), Ôò Fn(X)=P{X(n)¡Üx}=P{X1¡Üx,?,X(n)¡Üx} =P{X1¡Üx}P{X2¡Üx}?P{Xn¡Üx}=[F(x)]n, fn(x)=F¡än(x)=n[F(x)]n-1f(x), F1(x)=P{X(1)¡Üx}=1-P{X(1)>x}=1-P{X1>x,X2>x,?,Xn>x} =1-P{X1>x}P{X2>x}?P{Xn>x} =1-[1-P{X1¡Üx}][1-P{X2¡Üx}]?[1-P{Xn¡Üx}] =1-[1-F(x)]n, F¡ä1(x)=f1(x)=n[1-F(x)]n-1f(x). ϰÌâ8 Éè×ÜÌåX·þ´ÓÖ¸Êý·Ö²¼e(¦Ë),X1,X2ÊÇÈÝÁ¿Îª2µÄÑù±¾£¬ÇóX(1)£¬X(2)µÄ¸ÅÂÊÃܶÈ. ½â´ð£º f(x)={¦Ëe-¦Ëx,x>00,ÆäËü, F(x)={1-e-¦Ëx,x>00,x¡Ý0,
X(2)µÄ¸ÅÂÊÃܶÈΪ
f(2)(x)=2F(x)f(x)={2¦Ëe-¦Ëx(1-e-¦Ëx),x>00,ÆäËü,
ÓÖX(1)µÄ¸ÅÂÊÃܶÈΪ
f(1)(x)=2[1-F(x)]f(x)={2¦Ëe-2¦Ëx,x>00,ÆäËü.
ϰÌâ9
Éèµç×ÓÔª¼þµÄÊÙÃüʱ¼äX(µ¥Î»£ºh)·þ´Ó²ÎÊý¦Ë=0.0015µÄÖ¸Êý·Ö²¼£¬½ñ¶ÀÁ¢²âÊÔn=6Ôª¼þ£¬¼Ç¼ËüÃǵÄʧЧʱ¼ä£¬Çó£º
(1)ûÓÐÔª¼þÔÚ800h֮ǰʧЧµÄ¸ÅÂÊ£» (2)ûÓÐÔª¼þ×îºó³¬¹ý3000hµÄ¸ÅÂÊ.
½â´ð£º
(1)×ÜÌåXµÄ¸ÅÂÊÃܶÈf(x)={(0.0015)e-0.0015x,x>00,ÆäËü,
·Ö²¼º¯ÊýF(x)={1-e-0.0015x,x>00,ÆäËü,
{ûÓÐÔª¼þÔÚ800hǰʧЧ}={×îС˳Ðòͳ¼ÆÁ¿X(1)>800}, ÓÐ
P{X(1)>800}=[P{X>800}]6=[1-F(800)]6
=exp(-0.0015¡Á800¡Á6)=exp(-7.2)¡Ö0.000747.
(2){ûÓÐÔª¼þ×îºó³¬¹ý3000h}={×î´ó˳Ðòͳ¼ÆÁ¿X(6)<3000}
P{X(6)<3000}=[P{X<3000}]6=[F(3000)]6 =[1-exp{-0.0015¡Á3000}]6=[1-exp{-4.5}]6 ¡Ö0.93517.
ϰÌâ10
Éè×ÜÌåXÈÎÒ⣬ÆÚÍûΪ¦Ì,·½²îΪ¦Ò2, ÈôÖÁÉÙÒªÒÔ95%µÄ¸ÅÂʱ£Ö¤¨OX¡¥-¦Ì¨O<0.1¦Ò, ÎÊÑù±¾ÈÝÁ¿nӦȡ¶à´ó£¿ ½â´ð£º
Òòµ±nºÜ´óʱ£¬X¡¥-N(¦Ì,¦Ò2n), ÓÚÊÇ
P{¨OX¡¥-¦Ì¨O<0.1¦Ò}=P{¦Ì-0.1¦Ò ¡Ö¦µ(0.1¦Ò¦Ò/n)-¦µ(-0.1¦Ò¦Ò/n)=2¦µ(0.1n)-1¡Ý0.95, Ôò¦µ(0.1n)¡Ý0.975, ²é±íµÃ¦µ(1.96)=0.975, Òò¦µ(x)·Ç¼õ£¬¹Ê0.1n¡Ý1.96,n¡Ý384.16, ¹ÊÑù±¾ÈÝÁ¿ÖÁÉÙÈ¡385²ÅÄÜÂú×ãÒªÇó. 5.2 ³£ÓÃͳ¼Æ·Ö²¼ ϰÌâ1 ¶ÔÓÚ¸ø¶¨µÄÕýÊýa(0 ÒòΪ±ê×¼Õý̬·Ö²¼ºÍt·Ö²¼µÄÃܶȺ¯ÊýͼÐζ¼ÓÐÊǹØÓÚyÖá¶Ô³ÆµÄ£¬¶ø¦Ö2·Ö²¼µÄÃܶȴóÓÚµÈÓÚÁ㣬ËùÒÔ(A)ºÍ(C)ÊǶԵÄ.(B)ÊÇ´íµÄ. ¶ÔÓÚF·Ö²¼£¬ÈôF¡«F(n1,n2), Ôò 1-a=P{F>F1-a(n1,n2)}=P{1F<1F1-a(n1,n2)=1-P{1F>1F1-a(n1,n2) ÓÉÓÚ1F¡«F(n2,n1), ËùÒÔ P{1F>1F1-a(n1,n2)=P{1F>Fa(n2,n1)=a, ¼´F1-a(n1,n2)=1Fa(n2,n1). ¹Ê(D)Ò²ÊǶԵÄ. ϰÌâ2(1) 2.Éè×ÜÌåX¡«N(0,1),X1,X2,?,XnΪ¼òµ¥Ëæ»úÑù±¾£¬ÎÊÏÂÁи÷ͳ¼ÆÁ¿·þ´Óʲô·Ö²¼? (1)X1-X2X32+X42; ½â´ð£º ÒòΪXi¡«N(0,1),i=1,2,?,n, ËùÒÔ£º X1-X2¡«N(0,2), X1-X22¡«N(0,1), X32+X42¡«¦Ö2(2), ¹ÊX1-X2X32+X42=(X1-X2)/2X32+X422¡«t(2). ϰÌâ2(2) 2.Éè×ÜÌåX¡«N(0,1),X1,X2,?,XnΪ¼òµ¥Ëæ»úÑù±¾£¬ÎÊÏÂÁи÷ͳ¼ÆÁ¿·þ´Óʲô·Ö²¼? (2)n-1X1X22+X32+?+Xn2; ½â´ð£º ÒòΪXi¡«N(0,1),¡Æi=2nXi2¡«¦Ö2(n-1), ËùÒÔ n-1X1X22+X32+?+Xn2=X1¡Æi=2nXi2/(n-1)¡«t(n-1). ϰÌâ2(3) 2.Éè×ÜÌåX¡«N(0,1),X1,X2,?,XnΪ¼òµ¥Ëæ»úÑù±¾£¬ÎÊÏÂÁи÷ͳ¼ÆÁ¿·þ´Óʲô·Ö²¼? (3)(n3-1)¡Æi=13Xi2/¡Æi=4nXi2. ½â´ð£º ÒòΪ¡Æi=13Xi2¡«¦Ö2(3),¡Æi=4nXi2¡«¦Ö2(n-3), ËùÒÔ£º (n3-1)¡Æi=13Xi2/¡Æi=4nXi2=¡Æi=13Xi2/3¡Æi=4nXi2/(n-3)¡«F(3,n-3). ϰÌâ3 ÉèX1,X2,X3,X4ÊÇÈ¡×ÔÕý̬×ÜÌåX¡«N(0,22)µÄ¼òµ¥Ëæ»úÑù±¾£¬ÇÒ Y=a(X1-2X2)2+b(3X3-4X4)2, Ôòa=?,b=?ʱ£¬Í³¼ÆÁ¿Y·þ´Ó¦Ö2·Ö²¼£¬Æä×ÔÓɶÈÊǶàÉÙ£¿ ½â´ð£º ½â·¨Ò» Y=[a(X1-2X2)]2+[b(3X3-4X4)]2, ÁîY1=a(X1-2X2),Y2=b(3X3-4X4), Ôò Y=Y12+Y22, ΪʹY¡«¦Ö2(2), ±ØÓÐY1¡«N(0,1),Y2¡«N(0,1), Òò¶ø E(Y1)=0,D(Y1)=1, E(Y2)=0,D(Y2)=1, ×¢Òâµ½D(X1)=D(X2)=D(X3)=D(X4)=4, ÓÉ D(Y1)=D[a(X1-2X2)]=aD(X1-X2)=a(D(X1)+22D(X2)) =a(4+4¡Á4)=20a=1, D(Y2)=D[b(3X3-4X4)]=bD(3X3-4X4) =b(9D(X3)+16D(X4))=b(4¡Á9+16¡Á4)=100b=1, ·Ö±ðµÃa=120,b=1100. ÕâʱY¡«¦Ö2(2), ×ÔÓɶÈΪn=2. ½â·¨¶þ ÒòXi¡«N(0,22)ÇÒÏ໥¶ÀÁ¢£¬Öª X1-2X2=X1+(-2)X2¡«N(0,20), 3X3-4X4=3X3+(-4)X4¡«N(0,100), ¹ÊX1-2X220¡«N(0,1),3X3-4X4100¡«N(0,1), Ϊʹ Y=(X1-2X21/a)2+(3X3-4X41/b)2¡«¦Ö2(2), ±ØÓÐX1-2X21/a¡«N(0,1),3X3-4X41/b¡«N(0,1), ÓëÉÏÃæÁ½¸ö·þ´Ó±ê×¼Õý̬·Ö²¼µÄËæ»ú±äÁ¿±È½Ï¼´ÊÇ 1a=20,1b=100, ¼´a=120,b=1100. ϰÌâ4 ÉèËæ»ú±äÁ¿XºÍY Ï໥¶ÀÁ¢ÇÒ¶¼·þ´ÓÕý̬·Ö²¼N(0,32). X1,X2,?,X9ºÍY1,Y2,?,Y9ÊÇ·Ö±ðÈ¡×Ô×ÜÌåXºÍYµÄ¼òµ¥Ëæ»úÑù±¾£¬ÊÔ֤ͳ¼ÆÁ¿ T=X1+X2+?+X9Y12+Y22+?+Y92 ·þ´Ó×ÔÓɶÈΪ9µÄt·Ö²¼. ½â´ð£º Ê×ÏȽ«Xi,Yi·Ö±ð³ýÒÔ3, ʹ֮»¯Îª±ê×¼Õý̬. ÁîX¡äi=Xi3,Y¡äi=Yi3,i=1,2,?,9, Ôò X¡äi¡«N(0,1),Y¡äi¡«N(0,1); ÔÙÁîX¡ä=X¡ä1+X¡ä2+?+X¡ä9, ÔòX¡ä¡«N(0,9),X¡ä3¡«N(0,1), Y¡ä2=Y¡ä12+Y¡ä22+?+Y¡ä92, Y¡ä2¡«¦Ö2(9). Òò´Ë T=X1+X2+?+X9Y12+Y22+?+Y92=X1¡ä+X2¡ä+?+X9¡äY¡ä12+Y¡ä22+?+Y¡ä92=X¡äY¡ä2=X¡ä/ 3Y¡ä2/9¡«t(9), ×¢Òâµ½X¡ä,Y¡ä2Ï໥¶ÀÁ¢. ϰÌâ5 Éè×ÜÌåX¡«N(0,4), ¶øX1,X2,?,X15Ϊȡ×Ô¸Ã×ÜÌåµÄÑù±¾£¬ÎÊËæ»ú±äÁ¿ Y=X12+X22+?+X1022(X112+X122+?+X152) ·þ´Óʲô·Ö²¼£¿²ÎÊýΪ¶àÉÙ£¿ ½â´ð£º ÒòΪXi2¡«N(0,1), ¹ÊXi24¡«¦Ö2(1),i=1,2,?,15, ¶øX1,X2,?,X15¶ÀÁ¢£¬¹Ê X12+X22+?+X1024¡«¦Ö2(10),X112+X122+?+X1524¡«¦Ö2(5), ËùÒÔ X12+X22+?+X1024/10X112+X122+?+X1524/5=X12+X22+?+X1022(X112+X122+ ?+X152)=Y ϰÌâ6 Ö¤Ã÷£ºÈôËæ»ú±äÁ¿X·þ´ÓF(n1,n2)µÄ·Ö²¼£¬Ôò (1)Y=1X·þ´ÓF(n2,n1)·Ö²¼£»(2)²¢ÓÉ´ËÖ¤Ã÷F1-¦Á(n1,n2)=1F¦Á(n2,n1). ½â´ð£º (1)ÒòËæ»ú±äÁ¿X·þ´ÓF(n1,n2), ¹Ê¿ÉÉèX=U/n1V/n2, ÆäÖÐU·þ´Ó¦Ö2(n1),V·þ´Ó¦Ö2(n2), ÇÒUÓëVÏ໥¶ÀÁ¢£¬Éè1X=V/n2U/n1, ÓÉF·Ö²¼Ö®¶¨ÒåÖª Y=1x=V/n2U/n1, ·þ´ÓF(n2,n1). (2)ÓÉÉϲà¦Á·ÖλÊýºÍ¶¨ÒåÖª P{X¡ÝF1-¦Á(n1,n2)}=1-¦Á,P{1X¡Ü1F1-¦Á(n1,n2)=1-¦Á, ¼´P{Y¡Ü1F1-¦Á(n1,n2)=1-¦Á,1-P{Y>1F1-¦Á(n1,n2)=1-¦Á, ¹Ê P{Y>1F1-¦Á(n1,n2)=¦Á, ¶øP{Y¡ÝF¦Á(n2,n1)}=¦Á. ÓÖYΪÁ¬ÐøÐÍËæ»ú±äÁ¿£¬¹ÊP{Y¡Ý1F1-¦Á(n1,n2)=¦Á, ´Ó¶ø F¦Á(n2,n1)=1F1-¦Á(n1,n2), ¼´F1-¦Á(n1,n2)=1F¦Á(n2,n1). ϰÌâ7 ²é±íÇó±ê×¼Õý̬·Ö²¼µÄÉϲà·ÖλÊý£ºu0.4,u0.2,u0.1Óëu0.05. ½â´ð£º u0.4=0.253, u0.2=0.8416, u0.1=1.28,u0.05=1.65. ϰÌâ8 ²é±íÇó¦Ö2·Ö²¼µÄÉϲà·ÖλÊý£º¦Ö0.952(5), ¦Ö0.052(5), ¦Ö0.992(10)Óë¦Ö0.012(10). ½â´ð£º 1.145, 11.071, 2.558, 23.209. ϰÌâ9 ²é±íÇóF·Ö²¼µÄÉϲà·ÖλÊý£ºF0.95(4,6),F0.975(3,7)ÓëF0.99(5,5). ½â´ð£º 0.1623,0.0684,0.0912. ϰÌâ10 ²é±íÇót·Ö²¼µÄϲà·ÖλÊý£ºt0.05(3),t0.01(5),t0.10(7)Óët0.005(10). ½â´ð£º 2.353,3.365,1.415,3.169. 5.3 ³éÑù·Ö²¼ ϰÌâ1 ÒÑÖªÀëÉ¢Ð;ùÔÈ×ÜÌåX,Æä·Ö²¼ÂÉΪ X È¡´óСΪn=54µÄÑù±¾£¬Çó£º 246 pi 1/31/31/3 (1)Ñù±¾Æ½¾ùÊýX¡¥ÂäÓÚ4.1µ½4.4Ö®¼äµÄ¸ÅÂÊ£» (2)Ñù±¾¾ùÖµX¡¥³¬¹ý4.5µÄ¸ÅÂÊ. ½â´ð£º ¦Ì=E(X)=13¡Á(2+4+6)=4, ¦Ò2=E(X2)-[E(X)]2=13¡Á(22+42+66)-42=83, ËùÒÔ ¦ÌX¡¥=¦Ì=4, ¦ÒX¡¥2=¦Ò2n=8/354=481, ¦ÒX¡¥=29. ÁîZ=X¡¥-42/9, Ôòn³ä·Ö´óʱ£¬Z¡«½üËÆN(0,1). (1)P{4.1 ¡Ö1-¦µ(2.25)=1-0.9878=0.0122. ϰÌâ2 Éè×ÜÌåX·þ´ÓÕý̬·Ö²¼N(10,32),X1,X2,?,X6ÊÇËüµÄÒ»×éÑù±¾£¬Éè X¡¥=16¡Æi=16Xi. (1)д³öX¡¥Ëù·þ´ÓµÄ·Ö²¼£»(2)ÇóX¡¥>11µÄ¸ÅÂÊ. ½â´ð£º (1)X¡¥¡«N(10,326), ¼´X¡¥¡«N(10,32). (2)P{X¡¥>11}=1-P{X¡¥¡Ü11}=1-¦µ(11-1032) ¡Ö1-¦µ(0,8165)¡Ö1-¦µ(0.82)=0.2061. ϰÌâ3 ÉèX1,X2,?,XnÊÇ×ÜÌåXµÄÑù±¾£¬X¡¥=1n¡Æi=1nXi, ·Ö±ð°´×ÜÌå·þ´ÓÏÂÁÐÖ¸¶¨·Ö²¼ÇóE(X¡¥),D(X¡¥). (1)X·þ´Ó0-1·Ö²¼b(1,p); (2)*X·þ´Ó¶þÏî·Ö²¼b(m,p); (3)X·þ´Ó²´ËÉ·Ö²¼P(¦Ë); (4)X·þ´Ó¾ùÔÈ·Ö²¼U[a,b]; (5)X·þ´ÓÖ¸Êý·Ö²¼e(¦Ë). ½â´ð£º (1)ÓÉÌâÒ⣬XµÄ·Ö²¼ÂÉΪ£º P{X=k}=Pk(1-P)1-k(k=0,1). E(X)=p,D(X)=p(1-p). ËùÒÔ E(X¡¥)=E(1n¡Æi=1nXi)=1n¡Æi=1nE(Xi)=1n?np=p, D(X¡¥)=D(1n¡Æi=1nXi)=1n2¡Æi=1nD(X1)=1n2?np(1-p)=1np(1-p). (2)ÓÉÌâÒ⣬XµÄ·Ö²¼ÂÉΪ£º P{X=k}=CmkPk(1-p)m-k(k=0,1,2,?,m). ͬ(1)¿ÉµÃ E(X¡¥)=mp,D(X¡¥)=1nmp(1-p). (3)ÓÉÌâÒ⣬XµÄ·Ö²¼ÂÉΪ£º P{X=k}=¦Ëkk!e-¦Ë(¦Ë>0,k=0,1,2,?). E(X)=¦Ë,D(X)=¦Ë. ͬ(1)¿ÉµÃ E(X¡¥)=¦Ë,D(X¡¥)=1n¦Ë. (4)ÓÉE(X)=a+b2,D(X)=(b-a)212, ͬ(1)¿ÉµÃ E(X¡¥)=a+b2,D(X¡¥)=(b-a)212n. (5)ÓÉE(X)=1¦Ë,D(X)=1¦Ë2, ͬ(1)¿ÉµÃ D(X¡¥)=1¦Ë,D(X¡¥)=1n¦Ë2. ϰÌâ4 ij³§Éú²úµÄ½Á°è»úƽ¾ùÊÙÃüΪ5Ä꣬±ê×¼²îΪ1Ä꣬¼ÙÉèÕâЩ½Á°è»úµÄÊÙÃü½üËÆ·þ´ÓÕý̬·Ö²¼£¬Çó£º £¨1£©ÈÝÁ¿Îª9µÄËæ»úÑù±¾Æ½¾ùÊÙÃüÂäÔÚ4.4ÄêºÍ5.2ÄêÖ®¼äµÄ¸ÅÂÊ£» £¨2£©ÈÝÁ¿Îª9µÄËæ»úÑù±¾Æ½¾ùÊÙÃüСÓÚ6ÄêµÄ¸ÅÂÊ¡£ ½â´ð£º £¨1£©ÓÉÌâÒâÖªX¡¥¡«N(5,1n),n=9£¬Ôò±ê×¼»¯±äÁ¿ Z=X¡¥-51/9=X¡¥-51/3¡«N(0,1). ¶ø P{4.4 £¨2£©P{X¡¥<6}=P{X¡¥-51/3<6-51/3=P{Z<3}¡Ö¦µ(3)=0.9987. ϰÌâ5 ÉèX1,X2,?,X16¼°Y1,Y2,?,Y25·Ö±ðÊÇÁ½¸ö¶ÀÁ¢×ÜÌåN(0,16)ºÍN(1,9)µÄÑù±¾£¬ÒÔX¡¥ºÍY¡¥·Ö±ð±íʾÁ½¸öÑù±¾¾ùÖµ£¬ÇóP{¨OX¡¥-Y¡¥¨O>1}. ½â´ð£º X¡¥¡«N(0,1616)£¬Y¡¥¡«N(1,925)£¬X¡¥-Y¡¥¡«N(-1,1+925)£¬¼´ X¡¥-Y¡¥¡«N(-1,3425)£® ±ê×¼»¯±äÁ¿X¡¥-Y¡¥£¬ÁîZ=X¡¥-Y¡¥34/5¡«N(0,1)£¬ËùÒÔ P{¨OX¡¥-Y¡¥¨O>1}=1-P{¨OX¡¥-Y¡¥¨O¡Ü1}=1-P{-1¡ÜX¡¥-Y¡¥¡Ü1} =1-P{0¡ÜX¡¥-Y¡¥+134/5¡Ü234/5 ¡Ö1-¦µ(1.715)+¦µ(0) =1-0.9569+0.5=0.5431£® ϰÌâ6 ¼ÙÉè×ÜÌåX·þ´ÓÕý̬·Ö²¼N(20,32), Ñù±¾X1,?,X25À´×Ô×ÜÌåX, ¼ÆËã P{¡Æi=116Xi-¡Æi=1725Xi¡Ü182. ½â´ð£º ÁîY1=¡Æi=116Xi,Y2=¡Æi=1725Xi, ÓÉÓÚX1,?,X25Ï໥¶ÀÁ¢Í¬Õý̬·Ö²¼N(20,32), Òò´ËÓÐ Y1ÓëY2Ï໥¶ÀÁ¢£¬ÇÒY1¡«N(320,122), Y2¡«N(180,92), Y1-Y2¡«N(140,152), P{¡Æi=116Xi-¡Æi=1725Xi¡Ü182=P{Y1-Y2¡Ü182}, =P{Y1-Y2-14015¡Ü2.8¡Ö¦µ(2.8)=0.997. ϰÌâ7 ´ÓÒ»Õý̬×ÜÌåÖгéÈ¡ÈÝÁ¿Îªn=16µÄÑù±¾£¬¼Ù¶¨Ñù±¾¾ùÖµÓë×ÜÌå¾ùÖµÖ®²îµÄ¾ø¶ÔÖµ´óÓÚ2µÄ¸ÅÂÊΪ0.01, ÊÔÇó×ÜÌåµÄ±ê×¼²î. ½â´ð£º Éè×ÜÌåX¡«N(¦Ì,¦Ò2), Ñù±¾¾ùֵΪX¡¥,ÔòÓÐ X¡¥-¦Ì¦Ò/n=X¡¥-¦Ì¦Ò/4¡«N(0,1). ÒòΪ P{¨OX¡¥-¦Ì¨O>2}=P{¨OX¡¥-¦Ì¦Ò/4¨O>8¦Ò=2P{Z>8¦Ò=2[1-¦µ(8¦Ò)]=0.01, ËùÒÔ¦µ(8¦Ò)=0.995. ²é±ê×¼Õý̬·Ö²¼±í£¬µÃ8¦Ò=2.575, ´Ó¶ø¦Ò=82.575=3.11. ϰÌâ8 ÉèÔÚ×ÜÌåN(¦Ì,¦Ò2)ÖгéȡһÈÝÁ¿Îª16µÄÑù±¾£¬ÕâÀï¦Ì,¦Ò2¾ùΪδ֪. (1)ÇóP{S2/¦Ò2¡Ü2.041}, ÆäÖÐS2ΪÑù±¾·½²î£» (2)ÇóD(S2). ½â´ð£º (1)ÒòΪÊÇÕý̬×ÜÌ壬¸ù¾ÝÕý̬×ÜÌåϵÄͳ¼ÆÁ¿·Ö²¼¿ÉÖª (n-1)S2¦Ò2¡«¦Ö2(n-1). ÕâÀïn=16, ÓÚÊÇ P{S2/¦Ò2¡Ü2.041}=P(15S2¦Ò2¡Ü15¡Á2.041) =1-P{15S2¦Ò2>30.615(²é¦Ö2·Ö²¼±í¿ÉµÃ) =1-0.01=0.99. (2)ÒòΪ(n-1)S2¦Ò2¡«¦Ö2(n-1), ÓÖÖª D((n-1)S2¦Ò2)=2(n-1), ËùÒÔ D(S2)=¦Ò4(n-1)2D((n-1)S2¦Ò2)=¦Ò4(n-1)2?2(n-1)=2n-1¦Ò4=215¦Ò4 (ÒòΪn=16). ϰÌâ9 Éè×ÜÌåX¡«N(¦Ì,16),X1,X2,?,X10Ϊȡ×Ô¸Ã×ÜÌåµÄÑù±¾£¬ÒÑÖªP{S2>a}=0.1, Çó³£Êýa. ½â´ð£º ÒòΪ(n-1)S2¦Ò2¡«¦Ö2(n-1),n=10,¦Ò=4, ËùÒÔ P{S2>a}=P{9S216>916a=0.1. ²é×ÔÓɶÈΪ9µÄ¦Ö2·Ö²¼±íµÃ£¬916a=14.684, ËùÒÔa¡Ö26.105. ϰÌâ10 ÉèX1,X2,?,XnºÍY1,Y2,?,Yn·Ö±ðÈ¡×ÔÕý̬×ÜÌå X¡«N(¦Ì1,¦Ò2)ºÍY¡«N(¦Ì2,¦Ò2) ÇÒÏ໥¶ÀÁ¢£¬ÎÊÒÔÏÂͳ¼ÆÁ¿·þ´Óʲô·Ö²¼£¿ (1)(n-1)(S12+S22)¦Ò2; (2)n[(X¡¥-Y¡¥)-(¦Ì2-¦Ò2)]2S12+S22. ½â´ð£º (1)ÓÉ(n-1)S12¦Ò2¡«¦Ö2(n-1), (n-1)S22¦Ò2¡«¦Ö2(n-1), ÓɦÖ2(n)µÄ¿É¼ÓÐÔ (n-1)(S12+S22)¦Ò2¡«¦Ö(2(n-1)). (2)X¡¥-Y¡¥¡«N(¦Ì1-¦Ì2,2¦Ò2n), ±ê×¼»¯ºó(X¡¥-Y¡¥)-(¦Ì1-¦Ì2)¦Ò2n¡«N(0,1), ¹ÊÓÐ [(X¡¥-Y¡¥)-(¦Ì1-¦Ì2)]22¦Ò2n¡«¦Ö2(1), ÓÖÓÉ(n-1)(S12+S22)¦Ò2¡«¦Ö2(2n-2), ×¢ÒâF·Ö²¼¶¨Òå [(X¡¥-Y¡¥)-(¦Ì1-¦Ì2)]21n2¦Ò2/1(n-1)(S12+S22)¦Ò2/2(n-1)=n[(X¡¥-Y¡¥)-(¦Ì1-¦Ì2)]2S1 ϰÌâ11 ·Ö±ð´Ó·½²îΪ20ºÍ35µÄÕý̬×ÜÌåÖгéÈ¡ÈÝÁ¿Îª8ºÍ10µÄÁ½¸öÑù±¾£¬ÇóµÚÒ»¸öÑù±¾·½²î²»Ð¡ÓÚµÚ¶þ¸öÑù±¾·½²îµÄÁ½±¶µÄ¸ÅÂÊ. ½â´ð£º ÓÃS12ºÍS22·Ö±ð±íʾÁ½¸öÑù±¾·½²î£¬Óɶ¨ÀíÖª F=S12/¦Ò12S22/¦Ò22=S12/20S22/35=1.75S12S22¡«F(8-1,10-1)=F(7,9). ÓÖÉèʼþA={S12¡Ý2S22}, ÏÂÃæÇóP{S12¡Ý2S22}, Òò P{S12¡Ý2S22}=P{S12S22¡Ý2=P{S12/20S22/35¡Ý2¡Á3520=P{F¡Ý3.5}. ²éF·Ö²¼±íµÃµ½×ÔÓɶÈΪn1=7,n2=9µÄF·Ö²¼ÉϦÁ·Ö²¼µãF¦Á(n1=7,n2=9)ÓÐÈçÏÂÊýÖµ£º F0.05(7,9)=3.29,F0.025(7,9)=4.20, Òò¶øF0.05(7,9)=3.29<3.5 0.025¡ÜP{S12¡Ý2S22}¡Ü0.05. ×ÜϰÌâ½â´ð ϰÌâ1 Éè×ÜÌåX·þ´Ó²´ËÉ·Ö²¼.Ò»¸öÈÝÁ¿Îª10µÄÑù±¾ÖµÎª1,2,4,3,3,4,5,6,4,8, ¼ÆËãÑù±¾¾ùÖµ£¬Ñù±¾·½²îºÍ¾Ñé·Ö²¼º¯Êý. ½â´ð£º Ñù±¾µÄƵÂÊ·Ö²¼Îªx¡¥=4,s2=3.6. ¾Ñé·Ö²¼º¯ÊýΪ F10(x)={0,x<11/10,1¡Üx<22/10,2¡Üx<34/10,3¡Üx<47/10,4¡Üx<58/10,5¡Üx<69/10,6¡Üx<71 ,x¡Ý8. ϰÌâ2 A³§Éú²úµÄij²úÖÖµçÆ÷µÄʹÓÃÊÙÃü·þ´ÓÖ¸Êý·Ö²¼£¬²ÎÊý¦Ëδ֪. Ϊ´Ë£¬³é²éÁËn¼þµçÆ÷£¬²âÁ¿ÆäʹÓÃÊÙÃü£¬ÊÔÈ·¶¨±¾ÎÊÌâµÄ×ÜÌå¡¢Ñù±¾¼°Ñù±¾µÄ·Ö²¼. ½â´ð£º ×ÜÌåÊÇÕâÖÖµçÆ÷µÄʹÓÃÊÙÃü£¬Æä¸ÅÂÊÃܶÈΪ f(x)={¦Ëe-¦Ëx,x>00,x¡Ü0(¦Ëδ֪), Ñù±¾X1,X2,?,XnÊÇn¼þijÖÖµçÆ÷µÄʹÓÃÊÙÃü£¬³éµ½µÄn¼þµçÆ÷µÄʹÓÃÊÙÃüÊÇÑù±¾µÄÒ»×é¹Û²ìÖµ.Ñù±¾X1,X2,?,XnÏ໥¶ÀÁ¢£¬À´×Ôͬһ×ÜÌåX, ËùÒÔÑù±¾µÄÁªºÏÃܶÈΪ f(x1,x2,?,xn)={¦Ëne-¦Ë(x1+x2+?+xn),x1,x2,?,xn>00,ÆäËü. ϰÌâ3 Éè×ÜÌåXÔÚÇø¼ä[a,b]ÉÏ·þ´Ó¾ùÔÈ·Ö²¼£¬Çó£º (1)À´×ÔXµÄ¼òµ¥Ëæ»úÑù±¾X1,X2,?,XnµÄÃܶÈf(x1,x2,?,xn); (2)Y=max{X1,X2,?,Xn}µÄÃܶÈfY(x); Z=min{X1,X2,?,Xn}µÄÃܶÈfZ(x). ½â´ð£º (1)XµÄÃܶÈΪf(x)={1b-a,x¡Ê(a,b)0,ÆäËü, ÓÉÓÚX1,X2,?,Xn¶ÀÁ¢ÇÒÓëXͬ·Ö²¼£¬ËùÒÔÓÐ f(x1,x2,?,xn)=¡Çi=1nf(xi)={1(b-a)n,a¡Üx1¡Ü?¡Üxn¡Üb0,ÆäËü. (2)ÓÉÌâÉèXÔÚ[a,b]ÉÏ·þ´Ó¾ùÔÈ·Ö²¼£¬Æä·Ö²¼º¯ÊýΪ F(x)={0,x ÓÉY=max{X1,X2,?,Xn}¼°Z=min{X1,X2,?,Xn}·Ö²¼º¯ÊýµÄ¶¨Òå FY(x)=[F(x)]n, FZ(x)=1-[1-F(x)]n, ÓÚÊÇÓÐ fY(x)=nFn-1(x)f(x)=n(x-a)n-1(b-a)n,x¡Ê[a,b], fZ(x)=n[1-Fn-1(x)]n-1?f(x)=n(b-x)n-1(b-a)n,x¡Ê[a,b]. ϰÌâ4 ÔÚÌìÆ½ÉÏÖØ¸´³ÆÒ»ÖØÁ¿ÎªaµÄÎïÆ·£¬¼ÙÉè¸÷´Î³ÆÁ¿µÄ½á¹ûÏ໥¶ÀÁ¢£¬ÇÒ·þ´ÓÕý̬·Ö²¼N(a,0.2). ÈôÒÔX¡¥±íʾn´Î³ÆÁ¿½á¹ûµÄËãÊõƽ¾ùÖµ£¬ÇóʹP{¨OX¡¥-a¨O<0.1}¡Ý0.95³ÉÁ¢µÄ³ÆÁ¿´ÎÊýnµÄ×îСֵ. ½â´ð£º ÒòΪX¡¥=1n¡Æi=1nXi¡«N(a,(0.2)2n), ËùÒÔ X¡¥-a0.2/n¡«N(0,1), ¹Ê P{¨OX¡¥-a¨O<0.1}=P{¨OX¡¥-a0.2/n¨O<0.10.2/n=2¦µ(n2)-1¡Ý0.95, ¼´¦µ(n2)¡Ý0.975, ²éÕý̬·Ö²¼±íµÃn2¡Ý1.96, ËùÒÔn¡Ý15.37, ¼´n=16. ϰÌâ5 Éè×ÜÌåX¡«N(20,3), ´ÓXÖгéÈ¡Á½¸öÑù±¾X1,X2,?,X10ºÍY1,Y2,?,X15, Çó¸ÅÂÊP{¨O X¡¥-Y¡¥¨O>0.3}. ½â´ð£º ÒòΪX1,X2,?,X10ºÍY1,Y2,?,Y15¶ÀÁ¢Í¬·Ö²¼£¬ËùÒÔ X¡¥¡«N(20,310), Y¡¥¡«N(20,0.2), ÓÚÊÇX¡¥-Y¡¥¡«N(0,0.5). P{¨OX¡¥-Y¡¥¨O>0.3}=P{¨OX¡¥-Y¡¥¨O/0.5>0.3/0.5} =1-P{¨OX¡¥-Y¡¥¨O/0.5¡Ü0.3/0.5} =2[1-¦µ(0.3/0.5)]=2[1-0.6628] =0.6744(²éÕý̬·Ö²¼±í). ϰÌâ6 Éè×ÜÌåX¡«N(¦Ì,¦Ò2), ¼ÙÈçÒªÒÔ0.9606µÄ¸ÅÂʱ£Ö¤Æ«²î¨OX¡¥-¦Ì¨O<0.1, ÊÔÎÊ£ºµ±¦Ò2=0.25ʱ£¬Ñù±¾ÈÝÁ¿nӦȡ¶à´ó£¿ ½â´ð£º P{¨OX¡¥-¦Ì¨O<0.1}=0.9606, ¼´ P{¨OX¡¥-¦Ì¨O<0.1}=P{¨OX¡¥-¦Ì0.25/n¨O<0.10.25/n=2¦µ(0.1n0.25)-1=0.9606, ?¦µ(0.1n0.25)=0.9803?n5=2.06?n¡Ö106. P{¨OX¡¥-¦Ì¨O<0.1}=0.9606, ¼´ P{¨OX¡¥-¦Ì¨O<0.1}=P{¨OX¡¥-¦Ì0.25/n¨O<0.10.25/n. ϰÌâ7 ÉèX1¡¥ºÍX2¡¥·Ö±ðΪÀ´×ÔÕý̬×ÜÌåN(¦Ì,¦Ò2)µÄÈÝÁ¿ÎªnµÄÁ½¸ö¼òµ¥Ëæ»úÑù±¾ X11,X12,?,X1nºÍX21,X22,?,X2nµÄ¾ùÖµ£¬ÊÔÈ·¶¨n,ʹÁ½¸ö×ÓÑùµÄ¾ùÖµÖ®²î³¬¹ý¦ÒµÄ¸ÅÂÊСÓÚ0.05. ½â´ð£º Xi¡¥¡«N(¦Ì,¦Ò2n)(i=1,2), ÇÒX1¡¥ºÍX2¡¥Ï໥¶ÀÁ¢£¬¹ÊÓÐ X1¡¥-X2¡¥¡«N(0,2¦Ò2n), ´Ó¶øX1¡¥-X2¡¥¦Ò/2/n¡«N(0,1), P(¨OX1¡¥-X2¡¥¨O>¦Ò)=P{¨OX1¡¥-X2¡¥¨O¦Ò2/n>n2=2¦µ(-n2) =2[1-¦µ(n2)]<0.05, ¹Ê¦µ(n2)>0.975, ²éÕý̬·Ö²¼±ín2¡Ý1.96, ËùÒÔn>7.68, ¼´È¡n=8. ϰÌâ8 Éè×ÜÌåX¡«f(x)={¨Ox¨O,¨Ox¨O<10,ÆäËü£¬X1,X2,?,X50Ϊȡ×ÔXµÄÒ»¸öÑù±¾£¬ÊÔÇó£º (1) X¡¥µÄÊýѧÆÚÍûÓë·½²î£» (2) S2µÄÊýѧÆÚÍû£» (3) P{¨OX¡¥¨O>0.02}. ½â´ð£º ¦Ì=E(X)=¡Ò-11x¨Ox¨Odx=0, ¦Ò2=D(X)=E(X2)-[E(X)]2=E(X2)=¡Ò-11x2¨Ox¨Odx=12. (1) X¡¥=1n¡Æi=1nXi(n=50) ?E(X¡¥)=E(1n¡Æi=1nXi)=1n¡Æi=1nE(Xi)=0,D(X¡¥)=¦Ò2n=12n=1100; (2) E(S2)=[1n-1¡Æi=1n(Xi-X¡¥)2]=1n-1E[¡Æi=1n(Xi-X¡¥)2] =1n-1E(¡Æi=1nXi2-nX¡¥2)=1n-1(¡Æi=1nD(X1)-nD(X¡¥)) =1n-1(n?12-n?12n)=12; (3) P{¨OX¡¥¨O>0.02}=1-P{¨OX¡¥¨O¡Ü0.02} =1-P{¨OX¡¥-¦ÌD(X¡¥)¨O¡Ü0.02-¦ÌD(X¡¥) =1-P¡Ý{¨OX1/10¨O¡Ü0.2=2[1-¦µ(0.2)]=0.8414. ϰÌâ9 ´ÓÒ»Õý̬×ÜÌåÖгéÈ¡ÈÝÁ¿Îª10µÄÑù±¾£¬ÉèÑù±¾¾ùÖµÓë×ÜÌå¾ùÖµÖ®²îµÄ¾ø¶ÔÖµÔÚ4ÒÔÉϵĸÅÂÊΪ0.02, Çó×ÜÌåµÄ±ê×¼²î. ½â´ð£º ÓÉÓÚX¡¥¡«N(¦Ì,¦Ò2n), ¹ÊÓÐ 0.02=P{¨OX¡¥-¦Ì¨O¡Ý4}=P{¨OX¡¥-¦Ì¦Ò/n¨O¡Ý4¦Ò/n ¡Ö2(1-¦µ(4¦Ò/n))¡Ö2(1-¦µ(12.65¦Ò)), ¦µ(12.65¦Ò)=0.99, ¼´ÓÐ12.65¦Ò=u0.01=2.33, ½âµÃ¦Ò¡Ö5.43. ϰÌâ10 ÉèX1,?,XnÊÇÈ¡×Ô×ÜÌåXµÄÑù±¾£¬X¡¥,S2·Ö±ðΪÑù±¾¾ùÖµÓëÑù±¾·½²î£¬¼Ù¶¨¦Ì=E(X),¦Ò2=D(X)¾ù´æÔÚ£¬ÊÔÇóE(X¡¥),D(X¡¥),E(S2). ½â´ð£º E(X¡¥)=1n¡Æi=1nE(Xi)=1n¡Æi=1nE(X)=¦Ì, D(X¡¥)=1n2¡Æi=1nD(Xi)=1n2¡Æi=1nD(X)=¦Ò2n, E(S2)=E(1n-1(¡Æi=1nXi2-nX¡¥2))=1n-1(¡Æi=1nE(Xi2)-nE(X¡¥2)) =1n-1(¡Æi=1nE(X2)-nE(X¡¥2)) =1n-1(¡Æi=1n(¦Ì2+¦Ò2)-n(¦Ì2+(¦Ò2n)))=¦Ò2. ×¢£º±¾ÌâÖ¤Ã÷Á˶ÔÓÚÈκδæÔÚ¾ùÖµ¦ÌÓë·½²î¦Ò2µÄ×ÜÌå·Ö²¼£¬¾ùÓÐ E(X¡¥)=¦Ì,E(S2)=¦Ò2. ϰÌâ11 Éè×ÜÌåX·þ´ÓÕý̬·Ö²¼N(¦Ì,¦Ò2)(¦Ò>0), ´Ó×ÜÌåÖгéÈ¡¼òµ¥Ëæ»úÑù±¾X1,?,X2n(n¡Ý2), ÆäÑù±¾¾ùֵΪX¡¥=12n¡Æi=12nXi, Çóͳ¼ÆÁ¿Y=¡Æi=1n(Xi+Xn+i-2X¡¥)2µÄÊýѧÆÚÍû. ½â´ð£º ×¢Òâµ½Xi+Xn+iÏ໥¶ÀÁ¢£¬Í¬·Ö²¼N(2¦Ì,2¦Ò2), ÔòËüÃÇ¿ÉÈÏΪÊÇÈ¡×ÔͬһÕý̬×ÜÌåN(2¦Ì,2¦Ò2)µÄÑù±¾£¬ÆäÑù±¾¾ùֵΪ 1n¡Æi=1n(Xi+Xn+i)=1n¡Æi=12nXi=2X¡¥. Èç¹û¼ÇZi=Xi+Xn+i,i=1,?,n, ¼´Zi(i=1,?,n)ÊÇÈ¡×ÔN(2¦Ì,2¦Ò2)µÄÑù±¾£¬ÇÒ Yn-1=1n-1¡Æi=1n(Xi+Xn+i-2X¡¥)2=S2(Z), ÔòÓÐE(S2(Z))=1n-1E(Y)=2¦Ò2, ËùÒÔE(Y)=2(n-1)¦Ò2. ϰÌâ12 ÉèÓÐk¸öÕý̬×ÜÌåXi¡«N(¦Ìi,¦Ò2), ´ÓµÚi¸ö×ÜÌåÖгéÈ¡ÈÝÁ¿ÎªniµÄÑù±¾Xi1,Xi2,?,Xini, ÇÒ¸÷×éÑù±¾¼äÏ໥¶ÀÁ¢£¬¼Ç Xi¡¥=1n¡Æj=1niXij(i=1,2,?,k),n=n1+n2+?+nk, ÇóW=1¦Ò2¡Æi=1k¡Æj=1ni(Xij-Xi¡¥)2µÄ·Ö²¼. ½â´ð£º ÒòΪ¡Æj=1ni(Xij-Xi¡¥)2¦Ò2=(ni-1)Si2¦Ò2¡«¦Ö2(ni-1), ÇÒ(ni-1)Si2¦Ò2(i=1,2,?,k)Ï໥¶ÀÁ¢£¬¹Ê W=1¦Ò2¡Æi=1k¡Æj=1ni(Xij-Xi¡¥)2=¡Æi=1k(ni-1)Si2¦Ò2¡«¦Ö2(¡Æi=1k(ni-1)), ¶ø¡Æi=1k(ni-1)=¡Æi=1kni-k=n-k, ¹Ê W=1¦Ò2¡Æi=1k¡Æj=1ni(Xij-Xi¡¥)2¡«¦Ö2(n-k). ϰÌâ13 ÒÑÖªX¡«t(n), ÇóÖ¤X2¡«F(1,n). ½â´ð£º ÉèX=U/Yn, ÆäÖÐU¡«N(0,1),Y¡«¦Ö2(n). ÇÒUÓëYÏ໥¶ÀÁ¢£¬ÓÚÊÇ£¬ U2¡«¦Ö2(1), ÇÒU2ÓëYÒ²Ï໥¶ÀÁ¢£¬ËùÒÔ X2=U2/(Yn). ¸ù¾ÝF±äÁ¿µÄ¹¹³Éģʽ֪£¬X2Ó¦·þ´ÓF(1,n)·Ö²¼. ϰÌâ14 ÉèX1,X2,?,X9ÊÇÈ¡×ÔÕý̬×ÜÌåX¡«N(¦Ì,¦Ò2)µÄÑù±¾£¬ÇÒ Y1=16(X1+X2+?+X6), Y2=13(X7+X8+X9), S2=12¡Æi=79(Xi-Y2)2, ÇóÖ¤Z=2(Y1-Y2)S¡«t(2). ½â´ð£º Ò×Öª Y1=16(X1+X2+?+X6)¡«N(¦Ì,¦Ò26), Y2=13(X7+X8+?+X9)¡«N(¦Ì,¦Ò23), ÇÒY1ÓëY2¶ÀÁ¢£¬¹ÊY1-Y2¡«N(0,¦Ò22), ÓÖ 2S2¦Ò2=¡Æi=79(Xi-Y2)2/¦Ò2¡«¦Ö2(2), Y1-Y2Óë2S2¦Ò2 ¶ÀÁ¢£¬´Ó¶ø (Y1-Y2)/¦Ò22S2¦Ò2/2=2(Y1-Y2)S=Z¡«t(2). ϰÌâ15 ÉèX1,?,Xn,Xn+1ÊÇÈ¡×ÔÕý̬×ÜÌåX¡«N(¦Ì,¦Ò2)µÄÑù±¾£¬ Xn¡¥=1n¡Æi=1nXi, Sn=1n-1¡Æi=1n(Xi-Xn¡¥)2, ÊÔÈ·¶¨Í³¼ÆÁ¿nn+1?Xn+1-Xn¡¥SnµÄ·Ö²¼. ½â´ð£º ½«Í³¼ÆÁ¿¸Äд³ÉÏÂÁÐÐÎʽ£º nn+1?Xn+1-Xn¡¥Sn=(Xn+1-Xn¡¥)/1+1n¦Ò(n-1)Sn2¦Ò2/(n-1) (*) ÓÉÓÚXn+1ÓëXi(i=1,?,n)Ï໥¶ÀÁ¢£¬ Xn¡¥=1n¡Æi=1nXi¡«N(¦Ì,¦Ò2n), Xn+1¡«N(¦Ì,¦Ò2), ËùÒÔXn+1-Xn¡¥¡«N(0,(1+1n)¦Ò2), ´Ó¶ø (Xn+1-Xn¡¥)/(1+1n¦Ò)¡«N(0,1), ×¢Òâµ½Xn¡¥ÓëSn2Ï໥¶ÀÁ¢£¬Xn+1Ò²ÓëSn2Ï໥¶ÀÁ¢£¬ÇÒ (n-1)Sn2¦Ò2¡«¦Ö2(n-1), ¹ÊÓÉ(*)ʽ¼´µÃ nn+1?Xn+1-Xn¡¥Sn¡«t(n-1). ϰÌâ16 ¼ÙÉèX1,X2,?,X9ÊÇÀ´×Ô×ÜÌåX¡«N(0,22)µÄ¼òµ¥Ëæ»úÑù±¾£¬ÇóϵÊýa,b,c, ʹ Q=a(X1+X2)2+b(X3+X4+X5)2+c(X6+X7+X8+X9)2 ·þ´Ó¦Ö2·Ö²¼£¬²¢ÇóÆä×ÔÓɶÈ. ½â´ð£º ÓÉÓÚX1,X2,?,X9Ï໥¶ÀÁ¢ÇÒÈ¡×Ô×ÜÌåX¡«N(0,22), ÓÉÕý̬·Ö²¼µÄÏßÐÔÔËËãÐÔÖÊÓÐ X1+X2¡«N(0,8), X3+X4+X5¡«N(0,12), X6+X7+X8+X9¡«N(0,16), ÓÚÊÇ£¬ÓɦÖ2=¦Ö12+?+¦Ök2ÓÐ Q=(X1+X2)28+(X3+X4+X5)212+(X6+X7+X8+X9)216¡«¦Ö2(3), ¹Êa=1/8,b=1/12,c=1/16, ×ÔÓɶÈΪ3. ϰÌâ17(1) 17.´Ó×ÜÌåX¡«N(¦Ì,¦Ò2)ÖгéÈ¡ÈÝÁ¿Îª16µÄÑù±¾. ÔÚÏÂÁÐÇé¿öÏ·ֱðÇóX¡¥Óë¦ÌÖ®²îµÄ¾ø¶ÔֵСÓÚ2µÄ¸ÅÂÊ£º (1)ÒÑÖª¦Ò2=25; ½â´ð£º ÓɦÒ=5,Uͳ¼ÆÁ¿(X¡¥-¦Ì)/¦Òn¡«N(0,1), P{¨OX¡¥-¦Ì¨O<2}=P{¨OX¡¥-¦Ì¨O/¦Òn<2/516 =P{¨OU¨O<1.6}=2¦µ(1.6)-1=0.8904. ϰÌâ17(2) 17.´Ó×ÜÌåX¡«N(¦Ì,¦Ò2)ÖгéÈ¡ÈÝÁ¿Îª16µÄÑù±¾. ÔÚÏÂÁÐÇé¿öÏ·ֱðÇóX¡¥Óë¦ÌÖ®²îµÄ¾ø¶ÔֵСÓÚ2µÄ¸ÅÂÊ£º (2)¦Ò2δ֪£¬µ«s2=20.8. ½â´ð£º ÓÉTͳ¼ÆÁ¿(X¡¥-¦Ì)/Sn¡«t(n-1), P{¨OX¡¥-¦Ì¨O<2}=P{¨OX¡¥-¦Ì¨O/Sn<2/20.816 =P{¨OT¨O<1.76}=1-2¡Á0.05=0.90. ϰÌâ18(1) 18.ÉèX1,X2,?,X10È¡×ÔÕý̬×ÜÌåN(0,0.32), ÊÔÇó (1)P{¡Æi=110Xi2>1.44; ½â´ð£º ÓÉ¡Æi=1n(Xi-¦Ì)2¦Ò2¡«¦Ö2(n)ÌâÖЦÌ=0, Òò´Ë P{¡Æi=110Xi2>1.44=P{¡Æi=110Xi2(0.3)2>1.44(0.3)2=P{¦Ö2(10)>16}=0.1. ϰÌâ19 (1)Éè×ÜÌåX¾ßÓз½²î¦Ò12=400, ×ÜÌåY¾ßÓз½²î¦Ò22=900, Á½×ÜÌåµÄ¾ùÖµÏàµÈ£¬·Ö±ð×ÔÕâÁ½¸ö×ÜÌåÈ¡ÈÝÁ¿Îª400µÄÑù±¾£¬ÉèÁ½Ñù±¾¶ÀÁ¢£¬·Ö±ð¼ÇÑù±¾¾ùֵΪX¡¥,Y,¡¥ ÊÔÀûÓÃÇбÈÑ©·ò²»µÈʽ¹À¼Æk, ʹµÃP{¨OX¡¥-Y¡¥¨O (2)ÉèÔÚ(1)ÖÐ×ÜÌåXºÍY¾ùΪÕý̬±äÁ¿£¬Çók. ½â´ð£º (1)ÓÉÌâÉè E(X¡¥-Y¡¥)=E(X¡¥)-E(Y¡¥)=0, D(X¡¥-Y¡¥)=D(X¡¥)+D(Y¡¥)=400400+900400=134(ÓÉÁ½Ñù±¾µÄ¶ÀÁ¢ÐÔ). ÓÉÇбÈÑ©·ò²»µÈʽ P{¨OX¡¥-Y¡¥¨O °´ÌâÒâÓ¦ÓÐ1-1k2¡Á134=0.99, ½âµÃk=18.028. (2)ÓÉÌâÉèX,Y¾ùΪÕý̬±äÁ¿£¬¹ÊÓÐ X¡¥-Y¡¥¡«N(0,134). Òò´Ë P{¨OX¡¥-Y¡¥¨O ¦µ(k13/4)¡Ý0.995=¦µ(2.58),k13/4¡Ý2.58,k¡Ý4.651. ϰÌâ20 ¼ÙÉèËæ»ú±äÁ¿F·þ´Ó·Ö²¼F(5,10), Çó¦ËµÄֵʹÆäÂú×ãP{F¡Ý¦Ë}=0.95. ½â´ð£º Ò»°ãÊéÖиø³öµÄF·Ö²¼±í£¬¸ø³öP{F¡Ý¦Ë}=¦ÁµÄ¦ÁÖµÖ»ÓЦÁ=0.01,¦Á=0.05µÈ¼¸¸ö½ÏСµÄÖµ£¬¶øÏÖ¦Á=0.95, ²»ÄÜÖ±½Ó²éF±íµÃµ½¦Ë, µ«ÊÇ×¢Òâµ½P{F¡Ý¦Ë}=0.95, ²¢ÇÒ P{F¡Ü¦Ë}=P{F-1¡Ü¦Ë-1}=0.05, ¶øF-1¡«F(10,5), Òò´Ë¿É²é±íµÃ 1¦Ë=F0.05(10,5)=4.74, ¦Ë¡Ö0.21. ϰÌâ21 ÉèX1,X2,?,XnÊÇ×ÜÌåX¡«N(¦Ì,¦Ò2)µÄÒ»¸öÑù±¾£¬Ö¤Ã÷£º E[¡Æi=1n(Xi-X¡¥)2]2=(n2-1)¦Ò4. ½â´ð£º ÒòΪ ¦Ö2=¡Æi=1n(Xi-X¡¥)2/¦Ò2¡«¦Ö2(n-1),E(¦Ö2)=n-1, D(¦Ö2)=2(n-1), ËùÒÔ E[¡Æi=1n(Xi-X¡¥)2]2=¦Ò4E[¡Æi=1n(Xi-X¡¥)2/¦Ò2]2 =¦Ò4E[¦Ö2]2=¦Ò4[D(¦Ö2)+[E(¦Ö2)]2] =¦Ò4[2(n-1)+(n-1)2]=(n2-1)¦Ò4. µÚÁùÕ ²ÎÊý¹À¼Æ 6.1 µã¹À¼ÆÎÊÌâ¸ÅÊö ϰÌâ1 ×ÜÌåXÔÚÇø¼ä[0,¦È]ÉϾùÔÈ·Ö²¼£¬X1,X2,?,XnÊÇËüµÄÑù±¾£¬ÔòÏÂÁйÀ¼ÆÁ¿¦ÈÊǦȵÄÒ»Ö¹À¼ÆÊÇ(). (A)¦È=Xn; (B)¦È=2Xn; (C)¦È=X¡¥=1n¡Æi=1nXi; (D)¦È=Max{X1,X2,?,Xn}. ½â´ð£º Ӧѡ(D). ÓÉÒ»Ö¹À¼ÆµÄ¶¨Ò壬¶ÔÈÎÒâ?>0, P(¨OMax{X1,X2,?,Xn}-¦È¨O) =P(-?+¦È FX(x)={0,x<0x¦È,0¡Üx¡Ü¦È1,x>¦È, ¼° F(x)=FMax{X1,X2,?,Xn}(x)=FX1(x)FX2(x)?FXn(x), ËùÒÔ F(?+¦È)=1, F(-?+¦È)=P(Max{X1,X2,?,Xn}<-?+¦È)=(1-x¦È)n, ¹Ê P(¨OMax{X1,X2,?,Xn}-¦È¨O)=1-(1-x¦È)n¡ú1(n¡ú+¡Þ). ϰÌâ2 Éè¦ÒÊÇ×ÜÌåXµÄ±ê×¼²î£¬X1,X2,?,XnÊÇËüµÄÑù±¾£¬ÔòÑù±¾±ê×¼²îSÊÇ×ÜÌå±ê×¼²î¦ÒµÄ(). (A)¾Ø¹À¼ÆÁ¿£» (B)×î´óËÆÈ»¹À¼ÆÁ¿£» (C)ÎÞÆ«¹À¼ÆÁ¿£» (D)ÏàºÏ¹À¼ÆÁ¿. ½â´ð£º Ӧѡ(D). ÒòΪ£¬×ÜÌå±ê×¼²î¦ÒµÄ¾Ø¹À¼ÆÁ¿ºÍ×î´óËÆÈ»¹À¼ÆÁ¿¶¼ÊÇδÐÞÕýµÄÑù±¾±ê×¼²î£»Ñù±¾·½²îÊÇ×ÜÌå·½²îµÄÎÞÆ«¹À¼Æ£¬µ«ÊÇÑù±¾±ê×¼²î²»ÊÇ×ÜÌå±ê×¼²îµÄÎÞÆ«¹À¼Æ.¿É¼û£¬Ñù±¾±ê×¼²îSÊÇ×ÜÌå±ê×¼²î¦ÒµÄÏàºÏ¹À¼ÆÁ¿. ϰÌâ3 Éè×ÜÌåXµÄÊýѧÆÚÍûΪ¦Ì,X1,X2,?,XnÊÇÀ´×ÔXµÄÑù±¾£¬a1,a2,?,anÊÇÈÎÒâ³£Êý£¬ÑéÖ¤(¡Æi=1naiXi)/¡Æi=1nai (¡Æi=1nai¡Ù0)ÊǦ̵ÄÎÞÆ«¹À¼ÆÁ¿. ½â´ð£º E(X)=¦Ì, E(¡Æi=1naiXi¡Æi=1nai)=1¡Æi=1nai?¡Æi=1naiE(Xi) (E(Xi)=E(X)=¦Ì) =¦Ì¡Æi=1nai¡Æi=1n=¦Ì, ×ÛÉÏËùÖ¤£¬¿ÉÖª¡Æi=1naiXi¡Æi=1naiÊǦ̵ÄÎÞÆ«¹À¼ÆÁ¿. ϰÌâ4 Éè¦ÈÊDzÎÊý¦ÈµÄÎÞÆ«¹À¼Æ£¬ÇÒÓÐD(¦È)>0, ÊÔÖ¤¦È2=(¦È)2²»ÊǦÈ2µÄÎÞÆ«¹À¼Æ. ½â´ð£º ÒòΪD(¦È)=E(¦È2)-[E(¦È)]2, ËùÒÔ E(¦È2)=D(¦È)+[E(¦È)]2=¦È2+D(¦È)>¦È2, ¹Ê(¦È)2²»ÊǦÈ2µÄÎÞÆ«¹À¼Æ. ϰÌâ5 ÉèX1,X2,?,XnÊÇÀ´×Ô²ÎÊýΪ¦ËµÄ²´ËÉ·Ö²¼µÄ¼òµ¥Ëæ»úÑù±¾£¬ÊÔÇó¦Ë2µÄÎÞÆ«¹À¼ÆÁ¿. ½â´ð£º ÒòX·þ´Ó²ÎÊýΪ¦ËµÄ²´ËÉ·Ö²¼£¬¹Ê D(X)=¦Ë, E(X2)=D(X)+[E(X)]2=¦Ë+¦Ë2=E(X)+¦Ë2, ÓÚÊÇE(X2)-E(X)=¦Ë2, ¼´E(X2-X)=¦Ë2. ÓÃÑù±¾¾ØA2=1n¡Æi=1nXi2,A1=X¡¥´úÌæÏàÓ¦µÄ×ÜÌ徨E(X2),E(X), ±ãµÃ¦Ë2µÄÎÞÆ«¹À¼ÆÁ¿ ¦Ë2=A2-A1=1n¡Æi=1nXi2-X¡¥. ϰÌâ6 ÉèX1,X2,?,XnΪÀ´×Ô²ÎÊýΪn,pµÄ¶þÏî·Ö²¼×ÜÌ壬ÊÔÇóp2µÄÎÞÆ«¹À¼ÆÁ¿. ½â´ð£º Òò×ÜÌåX¡«b(n,p), ¹Ê E(X)=np, E(X2)=D(X)+[E(X)]2=np(1-p)+n2p2 =np+n(n-1)p2=E(X)+n(n-1)p2, E(X2)-E(X)n(-1)=E[1n(n-1)(X2-X)]=p2, ÓÚÊÇ£¬ÓÃÑù±¾¾ØA2,A1·Ö±ð´úÌæÏàÓ¦µÄ×ÜÌ徨E(X2),E(X),±ãµÃp2µÄÎÞÆ«¹À¼ÆÁ¿ p2=A2-A1n(n-1)=1n2(n-1)¡Æi=1n(Xi2-Xi). ϰÌâ7 Éè×ÜÌåX·þ´Ó¾ùֵΪ¦ÈµÄÖ¸Êý·Ö²¼£¬Æä¸ÅÂÊÃܶÈΪ f(x;¦È)={1¦Èe-x¦È,x>00,x¡Ü0, ÆäÖвÎÊý¦È>0δ֪. ÓÖÉèX1,X2,?,XnÊÇÀ´×Ô¸Ã×ÜÌåµÄÑù±¾£¬ÊÔÖ¤£ºX¡¥ºÍn(min(X1,X2,?,Xn))¶¼ÊǦȵÄÎÞÆ«¹À¼ÆÁ¿£¬²¢±È½ÏÄĸö¸üÓÐЧ. ½â´ð£º ÒòΪE(X)=¦È, ¶øE(X¡¥)=E(X), ËùÒÔE(X¡¥)=¦È, X¡¥ÊǦȵÄÎÞÆ«¹À¼ÆÁ¿.Éè Z=min(X1,X2,?,Xn), ÒòΪ FX(x)={0,x¡Ü01-e-x¦È,x>0, FZ(x)=1-[1-FX(x)]n={1-e-nx¦È,x>00,x¡Ü0, ËùÒÔfZ(x)={n¦Èe-nx¦È,x>00,x¡Ü0, ÕâÊDzÎÊýΪn¦ÈµÄÖ¸Êý·Ö²¼£¬¹ÊÖªE(Z)=¦Èn, ¶ø E(nZ)=E[n(min(X1,X2,?,Xn)]=¦È, ËùÒÔnZÒ²ÊǦȵÄÎÞÆ«¹À¼Æ.ÏֱȽÏËüÃǵķ½²î´óС. ÓÉÓÚD(X)=¦È2, ¹ÊD(X¡¥)=¦È2n. ÓÖÓÉÓÚD(Z)=(¦Èn)2, ¹ÊÓÐ D(nZ)=n2D(Z)=n2?¦È2n2=¦È2. µ±n>1ʱ£¬D(nZ)>D(X¡¥), ¹ÊX¡¥½ÏnZÓÐЧ. ϰÌâ8 Éè×ÜÌåX·þ´ÓÕý̬·Ö²¼N(m,1),X1,X2ÊÇ×ÜÌåXµÄ×ÓÑù£¬ÊÔÑéÖ¤ m1=23X1+13X2, m2=14X1+34X2, m3=12X1+12X2, ¶¼ÊÇmµÄÎÞÆ«¹À¼ÆÁ¿£»²¢ÎÊÄÄÒ»¸ö¹À¼ÆÁ¿µÄ·½²î×îС? ½â´ð£º ÒòΪX·þ´ÓN(m,1), ÓÐ E(Xi)=m,D(Xi)=1(i=1,2), µÃ E(m1)=E(23X1+13X2)=23E(X1)+13E(X2)=23m+13m=m, D(m1)=D(23X1+13X2)=49D(X1)+19D(X2)=49+19=59, ͬÀí¿ÉµÃ£ºE(m2)=m,D(m2)=58, E(m3)=m,D(m3)=12. ËùÒÔ£¬m1,m2,m3¶¼ÊÇmµÄÎÞÆ«¹À¼ÆÁ¿£¬²¢ÇÒÔÚm1,m2,m3ÖУ¬ÒÔm3µÄ·½²îΪ×îС. ϰÌâ9 ÉèÓÐk̨ÒÇÆ÷. ÒÑÖªÓõÚįÒÇÆ÷²âÁ¿Ê±£¬²â¶¨Öµ×ÜÌåµÄ±ê×¼²îΪ¦Òi(i=1,2,?,k), ÓÃÕâЩÒÇÆ÷¶ÀÁ¢µØ¶ÔijһÎïÀíÁ¿¦È¸÷¹Û²ìÒ»´Î£¬·Ö±ðµÃµ½X1,X2,?,Xk. ÉèÒÇÆ÷¶¼Ã»ÓÐϵͳÎó²î£¬¼´E(Xi)=¦È(i=1,2,?,k), ÎÊa1,a2,?,akӦȡºÎÖµ£¬·½ÄÜʹÓæÈ=¡Æi=1kaiXi¹À¼Æ¦Èʱ£¬¦ÈÊÇÎÞÆ«µÄ£¬²¢ÇÒD(¦È)×îС£¿ ½â´ð£º ÒòΪE(Xi)=¦È(i=1,2,?,k), ¹Ê E(¦È)=E(¡Æi=1kaiXi)=¡Æi=1kaiE(Xi)=¦È¡Æi=1kai, ÓûʹE(¦È)=¦È, ÔòÒª¡Æi=1kai=1. Òò´Ë£¬µ±¡Æi=1kai=1ʱ£¬¦È=¡Æi=1kaiXiΪ¦ÈµÄÎÞÆ«¹À¼Æ, D(¦È)=¡Æi=1kai2¦Òi2, ÒªÔÚ¡Æi=1kai=1µÄÌõ¼þÏÂD(¦È)×îС£¬²ÉÓÃÀ¸ñÀÊÈÕ³ËÊý·¨. Áî L(a1,a2,?,ak)=D(¦È)+¦Ë(1-¡Æi=1kai)=¡Æi=1kai2¦Òi2+¦Ë(1-¡Æi=1kai), {?L?ai=0,i=1,2,?,k¡Æi=1kai=1, ¼´2ai¦Òi2-¦Ë=0,ai=¦Ë2i2; ÓÖÒò¡Æi=1kai=1, ËùÒԦˡÆi=1k12¦Òi2=1, ¼Ç¡Æi=1k1¦Òi2=1¦Ò02, ËùÒÔ¦Ë=2¦Ò02, ÓÚÊÇ ai=¦Ò02¦Òi2 (i=1,2,?,k), ¹Êµ±ai=¦Ò02¦Òi2(i=1,2,?,k)ʱ£¬¦È=¡Æi=1kaiXiÊǦȵÄÎÞÆ«¹À¼Æ£¬ÇÒ·½²î×îС. ϰÌâ6.2 µã¹À¼ÆµÄ³£Ó÷½·¨ ϰÌâ1 ÉèX1,X2,?,XnΪ×ÜÌåµÄÒ»¸öÑù±¾£¬x1,x2,?,xnΪһÏàÓ¦µÄÑù±¾Öµ£¬ÇóÏÂÊö¸÷×ÜÌåµÄÃܶȺ¯Êý»ò·Ö²¼ÂÉÖеÄδ֪²ÎÊýµÄ¾Ø¹À¼ÆÁ¿ºÍ¹À¼ÆÖµ¼°×î´óËÆÈ»¹À¼ÆÁ¿£® (1)f(x)={¦Èc¦Èx-(¦È+1),x>c0,ÆäËü, ÆäÖÐc>0ΪÒÑÖª£¬¦È>1,¦ÈΪδ֪²ÎÊý. (2)f(x)={¦Èx¦È-1,0¡Üx¡Ü10,ÆäËü, ÆäÖЦÈ>0,¦ÈΪδ֪²ÎÊý. (3)P{X=x}=(mx)px(1-p)m-x, ÆäÖÐx=0,1,2,?,m,0 ½â´ð£º (1)E(X)=¡Òc+¡Þx?¦Èc¦Èx-(¦È+1)dx=¦Èc¦È¡Òc+¡Þx-¦Èdx=¦Èc¦È-1£¬½â³ö ¦È=E(X)E(X)-c£¬ ÁîX¡¥=E(X)£¬ÓÚÊǦÈ=X¡¥X¡¥-cΪ¾Ø¹À¼ÆÁ¿£¬¦ÈµÄ¾Ø¹À¼ÆÖµÎª¦È=x¡¥x¡¥-c£¬ÆäÖÐx¡¥=1n¡Æi=1nxi£® ÁíÍâ£¬ËÆÈ»º¯ÊýΪ L(¦È)=¡Çi=1nf(xi;¦È)=¦Èncn¦È(¡Çi=1nxi)-(¦È+1)£¬xi>c£¬ ¶ÔÊýËÆÈ»º¯ÊýΪ lnL(¦È)=nln¦È+n¦Èlnc-(¦È+1)¡Æi=1nlnxi£¬ ¶ÔlnL(¦È)Çóµ¼£¬²¢ÁîÆäΪÁ㣬µÃ dlnL(¦È)d¦È=n¦È+nlnc-¡Æi=1nlnxi=0£¬ ½â·½³ÌµÃ¦È=n¡Æi=1nlnxi-nlnc£¬¹Ê²ÎÊýµÄ×î´óËÆÈ»¹À¼ÆÁ¿Îª ¦È=n¡Æi=1nlnXi-nlnc£® (2)E(X)=¡Ò01x?¦Èx¦È-1dx=¦È¦È+1£¬ÒÔX¡¥×÷ΪE(X)µÄ¾Ø¹À¼Æ£¬ Ôò¦ÈµÄ¾Ø¹À¼ÆÓÉX¡¥=¦È¦È+1½â³ö£¬µÃ ¦È=(X¡¥1-X¡¥)2£¬ ¦ÈµÄ¾Ø¹À¼ÆÖµÎª¦È=(x¡¥1-x¡¥)2£¬ÆäÖÐx¡¥=1n¡Æi=1nxiΪÑù±¾¾ùÖµµÄ¹Û²âÖµ£® ÁíÍâ£¬ËÆÈ»º¯ÊýΪ L(¦È)=¡Çi=1nf(xi;¦È)=¦Èn/2(¡Çi=1nxi)¦È-1£¬0¡Üxi¡Ü1£¬ ¶ÔÊýËÆÈ»º¯ÊýΪ lnL(¦È)=n2ln¦È+(¦È-1)¡Æi=1nlnxi£¬ ¶ÔlnL(¦È)Çóµ¼£¬²¢ÁîÆäΪÁ㣬µÃ dlnL(¦È)d¦È=n2¦È+12¦È¡Æi=1nlnxi=0£¬ ½â·½³ÌµÃ¦È=(-n¡Æi=1nlnxi)2£¬¹Ê²ÎÊýµÄ×î´óËÆÈ»¹À¼ÆÁ¿Îª ¦È=(n¡Æi=1nlnXi)2£® (3)X¡«b(m,p)£¬E(X)=mp£¬ÒÔX¡¥×÷ΪE(X)µÄ¾Ø¹À¼Æ£¬¼´X¡¥=E(X)£¬Ôò²ÎÊýpµÄ¾Ø¹À¼ÆÎª p=1mX¡¥=1m?1n¡Æi=1nXi£¬ pµÄ¾Ø¹À¼ÆÖµÎªp=1mx¡¥=1m?1n¡Æi=1nxi£® ÁíÍâ£¬ËÆÈ»º¯ÊýΪ L(¦È)=¡Çi=1nf(xi;¦È)=(¡Çi=1nCmxi)p¡Æi=1nxi(1-p)¡Æi=1n(m-xi)£¬xi=0,1,?,m£¬ ¶ÔÊýËÆÈ»º¯ÊýΪ lnL(¦È)=¡Æi=1nlnCmxi+(¡Æi=1nxi)lnp+(¡Æi=1n(m-xi))ln(1-p)£¬ ¶ÔlnL(¦È)Çóµ¼£¬²¢ÁîÆäΪÁ㣬µÃ dlnL(¦È)d¦È=1p¡Æi=1nxi-11-p¡Æi=1n(m-xi)=0£¬ ½â·½³ÌµÃp=1mn¡Æi=1nxi£¬¹Ê²ÎÊýµÄ×î´óËÆÈ»¹À¼ÆÁ¿Îª p=1mn¡Æi=1nXi=1mX¡¥£® ϰÌâ2 Éè×ÜÌåX·þ´Ó¾ùÔÈ·Ö²¼U[0,¦È],ËüµÄÃܶȺ¯ÊýΪ f(x;¦È)={1¦È,0¡Üx¡Ü¦È0,ÆäËü, (1)Çóδ֪²ÎÊý¦ÈµÄ¾Ø¹À¼ÆÁ¿£» (2)µ±Ñù±¾¹Û²ìֵΪ0.3,0.8,0.27,0.35,0.62,0.55ʱ£¬Çó¦ÈµÄ¾Ø¹À¼ÆÖµ. ½â´ð£º (1)ÒòΪ E(X)=¡Ò-¡Þ+¡Þxf(x;¦È)dx=1¦È¡Ò0¦Èxdx=¦È2, ÁîE(X)=1n¡Æi=1nXi, ¼´¦È2=X¡¥, ËùÒÔ¦È=2X¡¥. (2)ÓÉËù¸øÑù±¾µÄ¹Û²ìÖµËãµÃ x¡¥=16¡Æi=16xi=16(0.3+0.8+0.27+0.35+0.62+0.55)=0.4817, ËùÒÔ¦È=2x¡¥=0.9634. ϰÌâ3 Éè×ÜÌåXÒԵȸÅÂÊ1¦Èȡֵ1,2,?,¦È, Çóδ֪²ÎÊý¦ÈµÄ¾Ø¹À¼ÆÁ¿. ½â´ð£º ÓÉ E(X)=1¡Á1¦È+2¡Á1¦È+?+¦È¡Á1¦È=1+¦È2=1n¡Æi=1nXi=X¡¥, µÃ¦ÈµÄ¾Ø¹À¼ÆÎª¦È=2X¡¥-1. ϰÌâ4 Ò»Åú²úÆ·Öк¬ÓÐ·ÏÆ·£¬´ÓÖÐËæ»úµØ³éÈ¡60¼þ£¬·¢ÏÖ·ÏÆ·4¼þ£¬ÊÔÓþعÀ¼Æ·¨¹À¼ÆÕâÅú²úÆ·µÄ·ÏÆ·ÂÊ. ½â´ð£º ÉèpΪ³éµÃ·ÏÆ·µÄ¸ÅÂÊ,1-pΪ³éµÃÕýÆ·µÄ¸ÅÂÊ(·Å»Ø³éÈ¡). ΪÁ˹À¼Æp,ÒýÈëËæ»ú±äÁ¿ Xi={1,µÚi´Î³éÈ¡µ½µÄÊÇ·ÏÆ·0,µÚi´Î³éÈ¡µ½µÄÊÇÕýÆ·, ÓÚÊÇP{Xi=1}=p,P{Xi=0}=1-p=q, ÆäÖÐi=1,2,?,60,ÇÒE(Xi)=p, ¹Ê¶ÔÓÚÑù±¾X1,X2,?,X60µÄÒ»¸ö¹Û²âÖµx1,x2,?,x60, ÓɾعÀ¼Æ·¨µÃpµÄ¹À¼ÆÖµÎª p=160¡Æi=160xi=460=115, ¼´ÕâÅú²úÆ·µÄ·ÏÆ·ÂÊΪ115. ϰÌâ5 Éè×ÜÌåX¾ßÓзֲ¼ÂÉ X 1 2 3 pi ¦È2 2¦È(1-¦È) (1-¦È)2 ÆäÖЦÈ(0<¦È<1)Ϊδ֪²ÎÊý. ÒÑ֪ȡµÃÁËÑù±¾Öµx1=1,x2=2,x3=1, ÊÔÇó¦ÈµÄ¾Ø¹À¼ÆÖµºÍ×î´óËÆÈ»¹À¼ÆÖµ. ½â´ð£º E(X)=1¡Á¦È2+2¡Á2¦È(1-¦È)+3¡Á(1-¦È)2=3-2¦È, x¡¥=1/3¡Á(1+2+1)=4/3. ÒòΪE(X)=X¡¥, ËùÒÔ¦È=(3-x¡¥)/2=5/6Ϊ¾Ø¹À¼ÆÖµ, L(¦È)=¡Çi=13P{Xi=xi}=P{X1=1}P{X2=2}P{X3=1} =¦È4?2¦È?(1-¦È)=2¦È5(1-¦È), lnL(¦È)=ln2+5ln¦È+ln(1-¦È), ¶Ô¦ÈÇóµ¼,²¢Áîµ¼ÊýΪÁã dlnLd¦È=5¦È-11-¦È=0, µÃ¦ÈL=56. ϰÌâ6 (1)ÉèX1,X2,?,XnÀ´×Ô×ÜÌåXµÄÒ»¸öÑù±¾, ÇÒX¡«¦Ð(¦Ë), ÇóP{X=0}µÄ×î´óËÆÈ»¹À¼Æ. (2)ijÌú·¾Ö֤ʵһ¸ö°âµÀÔ±ÎåÄêÄÚËùÒýÆðµÄÑÏÖØÊ¹ʵĴÎÊý·þ´Ó²´ËÉ·Ö²¼£¬ÇóÒ»¸ö°âµÀÔ±ÔÚÎåÄêÄÚδÒýÆðÑÏÖØÊ¹ʵĸÅÂÊ pµÄ×î´óËÆÈ»¹À¼Æ£¬Ê¹ÓÃÏÂÃæ122¸ö¹Û²ìֵͳ¼ÆÇé¿ö. ϱíÖУ¬r±íʾһ°âµÀԱijÎåÄêÖÐÒýÆðÑÏÖØÊ¹ʵĴÎÊý£¬s±íʾ¹Û²ìµ½µÄ°âµÀÔ±ÈËÊý. r 012345 sr 444221942 ½â´ð£º (1)ÒÑÖª£¬¦ËµÄ×î´óËÆÈ»¹À¼ÆÎª¦ËL=X¡¥. Òò´Ë ?P{X=0}=e-¦ËL=e-X¡¥. (2)ÉèXΪһ¸ö°âµÀÔ±ÔÚÎåÄêÄÚÒýÆðµÄÑÏÖØÊ¹ʵĴÎÊý£¬X·þ´Ó²ÎÊýΪ¦ËµÄ²´ËÉ·Ö²¼£¬Ñù±¾ÈÝÁ¿n=122. ËãµÃÑù±¾¾ùֵΪ x¡¥=1122¡Á¡Ær=05r?r=1122¡Á(0¡Á44+1¡Á42+2¡Á21+3¡Á9+4¡Á4+5¡Á2) ¡Ö1.123, Òò´Ë P{X=0}=e-x¡¥=e-1.123¡Ö0.3253. ϰÌâ6.3 ÖÃÐÅÇø¼ä ϰÌâ1 ¶Ô²ÎÊýµÄÒ»ÖÖÇø¼ä¹À¼Æ¼°Ò»×é¹Û²ìÖµ(x1,x2,?,xn)À´Ëµ,ÏÂÁнáÂÛÖÐÕýÈ·µÄÊÇ(). (A)ÖÃÐŶÈÔ½´ó,¶Ô²ÎÊýȡֵ·¶Î§¹À¼ÆÔ½×¼È·; (B)ÖÃÐŶÈÔ½´ó,ÖÃÐÅÇø¼äÔ½³¤; (C)ÖÃÐŶÈÔ½´ó,ÖÃÐÅÇø¼äÔ½¶Ì; (D)ÖÃÐŶȴóСÓëÖÃÐÅÇø¼äÓ㤶ÈÎÞ¹Ø. ½â´ð£º Ӧѡ(B). ÖÃÐŶÈÔ½´ó£¬ÖÃÐÅÇø¼ä°üº¬ÕæÖµµÄ¸ÅÂʾÍÔ½´ó£¬ÖÃÐÅÇø¼äµÄ³¤¶È¾ÍÔ½´ó£¬¶Ôδ֪²ÎÊýµÄ¹À¼Æ¾«¶ÈÔ½µÍ. ·´Ö®£¬¶Ô²ÎÊýµÄ¹À¼Æ¾«¶ÈÔ½¸ß£¬ÖÃÐÅÇø¼äµÄ³¤¶ÈԽС£¬Ëü°üº¬ÕæÖµµÄ¸ÅÂʾÍÔ½µÍ,ÖÃÐŶȾÍԽС. ϰÌâ2 Éè(¦È1,¦È2)ÊDzÎÊý¦ÈµÄÖÃÐŶÈΪ1-¦ÁµÄÇø¼ä¹À¼Æ£¬ÔòÒÔϽáÂÛÕýÈ·µÄÊÇ(). (A)²ÎÊý¦ÈÂäÔÚÇø¼ä(¦È1,¦È2)Ö®ÄڵĸÅÂÊΪ1-¦Á; (B)²ÎÊý¦ÈÂäÔÚÇø¼ä(¦È1,¦È2)Ö®ÍâµÄ¸ÅÂÊΪ¦Á; (C)Çø¼ä(¦È1,¦È2)°üº¬²ÎÊý¦ÈµÄ¸ÅÂÊΪ1-¦Á; (D)¶Ô²»Í¬µÄÑù±¾¹Û²ìÖµ£¬Çø¼ä(¦È1,¦È2)µÄ³¤¶ÈÏàͬ. ½â´ð£º Ó¦ÏÈ(C). ÓÉÓÚ¦È1,¦È2¶¼ÊÇͳ¼ÆÁ¿£¬¼´(¦È1,¦È2)ÊÇËæ»úÇø¼ä£¬¶ø¦ÈÊÇÒ»¸ö¿Í¹Û´æÔÚµÄδ֪³£Êý£¬¹Ê(A),(B)²»ÕýÈ·. ϰÌâ3 Éè×ÜÌåµÄÆÚÍû¦ÌºÍ·½²î¦Ò2¾ù´æÔÚ£¬ÈçºÎÇó¦ÌµÄÖÃÐŶÈΪ1-¦ÁµÄÖÃÐÅÇø¼ä£¿ ½â´ð£º ÏÈ´Ó×ÜÌåÖгéȡһÈÝÁ¿ÎªnµÄÑù±¾X1,X2,?,Xn.¸ù¾ÝÖÐÐļ«ÏÞ¶¨Àí£¬Öª U=X¡¥-¦Ì¦Ò/n¡úN(0,1)(n¡ú¡Þ). (1)µ±¦Ò2ÒÑ֪ʱ£¬Ôò½üËÆµÃµ½¦ÌµÄÖÃÐŶÈΪ1-¦ÁµÄÖÃÐÅÇø¼äΪ (X¡¥-u¦Á/2¦Òn,X¡¥+u¦Á/2¦Òn). (2)µ±¦Ò2δ֪ʱ£¬ÓæÒ2µÄÎÞÆ«¹À¼ÆS2´úÌæ¦Ò2, ÕâÀïÈÔÓÐ X¡¥-¦ÌS/n¡úN(0,1)(n¡ú¡Þ), ÓÚÊǵõ½¦ÌµÄ1-¦ÁµÄÖÃÐÅÇø¼äΪ (X¡¥-u¦Á/2Sn,X¡¥+u¦Á/2Sn), Ò»°ãÒªÇón¡Ý30²ÅÄÜʹÓÃÉÏÊö¹«Ê½£¬³ÆÎª´óÑù±¾Çø¼ä¹À¼Æ. ϰÌâ4 ij×ÜÌåµÄ±ê×¼²î¦Ò=3cm, ´ÓÖгéÈ¡40¸ö¸öÌ壬ÆäÑù±¾Æ½¾ùÊýx¡¥=642cm, ÊÔ¸ø³ö×ÜÌåÆÚÍûÖµ¦ÌµÄ95%µÄÖÃÐÅÉÏ¡¢ÏÂÏÞ(¼´ÖÃÐÅÇø¼äµÄÉÏ¡¢ÏÂÏÞ). ½â´ð£º ÒòΪn=40ÊôÓÚ´óÑù±¾ÇéÐΣ¬ËùÒÔX¡¥½üËÆ·þ´Ó N(¦Ì,¦Ò2n) µÄÕý̬·Ö²¼£¬ÓÚÊǦ̵Ä95%µÄÖÃÐÅÇø¼ä½üËÆÎª (X¡¥¡À¦Ònu¦Á/2), ÕâÀïx¡¥=642,¦Ò=3,n=40¡Ö6.32,u¦Á/2=1.96, ´Ó¶ø (x¡¥¡À¦Ònu¦Á/2)=(642¡À340¡Á1.96)¡Ö(642¡À0.93), ¹Ê¦ÌµÄ95%µÄÖÃÐÅÉÏÏÞΪ642.93, ÏÂÏÞΪ641.07. ϰÌâ5 ijÉ̵êΪÁËÁ˽â¾ÓÃñ¶ÔijÖÖÉÌÆ·µÄÐèÒª£¬µ÷²éÁË100¼Òס»§£¬µÃ³öÿ»§Ã¿ÔÂÆ½¾ùÐèÇóÁ¿Îª10kg, ·½²îΪ9£¬Èç¹ûÕâ¸öÉ̵깩Ӧ10000»§£¬ÊԾ;ÓÃñ¶Ô¸ÃÖÖÉÌÆ·µÄƽ¾ùÐèÇóÁ¿½øÐÐÇø¼ä¹À¼Æ(¦Á=0.01), ²¢ÒÀ´Ë¿¼ÂÇ×îÉÙҪ׼±¸¶àÉÙÕâÖÖÉÌÆ·²ÅÄÜÒÔ0.99µÄ¸ÅÂÊÂú×ãÐèÇó£¿ ½â´ð£º ÒòΪn=100ÊôÓÚ´óÑù±¾ÎÊÌ⣬ËùÒÔX¡¥½üËÆ·þ´ÓN(¦Ì,¦Ò2/n),ÓÚÊǦ̵Ä99%µÄÖÃÐÅÇø¼ä½üËÆÎª(X¡¥¡ÀSnu¦Á/2), ¶ø x¡¥=10,s=3,n=100, u¦Á/2=2.58, ËùÒÔ (x¡¥¡Àsnu¦Á/2)=(10¡À3100¡Á2.58)=(10¡À0.774)=(9.226,10.774). ÓÉ´Ë¿ÉÖª×îÉÙҪ׼±¸10.774¡Á10000=107740(kg)ÕâÖÖÉÌÆ·£¬²ÅÄÜÒÔ0.99µÄ¸ÅÂÊÂú×ãÐèÇó. ϰÌâ6 ¹Û²âÁË100¿Ã¡°Ô¥Å©Ò»ºÅ¡±ÓñÃ×Ëë룬¾ÕûÀíºóµÃϱí(×éÏÞ²»°üÀ¨ÉÏÏÞ): ·Ö×é±àºÅ 12345 ×éÏÞ ×éÖÐÖµ 70¡«8080¡«9090¡«100100¡«110110¡«12075859510511539131626 ƵÊý ·Ö×é±àºÅ 6789 ×éÏÞ ×éÖÐÖµ 120¡«130130¡«140140¡«150150¡«16012513514515520742 ƵÊý ÊÔÒÔ95%µÄÖÃÐŶȣ¬Çó³ö¸ÃÆ·ÖÖÓñÃׯ½¾ùËëλµÄÖÃÐÅÇø¼ä. ½â´ð£º ÒòΪn=100ÊôÓÚ´óÑù±¾ÇéÐΣ¬ËùÒԦ̵ÄÖÃÐŶÈΪ95%µÄÖÃÐÅÇø¼äÉÏ¡¢ÏÂÏÞ½üËÆÎªX¡¥¡Àsnu¦Á/2, ÕâÀïn=100,u¦Á/2=1.96, »¹Ðè¼ÆËã³öx¡¥ºÍs. È¡a=115,c=10, Áîzi=(xi-a)/c=(xi-115)/10, Óüòµ¥Ë㹫ʽ£¬ (1)x¡¥=a+cz¡¥; (2)sx2=c2sz2. ±àºÅ ×éÖÐÖµxi 123456789 758595105115125135145155 zi=xi-11510 ×鯵ÂÊmi mizi -4-3-2-101234 zi2 mizi2 3913162620742 -12-27-26-1602014128 16941014916 123456789 z¡¥=1100¡Æi=19mizi=1100¡Á(-27)=-0.27, x¡¥=10¡Á(-27)+115=112.3, sz2=199¡Æi=19mizi2=199¡Á313¡Ö3.161616, sx2=102¡Á3.161616=316.1616, sx¡Ö17.78. ÓÚÊÇ (x¡¥¡Àsnu¦Á)¡Ö(112.3¡À17.7810¡Á1.96)¡Ö(112.3¡À3.485) =(108.815,115.785). ϰÌâ7 ij³ÇÕò³éÑùµ÷²éµÄ500ÃûÓ¦¾ÍÒµµÄÈËÖУ¬ÓÐ13Ãû´ýÒµÕߣ¬ÊÔÇó¸Ã³ÇÕòµÄ´ýÒµÂÊpµÄÖÃÐŶÈΪ0.95ÖÃÐÅÇø¼ä. ½â´ð£º ÕâÊÇ(0-1)·Ö²¼²ÎÊýµÄÇø¼ä¹À¼ÆÎÊÌâ. ´ýÒµÂÊpµÄ0.95ÖÃÐÅÇø¼äΪ (p1,p2)=(-b-b2-4ac2a,-b+b2-4ac2a). ÆäÖÐ a=n+u¦Á/22,b=-2nX¡¥-(u¦Á/2)2, c=nX¡¥2, n=500,x¡¥=13500,u¦Á/2=1.96. Ôò(p1,p2)=(0.015,0.044). ϰÌâ8 ÉèX1,X2,?,XnΪÀ´×ÔÕý̬×ÜÌåN(¦Ì,¦Ò2)µÄÒ»¸öÑù±¾£¬Çó¦ÌµÄÖÃÐŶÈΪ1-¦ÁµÄµ¥²àÖÃÐÅÏÞ. ½â´ð£º ÕâÊÇÒ»¸öÕý̬×ÜÌåÔÚ·½²îδ֪µÄÌõ¼þÏ£¬¶Ô¦ÌµÄÇø¼ä¹À¼ÆÎÊÌ⣬Ӧѡȡͳ¼ÆÁ¿£º T=X¡¥-¦ÌS/n¡«t(n-1). ÒòΪֻÐè×÷µ¥±ß¹À¼Æ£¬×¢Òâµ½t·Ö²¼µÄ¶Ô³ÆÐÔ£¬¹ÊÁî P{T Óɸø¶¨µÄÖÃÐŶÈ1-¦Á, ²é×ÔÓɶÈΪn-1µÄt·Ö²¼±í¿ÉµÃµ¥²àÁÙ½çÖµt¦Á(n-1). ½«²»µÈʽT X¡¥-¦ÌS/n ·Ö±ð±äÐΣ¬Çó³ö¦Ì¼´µÃ¦ÌµÄ1-¦ÁµÄÖÃÐÅÏÂÏÞΪ X¡¥-t¦Á(n-1)Sn. ¦ÌµÄ1-¦ÁµÄÖÃÐÅÉÏÏÞΪ X¡¥+t¦Á(n-1)Sn, ¦ÌµÄ1-¦ÁµÄË«²àÖÃÐÅÏÞ (X¡¥-t¦Á/2(n-1)Sn,X¡¥+t¦Á/2(n-1)Sn). ϰÌâ6.4 Õý̬×ÜÌåµÄÖÃÐÅÇø¼ä ϰÌâ1 ÒÑÖªµÆÅÝÊÙÃüµÄ±ê×¼²î¦Ò=50Сʱ£¬³é³ö25¸öµÆÅݼìÑ飬µÃƽ¾ùÊÙÃüx¡¥=500Сʱ£¬ÊÔÒÔ95%µÄ¿É¿¿ÐÔ¶ÔµÆÅÝµÄÆ½¾ùÊÙÃü½øÐÐÇø¼ä¹À¼Æ(¼ÙÉèµÆÅÝÊÙÃü·þ´ÓÕý̬·Ö²¼). ½â´ð£º ÓÉÓÚX¡«N(¦Ì,502), ËùÒԦ̵ÄÖÃÐŶÈΪ95%µÄÖÃÐÅÇø¼äΪ (X¡¥¡Àu¦Á/2¦Òn), ÕâÀïx¡¥=500,n=25,¦Ò=50,u¦Á/2=1.96, ËùÒÔµÆÅÝµÄÆ½¾ùÊÙÃüµÄÖÃÐÅÇø¼äΪ (x¡¥¡Àu¦Á/2¦Òn)=(500¡À5025¡Á1.96)=(500¡À19.6)=(480.4,519.6). ϰÌâ2 Ò»¸öËæ»úÑù±¾À´×ÔÕý̬×ÜÌåX,×ÜÌå±ê×¼²î¦Ò=1.5, ³éÑùǰϣÍûÓÐ95%µÄÖÃÐÅˮƽʹµÃ¦ÌµÄ¹À¼ÆµÄÖÃÐÅÇø¼ä³¤¶ÈΪL=1.7, ÊÔÎÊÓ¦³éÈ¡¶à´óµÄÒ»¸öÑù±¾£¿ ½â´ð£º Òò·½²îÒÑÖª£¬¦ÌµÄÖÃÐÅÇø¼ä³¤¶ÈΪ L=2u¦Á/2?¦Òn, ÓÚÊÇn=(2¦ÒLu¦Á/2)2. ÓÉÌâÉèÖª£¬1-¦Á=0.95,¦Á=0.05,¦Á2=0.025. ²é±ê×¼Õý̬·Ö²¼±íµÃ u0.025=1.96,¦Ò=1.5,L=1.7, ËùÒÔ£¬Ñù±¾ÈÝÁ¿ n=(2¡Á1.5¡Á1.961.7)2¡Ö11.96. ÏòÉÏÈ¡ÕûÊýµÃn=12, ÓÚÊÇÓûʹ¹À¼ÆµÄÇø¼ä³¤¶ÈΪ1.7µÄÖÃÐÅˮƽΪ95%, ËùÒÔÐèÑù±¾ÈÝÁ¿Îªn=12. ϰÌâ3 ÉèijÖÖµç×ӹܵÄʹÓÃÊÙÃü·þ´ÓÕý̬·Ö²¼. ´ÓÖÐËæ»ú³éÈ¡15¸ö½øÐмìÑ飬µÃƽ¾ùʹÓÃÊÙÃüΪ1950Сʱ£¬±ê×¼²îsΪ300Сʱ£¬ÒÔ95%µÄ¿É¿¿ÐÔ¹À¼ÆÕûÅúµç×ӹܯ½¾ùʹÓÃÊÙÃüµÄÖÃÐÅÉÏ¡¢ÏÂÏÞ. ½â´ð£º ÓÉX¡«N(¦Ì,¦Ò2), Öª¦ÌµÄ95%µÄÖÃÐÅÇø¼äΪ (X¡¥¡ÀSnt¦Á/2(n-1)), ÕâÀïx¡¥=1950,s=300,n=15,t¦Á/2(14)=2.145, ÓÚÊÇ (x¡¥¡Àsnt¦Á/2(n-1))=(1950¡À30015¡Á2.145) ¡Ö(1950¡À166.151)=(1783.85,2116.15). ¼´ÕûÅúµç×ӹܯ½¾ùʹÓÃÊÙÃüµÄÖÃÐÅÉÏÏÞΪ2116.15, ÏÂÏÞΪ1783.85. ϰÌâ4 È˵ÄÉí¸ß·þ´ÓÕý̬·Ö²¼£¬´Ó³õһŮÉúÖÐËæ»ú³éÈ¡6Ãû£¬²âÆäÉí¸ßÈçÏÂ(µ¥Î»£ºcm): 149 158.5 152.5 165 157 142 Çó³õһŮÉúƽ¾ùÉí¸ßµÄÖÃÐÅÇø¼ä(¦Á=0.05). ½â´ð£º X¡«N(¦Ì,¦Ò2),¦ÌµÄÖÃÐŶÈΪ95%µÄÖÃÐÅÇø¼äΪ (X¡¥¡ÀSnt¦Á/2(n-1)), ÕâÀïx¡¥=154, s=8.0187, t0.025(5)=2.571, ÓÚÊÇ (x¡¥¡Àsnt¦Á/2(n-1))=(154¡À8.01876¡Á2.571) ¡Ö(154¡À8.416)¡Ö(145.58,162.42). ϰÌâ5 ij´óѧÊýѧ²âÑ飬³éµÃ20¸öѧÉúµÄ·ÖÊýƽ¾ùÊýx¡¥=72, Ñù±¾·½²îs2=16, ¼ÙÉè·ÖÊý·þ´ÓÕý̬·Ö²¼£¬Çó¦Ò2µÄÖÃÐŶÈΪ98%µÄÖÃÐÅÇø¼ä. ½â´ð£º ÏÈÈ¡¦Ö2·Ö²¼±äÁ¿£¬¹¹Ôì³ö1-¦ÁµÄ¦Ò2µÄÖÃÐÅÇø¼äΪ ((n-1)S2¦Ö¦Á/22(n-1),(n-1)S2¦Ö1-¦Á/22(n-1)). ÒÑÖª1-¦Á=0.98,¦Á=0.02,¦Á2=0.01,n=20, S2=16. ²é¦Ö2·Ö²¼±íµÃ ¦Ö0.012(19)=36.191,¦Ö0.992(19)=7.633, ÓÚÊǵæÒ2µÄ98%µÄÖÃÐÅÇø¼äΪ(19¡Á1636.191,19¡Á167.633), ¼´(8.400,39.827). ϰÌâ6 Ëæ»úµØÈ¡Ä³ÖÖÅÚµ¯9·¢×öÊÔÑ飬µÃÅÚ¿ÚËٶȵÄÑù±¾±ê×¼²îs=11(m/s).ÉèÅÚ¿ÚËÙ¶È·þ´ÓÕý̬·Ö²¼£¬ÇóÕâÖÖÅÚµ¯µÄÅÚ¿ÚËٶȵıê×¼²î¦ÒµÄÖÃÐŶÈΪ0.95µÄÖÃÐÅÇø¼ä. ½â´ð£º ÒÑÖªn=9,s=11(m/s),1-¦Á=0.95.²é±íµÃ ¦Ö0.0252(8)=17.535, ¦Ö0.9752(8)=2.180, ¦ÒµÄ0.95µÄÖÃÐÅÇø¼äΪ (8s¦Ö0.0252(8),8s¦Ö0.9752(8)), ¼´(7.4,21.1). ϰÌâ7 ÉèÀ´×Ô×ÜÌåN(¦Ì1,16)µÄÒ»ÈÝÁ¿Îª15µÄÑù±¾£¬ÆäÑù±¾¾ùÖµx1¡¥=14.6; À´×Ô×ÜÌåN(¦Ì2,9)µÄÒ»ÈÝÁ¿Îª20µÄÑù±¾£¬ÆäÑù±¾¾ùÖµx2¡¥=13.2; ²¢ÇÒÁ½Ñù±¾ÊÇÏ໥¶ÀÁ¢µÄ£¬ÊÔÇó¦Ì1-¦Ì2µÄ90%µÄÖÃÐÅÇø¼ä. ½â´ð£º 1-¦Á=0.9,¦Á=0.1, Óɦµ(u¦Á/2)=1-¦Á2=0.95, ²é±í£¬µÃ u¦Á/2=1.645, ÔÙÓÉn1=15,n2=20, µÃ ¦Ò12n1+¦Ò22n2=1615+920=9160¡Ö1.232, u¦Á/2¦Ò12n1+¦Ò22n2=1.645¡Á1.232¡Ö2.03, x¡¥1-x¡¥2=14.6-13.2=1.4, ËùÒÔ£¬¦Ì1-¦Ì2µÄ90%µÄÖÃÐÅÇø¼äΪ (1.4-2.03,1.4+2.03)=(-0.63,3.43). ϰÌâ8 ÎïÀíϵѧÉú¿ÉÑ¡ÔñһѧÆÚ3ѧ·ÖûÓÐʵÑé¿Î£¬Ò²¿ÉѡһѧÆÚ4ѧ·ÖÓÐʵÑéµÄ¿Î. ÆÚδ¿¼ÊÔÿһÕ½ڶ¼¿¼µÃÒ»Ñù£¬ÈôÓÐÉÏʵÑé¿ÎµÄ12¸öѧÉúƽ¾ù¿¼·ÖΪ84£¬±ê×¼²îΪ4£¬Ã»ÉÏʵÑé¿ÎµÄ18¸öѧÉúƽ¾ù¿¼·ÖΪ77£¬±ê×¼²îΪ6£¬¼ÙÉè×ÜÌå¾ùΪÕý̬·Ö²¼ÇÒÆä·½²îÏàµÈ£¬ÇóÁ½ÖÖ¿Î³ÌÆ½¾ù·ÖÊý²îµÄÖÃÐŶÈΪ99%µÄÖÃÐÅÇø¼ä. ½â´ð£º ÉèÓÐʵÑé¿ÎµÄ¿¼·Ö×ÜÌåX1¡«N(¦Ì1,¦Ò2), ÎÞʵÑé¿ÎµÄ¿¼·Ö×ÜÌåX2¡«N(¦Ì2,¦Ò2). Á½·½²îÏàµÈµ«¾ùδ֪,Çó¦Ì1-¦Ì2µÄ99%µÄÖÃÐÅÇø¼ä£¬Ó¦Ñ¡t·Ö²¼±äÁ¿£¬ T=X1¡¥-X2¡¥-(¦Ì1-¦Ì2)SW1n1+1n2¡«t(n1+n2-2), ÆäÖÐSW=(n1-1)S12+(n2-1)S22n1+n2-2. ¦Ì1-¦Ì2µÄ1-¦ÁµÄÖÃÐÅÇø¼äΪ (X1¡¥-X2¡¥¡Àt¦Á/2(n1+n2-2)SW1n1+1n2). ÓÉÒÑÖª,x1¡¥-x2¡¥=84-77=7, ÇÒ sW=(12-1)¡Á42+(18-1)¡Á6212+18-2¡Ö5.305, 112+118¡Ö0.373, 1-¦Á=0.99, ¦Á2=0.005, ²ét·Ö²¼±íµÃt0.005(28)=2.763. ÓÚÊÇ£¬¦Ì1-¦Ì2µÄ0.99µÄÖÃÐÅÇø¼äΪ(7¡À2.763¡Á5.305¡Á0.373), ¼´(7¡À5.467), Ò༴(1.53,12.47). ϰÌâ9 Ëæ»úµØ´ÓAÅúµ¼ÏßÖгéÈ¡4¸ù£¬ÓÖ´ÓBÅúµ¼ÏßÖгéÈ¡5¸ù£¬²âµÃµç×è(Å·)Ϊ AÅúµ¼Ïß 0.1430.1420.1430.137 BÅúµ¼Ïß 0.1400.1420.1360.1380.140 Éè²â¶¨Êý¾Ý·Ö±ðÀ´×Ô·Ö²¼N(¦Ì1,¦Ò2),N(¦Ì2,¦Ò2), ÇÒÁ½Ñù±¾Ï໥¶ÀÁ¢£¬ÓÖ¦Ì1,¦Ì2,¦Ò2¾ùΪδ֪£¬ÊÔÇó¦Ì1-¦Ì2µÄÖÃÐÅˮƽΪ0.95µÄÖÃÐÅÇø¼ä. ½â´ð£º ¶ÔÓÚ1-¦Á=0.95, ²é±íµÃt0.025(7)=2.3646, ËãµÃ x¡¥=0.141, y¡¥=0.139; s12=8.25¡Á10-6, s1¡Ö0.0029. s22=5.2¡Á10-6, s2=0.0023, sW¡Ö0.0026, 15+14=0.6708, ¹ÊµÃ¦Ì1-¦Ì2µÄ0.95ÖÃÐÅÇø¼äΪ (0.141-0.139¡À2.3646¡Á0.0026¡Á0.6708), ¼´(-0.002,0.006). ϰÌâ10 ÉèÁ½Î»»¯ÑéÔ±A,B¶ÀÁ¢µØ¶ÔijÖÖ¾ÛºÏÎﺬÂÈÁ¿ÓÃÏàͬµÄ·½·¨¸÷×÷10´Î²â¶¨£¬Æä²â¶¨ÖµµÄÑù±¾·½²îÒÀ´ÎΪ sA2=0.5419,sB2=0.6065. Éè¦ÒA2,¦ÒB2·Ö±ðΪA,BËù²â¶¨µÄ²â¶¨ÖµµÄ×ÜÌå·½²î£¬ÓÖÉè×ÜÌå¾ùΪÕý̬µÄ£¬Á½Ñù±¾¶ÀÁ¢£¬Çó·½²î±È¦ÒA2/¦ÒB2µÄÖÃÐÅˮƽΪ0.95µÄÖÃÐÅÇø¼ä. ½â´ð£º Ñ¡ÓÃËæ»ú±äÁ¿ F=SA2¦ÒA2/SB2¦ÒB2¡«F(n1-1,n2-1), ÒÀÌâÒ⣬ÒÑÖªsA2=0.5419, sB2=0.6065, n1=n2=10. ¶ÔÓÚ1-¦Á=0.95, ²éF·Ö²¼±íµÃF0.025(9,9)=1F0.025(9,9)=14.03, ÓÚÊǵæÒA2¦ÒB2µÄ0.95µÄÖÃÐÅÇø¼äΪ (sA2sB21F¦Á/2(9,9),sA2sB2F¦Á/2(9,9))¡Ö(0.222,3.601). ×ÜϰÌâ½â´ð ϰÌâ1 Éè×ÜÌåX·þ´Ó²ÎÊýΪ¦Ë(¦Ë>0)µÄÖ¸Êý·Ö²¼£¬X1,X2,?,XnÎªÒ»Ëæ»úÑù±¾£¬ÁîY=min{X1,X2,?,Xn}, Îʳ£ÊýcΪºÎֵʱ£¬²ÅÄÜʹcYÊǦ˵ÄÎÞÆ«¹À¼ÆÁ¿. ½â´ð£º ¹Ø¼üÊÇÇó³öE(Y). Ϊ´ËÒªÇóYµÄÃܶÈfY(y). ÒòXiµÄÃܶȺ¯ÊýΪfX(x)={¦Ëe-¦Ëx,x>00,x<0; XiµÄ·Ö²¼º¯ÊýΪFX(x)={1-e-¦Ëx,x>00,x¡Ü0, ÓÚÊÇ FY(y)=1-[1-FX(y)]n={1-e-n¦Ëy,y>00,y¡Ü0. Á½±ß¶ÔyÇóµ¼µÃfY(y)=ddyFY(y)={n¦Ëe-n¦Ëy,y>00,y¡Ü0, ¼´Y·þ´Ó²ÎÊýΪn¦ËµÄÖ¸Êý·Ö²¼£¬¹Ê E(Y)=n¦Ë. ΪʹcY³ÉΪ¦ËµÄÎÞÆ«¹À¼ÆÁ¿£¬ÐèÇÒÖ»ÐèE(cY)=¦Ë, ¼´cn¦Ë=¦Ë, ¹Êc=1n. ϰÌâ2 ÉèX1,X2,?,XnÊÇÀ´×Ô×ÜÌåXµÄÒ»¸öÑù±¾£¬ÒÑÖªE(X)=¦Ì, D(X)=¦Ò2. (1)È·¶¨³£Êýc, ʹc¡Æi=1n-1(Xi+1-Xi)2Ϊ¦Ò2µÄÎÞÆ«¹À¼Æ£» (2)È·¶¨³£Êýc, ʹ(X¡¥)2-cS2ÊǦÌ2µÄÎÞÆ«¹À¼Æ(X¡¥,S2·Ö±ðÊÇÑù±¾¾ùÖµºÍÑù±¾·½²î). ½â´ð£º (1)E(c¡Æi=1n-1(Xi+1-Xi)2) =c¡Æi=1n-1E(Xi+12-2XiXi+1+Xi2) =c¡Æi=1n-1{D(Xi+1)+[E(Xi+1)]2-2E(Xi)E(Xi+1)+D(Xi)+[E(Xi)+[E(Xi)]2} =c(n-1)(¦Ò2+¦Ì2-2¦Ì2+¦Ò2+¦Ì2)=2(n-1)¦Ò2c. Áî2(n-1)¦Ò2c=¦Ò2, ËùÒÔ c=12(n-1). (2)E[(X¡¥)2-cS2]=E(X¡¥2)-cE(S2)=D(X¡¥)+[E(X¡¥)]2-c¦Ò2 =¦Ò2n+¦Ì2-c¦Ò2. Áî¦Ò2n+¦Ì2-c¦Ò2=¦Ì2, ÔòµÃc=1n. ϰÌâ3 ÉèX1,X2,X3,X4ÊÇÀ´×Ô¾ùֵΪ¦ÈµÄÖ¸Êý·Ö²¼×ÜÌåµÄÑù±¾£¬ÆäÖЦÈδ֪. ÉèÓйÀ¼ÆÁ¿ T1=16(X1+X2)+13(X3+X4), T2=X1+2X2+3X3+4X45, T3=X1+X2+X3+X44. (1)Ö¸³öT1,T2,T3ÖÐÄöÊǦȵÄÎÞÆ«¹À¼ÆÁ¿£» (2)ÔÚÉÏÊö¦ÈµÄÎÞÆ«¹À¼ÆÖÐÖ¸³öÒ»¸ö½ÏΪÓÐЧµÄ. ½â´ð£º (1)¦È=E(X),E(Xi)=E(X)=¦È,D(X)=¦È2=D(Xi),i=1,2,3,4. E(T1)=E(16(X1+X2)+13(X3+X4))=(26+23)¦È=¦È, E(T2)=15E(X1+2X2+3X3+4X4)=15(1+2+3+4)¦È=2¦È, E(T3)=14E(X1+X2+X3+X4)=¦È, Òò´Ë£¬T1,T3ÊǦȵÄÎÞÆ«¹À¼ÆÁ¿. (2)D(T1)=236¦È2+29¦È2=1036¦È2, D(T3)=116?4¦È2=14¦È2=936¦È2, ËùÒÔD(T3) ϰÌâ4 Éè´Ó¾ùֵΪ¦Ì, ·½²îΪ¦Ò2(¦Ò>0)µÄ×ÜÌåÖУ¬·Ö±ð³éÈ¡ÈÝÁ¿Îªn1,n2µÄÁ½¶ÀÁ¢Ñù±¾£¬X1¡¥ºÍX2¡¥·Ö±ðÊÇÁ½Ñù±¾µÄ¾ùÖµ£¬ÊÔÖ¤£º¶ÔÓÚÈÎÒâ³£Êýa,b(a+b=1),Y=aX1¡¥+bX2¡¥¶¼ÊǦ̵ÄÎÞÆ«¹À¼Æ£»²¢È·¶¨³£Êýa,b, ʹD(Y)´ïµ½×îС. ½â´ð£º E(Y)=E(aX1¡¥+bX2¡¥)=aE(X1¡¥)+bE(X2¡¥)=(a+b)¦Ì. ÒòΪa+b=1, ËùÒÔE(Y)=¦Ì. Òò´Ë£¬¶ÔÓÚ³£Êýa,b(a+b=1),Y¶¼ÊǦ̵ÄÎÞÆ«¹À¼Æ£¬ D(Y)=a2D(X1¡¥)+b2D(X2¡¥)=a2¦Ò2n1+b2¦Ò2n2. Òòa+b=1, ËùÒÔD(Y)=¦Ò2[a2n1+1n2(1-a)2], ÁîdD(Y)da=0, ¼´2¦Ò2(an1-1-an2)=0, ½âµÃ a=n1n1+n2,b=n2n1+n2 ÊÇΩһפµã. ÓÖÒòΪd2D(Y)da2=2¦Ò2(1n1+1n2)>0, ¹ÊÈ¡´Ëa,b¶þֵʱ£¬D(Y)´ïµ½×îС. ϰÌâ5 ÉèÓÐÒ»Åú²úÆ·£¬Îª¹À¼ÆÆä·ÏÆ·ÂÊp, Ëæ»úȡһÑù±¾X1,X2,?,Xn, ÆäÖÐ Xi={1,È¡µÃ·ÏÆ·0,È¡µÃºÏ¸ñÆ·, i=1,2,?,n, Ö¤Ã÷£ºp=X¡¥=1n¡Æi=1nXiÊÇpµÄÒ»ÖÂÎÞÆ«¹À¼ÆÁ¿. ½â´ð£º ÓÉÌâÉèÌõ¼þ E(Xi)=p?1+(1-p)?0=p, D(Xi)=E(Xi2)-[E(Xi)]2=p?12+(1-p)02-p2=p(1-p), E(p)=E(X¡¥)=E(1n¡Æi=1nE(Xi))=1n¡Æi=1nE(Xi)=1n¡Æi=1np=p. Óɶ¨Ò壬pÊÇpµÄÎÞÆ«¹À¼ÆÁ¿£¬ÓÖ D(p)=D(X¡¥)=D(1n¡Æi=1nXi)=1n2¡Æi=1nD(Xi) =1n2¡Æi=1np(1-p)=1n2np(1-p)=pqn. ÓÉÇбÈÑ©·ò²»µÈʽ£¬Èθø?>0 P{¨Op-p¨O¡Ý?}=P{¨OX¡¥-p¨O¡Ý?}¡Ü1?2D(X¡¥)=1?2p(1-p)n¡ú0,n¡ú¡Þ ËùÒÔlimn¡ú¡ÞP{¨Op-p¨O¡Ý?}=0, ¹Êp=X¡¥ÊÇ·ÏÆ·ÂÊpµÄÒ»ÖÂÎÞÆ«¹À¼ÆÁ¿. ϰÌâ6 Éè×ÜÌåX¡«b(k,p), kÊÇÕýÕûÊý£¬0 ½â´ð£º Òò×ÜÌåX·þ´Ó¶þÏî·Ö²¼b(k,p), ¹Ê {a1=E(X)=kpa2=E(X2)=D(X)+[E(X)]2=kp(1-p)+(kp)2£¬ ½â´Ë·½³Ì×éµÃp=a1+a12-a2a1,k=a12a1+a12-a2. ÓÃA1=1n¡Æi=1nXi=X¡¥,A2=1n¡Æi=1nXi2·Ö±ð´úÌæa1,a2, ¼´µÃp,kµÄ¾Ø¹À¼ÆÎª p=X¡¥-S2X¡¥,k=[X¡¥2X¡¥-S2], ÆäÖÐS2=1n¡Æi=1n(Xi-X¡¥)2,[x]±íʾxµÄ×î´óÕûÊý²¿·Ö. ϰÌâ7 Çó²´ËÉ·Ö²¼ÖвÎÊý¦ËµÄ×î´óËÆÈ»¹À¼Æ. ½â´ð£º ×ÜÌåµÄ¸ÅÂʺ¯ÊýΪ P{X=k}=¦Ëkk!e-¦Ë,k=0,1,2,?. Éèx1,x2,?,xnΪ´Ó×ÜÌåÖгéÈ¡µÄÈÝÁ¿ÎªnµÄÑù±¾£¬ÔòËÆÈ»º¯ÊýΪ L(x1,x2,?,xn;¦Ë)=¡Çi=1nf(xi;¦Ë)=¡Çi=1n¦Ëxixi!e-¦Ë=¦Ë¡Æi=1nxi¡Çi=1nxi!e-n¦Ë, lnL=(¡Æi=1nxi)ln¦Ë-n¦Ë-¡Æi=1nlnxi!, ÁîdlnLd¦Ë=1¦Ë¡Æi=1nxi-n=0, µÃ¦ËµÄ×î´óÊÇÈ»¹À¼ÆÎª ¦Ë=1n¡Æi=1nxi=x¡¥, ¼´x¡¥=1n¡Æi=1nxi¾ÍÊDzÎÊý¦ËµÄ×î´óËÆÈ»¹À¼Æ. ϰÌâ8 ÒÑÖª×ÜÌåXµÄ¸ÅÂÊ·Ö²¼ P{X=k}=C2k(1-¦È)k¦È2-k,k=0,1,2£¬ Çó²ÎÊýµÄ¾Ø¹À¼Æ. ½â´ð£º ×ÜÌåXΪÀëÉ¢ÐÍ·Ö²¼£¬ÇÒÖ»º¬Ò»¸öδ֪²ÎÊý¦È, Òò´Ë£¬Ö»ÒªÏÈÇóÀëÉ¢ÐÍËæ»ú±äÁ¿µÄÊýѧÆÚÍûE(X), È»ºó½â³ö¦È²¢ÓÃÑù±¾¾ùÖµX¡¥´úÌæE(X)¼´¿ÉµÃ¦ÈµÄ¾Ø¹À¼Æ¦È. ÓÉE(X)=¡Æk=02kC2k(1-¦È)k¦È2-k=1¡Á2(1-¦È)¦È+2(1-¦È)2=2-2¦È, ¼´ÓÐ ¦È=1-E(X)2. ÓÃÑù±¾¾ùÖµX¡¥´úÌæÉÏʽµÄE(X), µÃ¾Ø¹À¼ÆÎª¦È=1-X¡¥2. ϰÌâ9 Éè×ÜÌåXµÄ¸ÅÂÊÃܶÈΪ f(x)={(¦È+1)x¦È,0 ÆäÖЦÈ>-1ÊÇδ֪²ÎÊý£¬X1,X2,?,XnΪһ¸öÑù±¾£¬ÊÔÇó²ÎÊý¦ÈµÄ¾Ø¹À¼ÆºÍ×î´óËÆÈ»¹À¼ÆÁ¿. ½â´ð£º ÒòE(X)=¡Ò01(¦È+1)x¦È+1dx=¦È+1¦È+2. ÁîE(X)=1n¡Æi=1nXi=X¡¥, µÃ¦È+1¦È+2=X¡¥, ½âµÃ¦ÈµÄ¾Ø¹À¼ÆÁ¿Îª ¦È=2X¡¥-11-X¡¥. Éèx1,x2,?,xnÊÇÑù±¾X1,X2,?,XnµÄ¹Û²ìÖµ£¬ÔòËÆÈ»º¯Êý L(x1,x2,?,xn,¦È)=¡Çi=1n(¦È+1)xi¦È =(¦È+1)n(x1x2?xn)¦È(0 ÓÉ´Ë¿ÉÖª£¬¦ÈµÄ¾Ø¹À¼ÆºÍ×î´óËÆÈ»¹À¼ÆÊDz»ÏàͬµÄ. ϰÌâ10 ÉèX¾ßÓзֲ¼ÃÜ¶È f(x,¦È)={¦Èxe-¦Èx!,x=0,1,2,?0,ÆäËü,0<¦È<+¡Þ, X1,X2,?,XnÊÇXµÄÒ»¸öÑù±¾£¬Çó¦ÈµÄ×î´óËÆÈ»¹À¼ÆÁ¿. ½â´ð£º ËÆÈ»º¯Êý L(¦È)=¡Çi=1n¦Èxie-¦Èxi!=e-n¦È¡Çi=1n¦Èxixi!, lnL(¦È)=-n¦È+¡Æi=1nxiln¦È-¡Æi=1nln(xi!), dd¦È(lnL(¦È))=-n+1¦È¡Æi=1nxi£¬ Áîdd¦È(lnL(¦È))=0, ¼´ -n+1¦È¡Æi=1nxi=0?¦È=1n¡Æi=1nxi, ¹Ê¦È×î´óËÆÈ»¹À¼ÆÁ¿Îª ¦È=X¡¥=1n¡Æi=1nXi. ϰÌâ11 ÉèʹÓÃÁËijÖÖÒÇÆ÷¶ÔͬһÁ¿½øÐÐÁË12´Î¶ÀÁ¢µÄ²âÁ¿,ÆäÊý¾Ý(µ¥Î»:ºÁÃ×)ÈçÏÂ: 232.50 232.48 232.15 232.53 232.45 232.30 232.48 232.05 232.45 232.60 232.47 232.30 ÊÔÓþعÀ¼Æ·¨¹À¼Æ²âÁ¿ÖµµÄ¾ùÖµÓë·½²î(ÉèÒÇÆ÷ÎÞϵͳÎó²î). ½â´ð£º Éè²âÁ¿ÖµµÄ¾ùÖµÓë·½²î·Ö±ðΪ¦ÌÓë¦Ò2£¬ÒòΪÒÇÆ÷ÎÞϵͳÎó²î£¬ËùÒÔ ¦È=¦Ì=X¡¥=1n¡Æi=1nXi=232+112¡Æi=1n(Xi-232) =232+1/12¡Á4.76¡Ö232.3967. ÓÃÑù±¾¶þ½×ÖÐÐľØB2¹À¼Æ·½²î¦Ò2, ÓÐ ¦Ò2=1n¡Æi=1n(Xi-X¡¥)2=1n¡Æi=1n(Xi-a)2-(X¡¥-a)2 =112¡Æi=112(Xi-232)2-(232.3967-232)2 =0.1819-0.1574=0.0245. ϰÌâ12 ÉèËæ»ú±äÁ¿X·þ´Ó¶þÏî·Ö²¼ P{X=k}=Cnkpk(1-p)n-k,k=0,1,2,?,n, X1ΪÆäÒ»¸öÑù±¾£¬ÊÔÇóp2µÄÎÞÆ«¹À¼ÆÁ¿. ½â´ð£º \\becauseX¡«b(n,p), ¡àE(X)=np, D(X)=np(1-p)=E(X)-np2 ?p2=1n[E(X)-D(X)]=1n[E(X)-E(X2)+(EX)2] ?p2=1n[E(X(1-X))]+1nn2p2=1nE(X(1-X))]+np2 ?p2=E[X(X-1)]n(n-1), ÓÉÓÚE[X(X-1)]=E[X1(X1-1)], ¹Ê p2=X1(X1-1)n(n-1). ϰÌâ13 ÉèX1,X2,?,XnÊÇÀ´×Ô×ÜÌåXµÄËæ»úÑù±¾£¬ÊÔÖ¤¹À¼ÆÁ¿ X¡¥=1n¡Æi=1nXiºÍY=¡Æi=1nCiXi(Ci¡Ý0Ϊ³£Êý£¬¡Æi=1nCi=1) ¶¼ÊÇ×ÜÌåÆÚÍûE(X)µÄÎÞÆ«¹À¼Æ£¬µ«X¡¥±ÈYÓÐЧ. ½â´ð£º ÒÀÌâÉè¿ÉµÃ E(X¡¥)=1n¡Æi=1nE(Xi)=1n¡ÁnE(X)=E(X), E(Y)=¡Æi=1nCiE(Xi)=E(X)¡Æi=1nCi=E(X). ´Ó¶øX¡¥,Y¾ùΪE(X)µÄÎÞÆ«¹À¼ÆÁ¿£¬ÓÉÓÚ D(X¡¥)=1n2¡Æi=1nD(Xi)=1nD(X), D(Y)=D(¡Æi=1nCiXi)=¡Æi=1nCi2D(Xi)=D(X)¡Æi=1nCi2. Ó¦ÓÿÂÎ÷¡ªÊ©ÍߴIJ»µÈʽ¿ÉÖª 1=(¡Æi=1nCi)2¡Ü(¡Æi=1nCi2)(¡Æi=1n12)=n¡Æi=1nCi2, ?1n¡Ü¡Æi=1nCi2, ËùÒÔD(Y)¡ÝD(X¡¥), ¹ÊX¡¥±ÈYÓÐЧ. ϰÌâ14 ÉèX1,X2,?,XnÊÇ×ÜÌåX¡«U(0,¦È)µÄÒ»¸öÑù±¾£¬Ö¤Ã÷£º¦È1=2X¡¥ºÍ¦È2=n+1nX(n)ÊǦȵÄÒ»Ö¹À¼Æ. ½â´ð£º ÒòE(¦È1)=¦È, D(¦È1)=¦È23n; E(¦È2)=¦È,D(¦È2)=¦Èn(n+2),X(n)=max{Xi}. ÒÀÇбÈÑ©·ò²»µÈʽ£¬¶ÔÈθøµÄ?>0, µ±n¡ú¡Þʱ£¬ÓÐ P{¨O¦È1-¦È¨O¡Ý?}¡ÜD(¦È1)?2=¦È23n?2¡ú0,(n¡ú¡Þ) P{¨O¦È2-¦È¨O¡Ý?}¡ÜD(¦È2)?2=¦È2n(n+1)?2¡ú0,(n¡ú¡Þ) ËùÒÔ£¬¦È1ºÍ¦È2¶¼ÊǦȵÄÒ»Ö¹À¼ÆÁ¿. ϰÌâ15 Ä³Ãæ·Û³§½Óµ½Ðí¶à¹Ë¿ÍµÄ¶©»õ£¬³§ÄÚ²ÉÓÃ×Ô¶¯Á÷Ë®Ïß¹à×°Ãæ·Û£¬°´Ã¿´ü25ǧ¿Ë³öÊÛ. ÏÖ´ÓÖÐËæ»úµØ³éÈ¡50´ü£¬Æä½á¹ûÈçÏ£º 25.8, 24.7, 25.0, 24.9, 25.1, 25.0, 25.2, 24.8, 25.4, 25.3, 23.1, 25.4, 24.9, 25.0, 24.6, 25.0, 25.1, 25.3, 24.9, 24.8, 24.6, 21.1, 25.4, 24.9, 24.8, 25.3, 25.0, 25.1, 24.7, 25.0, 24.7, 25.3, 25.2, 24.8, 25.1, 25.1, 24.7, 25.0, 25.3, 24.9, 25.0, 25.3, 25.0, 25.1, 24.7, 25.3, 25.1, 24.9, 25.2, 25.1, ÊÔÇó¸Ã³§×Ô¶¯Á÷Ë®Ïß¹à×°´üÖØ×ÜÌåXµÄÆÚÍûµÄµã¹À¼ÆÖµºÍÆÚÍûµÄÖÃÐÅÇø¼ä(ÖÃÐŶÈΪ0.95). ½â´ð£º ÉèXΪ´üÖØ×ÜÌ壬ÔòE(X)µÄµã¹À¼ÆÎª E(X)=X¡¥=150(25.8+24.7+?+25.1)=24.92kg. ÒòΪÑù±¾ÈÝÁ¿n=50, ¿É×÷Ϊ´óÑù±¾´¦Àí£¬ÓÉÑù±¾ÖµËãµÃx¡¥=24.92, s2¡Ö0.4376, s=0.6615, ÔòE(X)µÄÖÃÐŶÈΪ0.95µÄÖÃÐÅÇø¼ä½üËÆÎª (X¡¥-u¦Á/2Sn,X¡¥+u¦Á/2Sn), ²é±ê×¼Õý̬·Ö²¼±íµÃu¦Á/2=u0.025=1.96, ¹ÊËùÇóÖ®ÖÃÐÅÇø¼äΪ (24.92-1.96¡Á0.661550,24.92+1.96¡Á0.661550)=(24.737,25.103), ¼´ÓÐ95%µÄ°ÑÎÕ£¬±£Ö¤¸Ã³§Éú²úµÄÃæ·Ûƽ¾ùÿ´üÖØÁ¿ÔÚ24.737ǧ¿ËÖÁ25.103ǧ¿ËÖ®¼ä. ϰÌâ16 ÔÚÒ»Åú»õÎïµÄÈÝÁ¿Îª100µÄÑù±¾ÖУ¬¾¼ìÑé·¢ÏÖÓÐ16Ö»´ÎÆ·£¬ÊÔÇóÕâÅú»õÎï´ÎÆ·ÂʵÄÖÃÐŶÈΪ0.95µÄÖÃÐÅÇø¼ä. ½â´ð£º ÕâÊÇ(0-1)·Ö²¼²ÎÊýÇø¼äµÄ¹À¼ÆÎÊÌâ. ÕâÅú»õÎï´ÎÆ·ÂÊpµÄ1-¦ÁµÄÖÃÐÅÇø¼äΪ (p1,p2)=(12a(-b-b2-4ac),12a(-b+b2-4ac)). ÆäÖÐa=n+u¦Á/22,b=-(2nX¡¥+u¦Á/22), c=nX¡¥2. ÓÉÌâÒ⣬x¡¥=16100=0.16,n=100,1-¦Á=0.95,u0.025=1.96. ËãµÃ a=100+1.962=103.842, b=-(2¡Á100¡Á0.16+1.962)=-35.842, c=100¡Á0.162=2.56. pµÄ0.95µÄÖÃÐÅÇø¼äΪ(p1,p2)=(12a(-b¡Àb2-4ac)), ¼´ (12¡Á103.842(35.8416¡À221.2823)), Ò༴(0.101,0.244). ϰÌâ17 ÔÚijУµÄÒ»¸ö°àÌå¼ì¼Ç¼ÖУ¬ËæÒâ³Â¼25ÃûÄÐÉúµÄÉí¸ßÊý¾Ý£¬²âµÃƽ¾ùÉí¸ßΪ170ÀåÃ×£¬±ê×¼²îΪ12ÀåÃ×£¬ÊÔÇó¸Ã°àÄÐÉúµÄƽ¾ùÉí¸ß¦ÌºÍÉí¸ßµÄ±ê×¼²î¦ÒµÄÖÃÐŶÈΪ0.95µÄÖÃÐÅÇø¼ä(¼ÙÉè²âÉí¸ß½üËÆ·þ´ÓÕý̬·Ö²¼). ½â´ð£º ÓÉÌâÉèÉí¸ßX¡«N(¦Ì,¦Ò2), n=25, x¡¥=170, s=12£¬¦Á=0.05. (1)ÏÈÇó¦ÌÖÃÐÅÇø¼ä(¦Ò2δ֪)£¬È¡ U=X¡¥-¦ÌS/n¡«t(n-1),t¦Á/2(n-1)=t0.025(24)=2.06. ¹Ê¦ÌµÄ0.95µÄÖÃÐÅÇø¼äΪ (170-1225¡Á2.06,170+1225¡Á2.06) =(170-4.94,170+4.94)=(165.06,174,94). (2)¦Ò2µÄÖÃÐÅÇø¼ä(¦Ìδ֪)£¬È¡ U=(n-1)S2¦Ò2¡«¦Ö2(n-1), ¦Ö¦Á/22(n-1)=¦Ö0.0252(24)=39.364, ¦Ö1-¦Á/22(n-1)=¦Ö0.9752(24)=12.401, ¹Ê¦Ò2µÄ0.95µÄÖÃÐÅÇø¼äΪ(24¡Á12239.364,24¡Á12212.401)¡Ö(87.80,278.69), ¦ÒµÄ0.95µÄÖÃÐÅÇø¼äΪ (87.80,278.69)¡Ö(9.34,16.69). ϰÌâ18 ΪÑо¿Ä³ÖÖÆû³µÂÖÌ¥µÄÄ¥ËðÌØÐÔ£¬Ëæ»úµØÑ¡Ôñ16Ö»ÂÖÌ¥£¬Ã¿Ö»ÂÖÌ¥ÐÐÊ»µ½Ä¥»µÎªÖ¹. ¼Ç¼ËùÐÐÊ»µÄ·³Ì(ÒÔǧÃ×¼Æ)ÈçÏ£º 41250 40187 43175 41010 39265 41872 42654 41287 38970 40200 42550 41095 40680 43500 39775 40440 ¼ÙÉèÕâЩÊý¾ÝÀ´×ÔÕý̬×ÜÌåN(¦Ì,¦Ò2). ÆäÖЦÌ,¦Ò2δ֪£¬ÊÔÇó¦ÌµÄÖÃÐÅˮƽΪ0.95µÄµ¥²àÖÃÐÅÏÂÏÞ. ½â´ð£º ÓÉP{¦Ì>X¡¥-Snt¦Á(n-1)=1-¦Á, µÃ¦ÌµÄ1-¦ÁµÄµ¥²àÖÃÐÅÏÂÏÞΪ ¦Ì¡¥=X¡¥-Snt¦Á(n-1). ÓÉËù¸øÊý¾ÝËãµÃx¡¥¡Ö41119.38,s¡Ö1345.46,n=16. ²ét·Ö²¼±íµÃt0.05(15)=1.7531, ÔòÓЦ̵Ä0.95µÄµ¥²àÖÃÐÅÏÂÏÞΪ ¦Ì¡¥=41119.38-1345.464¡Á1.7531¡Ö40529.73. ϰÌâ19 ij³µ¼äÉú²ú¸ÖË¿£¬Éè¸ÖË¿ÕÛ¶ÏÁ¦·þ´ÓÕý̬·Ö²¼£¬ÏÖËæ»úÔÚ³éÈ¡10¸ù£¬¼ì²éÕÛ¶ÏÁ¦£¬µÃÊý¾ÝÈçÏÂ(µ¥Î»£ºN): 578,572,570,568,572,570,570,572,596,584. ÊÔÇó¸ÖË¿ÕÛ¶ÏÁ¦·½²îµÄÖÃÐÅÇø¼äºÍÖÃÐÅÉÏÏÞ(ÖÃÐŶÈΪ0.95). ½â´ð£º (1)ÕâÊÇÒ»¸öÕý̬×ÜÌ壬ÆÚÍûδ֪£¬¶Ô·½²î×÷Ë«²àÖÃÐÅÏ޵ĹÀ¼ÆÎÊÌ⣬Ӧѡͳ¼ÆÁ¿ ¦Ö2=(n-1)S2¦Ò2¡«¦Ö2(n-1). ¦Ò2µÄ1-¦ÁµÄÖÃÐÅÇø¼äÊÇ ((n-1)S2¦Ö¦Á/22(n-1),(n-1)S2¦Ö1-¦Á/22(n-1)). ÓÉËù¸øÑù±¾ÖµµÃ x¡¥=575.2, (n-1)s2=¡Æ1=110(xi-x¡¥)2=681.6; ¸ù¾Ý¸ø¶¨µÄÖÃÐŶÈ1-¦Á=0.95(¼´¦Á=0.05). ²é×ÔÓɶÈΪ10-1=9µÄ¦Ö2·Ö²¼±í£¬µÃË«²àÁÙ½çÖµ ¦Ö¦Á/22(n-1)=¦Ö0.0252(9)=19.0, ¦Ö1-¦Á/22(n-1)=¦Ö0.9752(9)=2.7, ´úÈëÉϹ«Ê½µÃ¦Ò2µÄ95%µÄÖÃÐÅÇø¼äΪ (681.619.0,681,62.70)=(35.87,232.44), ¼´Çø¼ä(35.87,232.44)°üº¬¦Ò2µÄ¿É¿¿³Ì¶ÈΪ0.95. (2)ÕâÊÇÒ»¸öÕý̬×ÜÌåÆÚÍûδ֪ʱ£¬¦Ò2µÄµ¥²àÇø¼ä¹À¼ÆÎÊÌ⣬¦Ò2µÄÖÃÐŶÈΪ1-¦Á=95%(¦Á=0.05)µÄµ¥²àÖÃÐÅÉÏÏÞΪ (n-1)S2¦Ö1-¦Á2(n-1)=¡Æi=110(xi-x¡¥)2¦Ö1-¦Á2(n-1), ÒÑËãµÃ(n-1)S2=¡Æi=110(xi-x¡¥)2=681.6, ¸ù¾Ý×ÔÓɶÈ1-¦Á=0.95. ²é×ÔÓɶÈ10-1=9µÄ¦Ö2·Ö²¼±íµÃµ¥²àÁÙ½çÖµ ¦Ö1-¦Á2(n-1)=¦Ö0.952(9)=3.325, ´úÈëÉÏʽ±ãµÃ¦Ò2µÄ0.95µÄÖÃÐÅÉÏÏÞΪ681.63.325=205, ¼´ÓÐ95%µÄ°ÑÎÕ£¬±£Ö¤¦Ò2°üº¬ÔÚÇø¼ä(0,205)Ö®ÄÚ£¬µ±È»Ò²¿ÉÄÜÅöÉϦÒ2³¬¹ýÉÏÏÞÖµ205µÄÇéÐΣ¬µ«³öÏÖÕâÖÖÇé¿öµÄ¿ÉÄÜÐÔºÜС£¬²»³¬¹ý5%. ϰÌâ20 ÉèijÅúÂÁ²ÄÁϱÈÖØX·þ´ÓÕý̬·Ö²¼N(¦Ì,¦Ò2)£¬ÏÖ²âÁ¿ËüµÄ±ÈÖØ16´Î£¬ËãµÃx¡¥=2.705£¬s=0.029£¬·Ö±ðÇó¦ÌºÍ¦Ò2µÄÖÃÐŶÈΪ0.95µÄÖÃÐÅÇø¼ä¡£ ½â´ð£º £¨1£©¶Ô1-¦Á=0.95£¬¼´¦Á=0.05£¬²ét-·Ö²¼±íµÃt¦Á/2(15)=2.131,ÓÚÊÇ x¡¥+t¦Á/2(15)sn=2.705+2.131¡Á0.02916=2.705+0.016=2.721, x¡¥-t¦Á/2(15)sn=2.705-0.016=2.689. ÔòÓÉÌâÒâÖª£¬¹ØÓڦ̵ÄËùÇóÖÃÐÅÇø¼äΪ(2.689,2.721)¡£ £¨2£©¶Ô¦Á=0.05,²é¦Ö2-·Ö²¼±í£¬µÃ ¦Ö0.052(15)=27.5,¦Ö0.952(15)=6.26. ÓÚÊÇ£¬1-¦ÁµÄ¦Ò2µÄÖÃÐÅÇø¼äΪ ((n-1)s2¦Ö¦Á/22(n-1),(n-1)s2¦Ö1-¦Á/22(n-1))=(0.000489,0.002150). ϰÌâ21 ij¹«Ë¾Óû¹À¼Æ×Ô¼ºÉú²úµÄµç³ØÊÙÃü.ÏÖ´ÓÆä²úÆ·ÖÐËæ»ú³éÈ¡50Ö»µç³Ø×öÊÙÃüÊÔÑ飬ÕâЩµç³ØµÄÊÙÃüµÄƽ¾ùÖµx¡¥=2.266(µ¥Î»£º100Сʱ), s=1.935, Çó¸Ã¹«Ë¾Éú²úµÄµç³ØÆ½¾ùÊÙÃüµÄÖÃÐŶÈΪ95%µÄÖÃÐÅÇø¼ä. ½â´ð£º ²éÕý̬·Ö²¼±íµÃu¦Á/2=u0.025=1.96, Óɹ«Ê½(X¡¥-u¦Á/2S/n,X¡¥+u¦Á/2S/n), µÃµ½ (2.266¡À1.96¡Á1.93550), ¾¼òµ¥¼ÆËãÉÏʽ»¯Îª(1.730,2.802). ÓÚÊÇ£¬ÎÒÃÇÓÐÈçϽüËÆ½áÂÛ£º¸Ã¹«Ë¾µç³ØµÄƽ¾ùÊÙÃüµÄÖÃÐŶÈԼΪ95%µÄÖÃÐÅÇø¼äΪ(1.730,2.802). ϰÌâ22 ijӡȾ³§ÔÚÅäÖÆÒ»ÖÖȾÁÏʱ£¬ÔÚ40´ÎÊÔÑéÖгɹ¦ÁË34´Î£¬ÇóÅäÖÆ³É¹¦µÄ¸ÅÂÊpµÄÖÃÐŶÈΪ0.95µÄÖÃÐÅÇø¼ä. ½â´ð£º ×ÜÌåÊÇÊÔÑéµÄ·Ö²¼£¬pÊdzɹ¦ÂÊ. ÒÑÖªn=40, p=34/40, u0.025=1.96, ËùÒÔ£¬pµÄÖÃÐŶÈΪ0.95µÄÖÃÐÅÇø¼äΪ (p1,p2)¡Ö(p-u¦Á/2p(1-p)n,p+u¦Á/2p(1-p)n) =(3440-1.963440¡Á640/40,3440+1.963440¡Á640/40), ¼´(0.7378,0.9607). ϰÌâ23 Á½¼ÒµçÓ°¹«Ë¾³öÆ·µÄӰƬ·Åӳʱ¼äÈç±íËùʾ£¬¼ÙÉè·Åӳʱ¼ä¾ù·þÕý̬·Ö²¼£¬ÇóµçÓ°¹«Ë¾µÄӰƬ·Åӳʱ¼ä·½²î±ÈµÄÖÃÐŶÈΪ90%µÄÖÃÐÅÇø¼ä. ʱ¼ä/·ÖÖÓ ¹«Ë¾¢ñ 103 94 110 87 98 ¹«Ë¾¢ò 97 82 123 92 175 88 118 ½â´ð£º ÓÉËù¸øÊý¾ÝËã³ö x1¡¥=98.40,x2¡¥=110.71,s12=8.732,s22=32.192,n1=5,n2=7. ÒòΪÊÇÇó·½²î±ÈµÄÇø¼ä¹À¼Æ£¬¹ÊÑ¡ÓÃF·Ö²¼±äÁ¿£¬¼´ F=S12S22/¦Ò12¦Ò22¡«F(n1-1,n2-1). ¶ÔÓÚÖÃÐŶÈ1-¦Á, ȡ˫²à¸ÅÂÊÏàµÈµÄÖÃÐÅÇø¼äΪ (S12S22?1F¦Á/2(n1-1,n2-1),S12S22?F¦Á/2(n2-1,n1-1)). ±¾ÌâËù¸ø1-¦Á=0.90,¦Á=0.10,¦Á2=0.05,n1=5,n2=7. ²éF·Ö²¼±íµÃ F0.05(6,4)=6.16,F0.05(4,6)=4.53, s12s22=8,73232.192=0.0376, ÓÚÊǦÒ12¦Ò22µÄ0.90µÄÖÃÐÅÇø¼äΪ(0.073¡Á14.53,0.0736¡Á6.16), ¼´(0.016,0.453). ϰÌâ24 ¹«¹²Æû³µÕ¾ÔÚÒ»µ¥Î»Ê±¼äÄÚ(Èç°ëСʱ»òÒ»ÌìµÈ)µ½´ï³Ë¿ÍÊý·þ´Ó²´ËÉ·Ö²¼P(¦Ë), ¶Ô²»Í¬µÄ³µÕ¾£¬Ëù²»Í¬µÄ½ö½öÊDzÎÊý¦ËµÄȡֵ²»Í¬. ÏÖ¶ÔÒ»³ÇÊÐijһ¹«¹²Æû³µÕ¾½øÐÐÁË100¸öµ¥Î»Ê±¼äµÄµ÷²é£¬ÕâÀﵥλʱ¼äÊÇ20·ÖÖÓ£¬¼ÆËãµÃµ½Ã¿20·ÖÖÓÄÚÀ´µ½¸Ã³µÕ¾µÄ³Ë¿ÍÊýƽ¾ùÖµx¡¥=15.2ÈË£¬ÊÔÇó²ÎÊý¦ËµÄÖÃÐŶÈΪ95%µÄÖÃÐÅÇø¼ä. ½â´ð£º n=100,¦Á=0.05, u¦Á/2=u0.025=1.96, x¡¥=15.2, Ó¦Óù«Ê½(X¡¥-u¦Á/2X¡¥/n,X¡¥+u¦Á/2X¡¥/n), µÃ (x¡¥¡Àu¦Á/2x¡¥/n)=(15.2¡À1.9615.2/100)=(14.44,15.96), ¼´(14.44,15.96)Ϊ²ÎÊý¦ËµÄÖÃÐŶÈԼΪ95%µÄÖÃÐÅÇø¼ä. µÚÆßÕ ¼ÙÉè¼ìÑé 7.1 ¼ÙÉè¼ìÑéµÄ»ù±¾¸ÅÄî ϰÌâ1 Ñù±¾ÈÝÁ¿nÈ·¶¨ºó£¬ÔÚÒ»¸ö¼ÙÉè¼ìÑéÖУ¬¸ø¶¨ÏÔÖøË®Æ½Îª¦Á£¬Éè´ËµÚ¶þÀà´íÎóµÄ¸ÅÂÊΪ¦Â£¬Ôò±ØÓÐ(). (A)¦Á+¦Â=1; (B)¦Á+¦Â>1; (C)¦Á+¦Â<1; (D)¦Á+¦Â<2. ½â´ð£º Ӧѡ(D). µ±Ñù±¾ÈÝÁ¿nÈ·¶¨ºó£¬¦Á,¦Â²»ÄÜͬʱ¶¼ºÜС£¬¼´¦Á±äСʱ£¬¦Â±ä´ó£»¶ø¦Â±äСʱ£¬¦Á±ä´ó. ÀíÂÛÉÏ£¬×ÔȻϣÍû·¸ÕâÁ½Àà´íÎóµÄ¸ÅÂʶ¼ºÜС£¬µ«¦Á,¦ÂµÄ´óС¹ØÏµ²»ÄÜÈ·¶¨£¬²¢ÇÒÕâÁ½Àà´íÎó²»ÄÜͬʱ·¢Éú£¬¼´¦Á=1ÇÒ¦Â=1²»»á·¢Éú£¬¹ÊÑ¡(D). ϰÌâ2 Éè×ÜÌåX¡«N(¦Ì,¦Ò2), ÆäÖЦÒ2ÒÑÖª£¬ÈôÒª¼ìÑé¦Ì, ÐèÓÃͳ¼ÆÁ¿U=X¡¥-¦Ì0¦Ò/n. (1)Èô¶Ôµ¥±ß¼ìÑ飬ͳ¼Æ¼ÙÉèΪ H0:¦Ì=¦Ì0(¦Ì0ÒÑÖª), H1:¦Ì>¦Ì0, Ôò¾Ü¾øÇø¼äΪ £» (2)Èôµ¥±ß¼ÙÉèΪH0:¦Ì=¦Ì0,H1:¦Ì<¦Ì0, Ôò¾Ü¾øÇø¼äΪ (¸ø¶¨ÏÔÖøÐÔˮƽΪ¦Á, Ñù±¾¾ùֵΪX¡¥, Ñù±¾ ÈÝÁ¿Îªn, ÇҿɼÇu1-¦ÁΪ±ê×¼Õý̬·Ö²¼µÄ(1-¦Á)·ÖλÊý). ½â´ð£º Ó¦Ìî(1)U>u1-¦Á; (2)U ÈçºÎÀí½â¼ÙÉè¼ìÑéËù×÷³öµÄ¡°¾Ü¾øÔ¼ÙÉèH0¡±ºÍ¡°½ÓÊÜÔ¼ÙÉèH0¡±µÄÅжϣ¿ ½â´ð£º ¾Ü¾øH0ÊÇÓÐ˵·þÁ¦µÄ£¬½ÓÊÜH0ÊÇûÓгä·Ö˵·þÁ¦µÄ. ÒòΪ¼ÙÉè¼ìÑéµÄ·½·¨ÊǸÅÂÊÐÔÖʵķ´Ö¤·¨£¬×÷Ϊ·´Ö¤·¨¾ÍÊDZØÈ»Òª¡°ÍƳöì¶Ü¡±£¬²ÅÄܵóö¡°¾Ü¾øH0¡±µÄ½áÂÛ£¬ÕâÊÇÓÐ˵·þÁ¦µÄ£¬Èç¹û¡°ÍƲ»³öì¶Ü¡±£¬ÕâʱֻÄÜ˵¡°Ä¿Ç°»¹ÕÒ²»µ½¾Ü¾øH0µÄ³ä·ÖÀíÓÉ¡±£¬Òò´Ë¡°²»¾Ü¾øH0¡±»ò¡°½ÓÊÜH0¡±£¬ÕⲢûÓп϶¨H0Ò»¶¨³ÉÁ¢. ÓÉÓÚÑù±¾¹Û²ìÖµÊÇËæ»úµÄ£¬Òò´Ë¾Ü¾øH0£¬²»Òâζ×ÅH0ÊǼٵ쬽ÓÊÜH0Ò²²»Òâζ×ÅH0ÊÇÕæµÄ£¬¶¼´æÔÚ×Å´íÎó¾ö²ßµÄ¿ÉÄÜ. µ±Ô¼ÙÉèH0ÎªÕæ£¬¶ø×÷³öÁ˾ܾøH0µÄÅжϣ¬ÕâÀà¾ö²ß´íÎó³ÆÎªµÚÒ»Àà´íÎó£¬ÓÖ½ÐÆúÕæ´íÎó£¬ÏÔÈ»·¸ÕâÀà´íÎóµÄ¸ÅÂÊΪǰÊöµÄС¸ÅÂʦÁ:¦Á=P(¾Ü¾øH0|H0ÎªÕæ); ¶øÔ¼ÙÉèH0²»Õ棬ȴ×÷³ö½ÓÊÜH0µÄÅжϣ¬³ÆÕâÀà´íÎóΪµÚ¶þÀà´íÎó£¬ÓÖ³ÆÈ¡Î±´íÎó£¬Ëü·¢ÉúµÄ¸ÅÂʦÂΪ¦Â=P(½ÓÊÜH0|H0²»Õæ). ϰÌâ4 ·¸µÚÒ»Àà´íÎóµÄ¸ÅÂʦÁÓë·¸µÚ¶þÀà´íÎóµÄ¸ÅÂʦÂÖ®¼äÓкιØÏµ£¿ ½â´ð£º Ò»°ãÀ´Ëµ£¬µ±Ñù±¾ÈÝÁ¿¹Ì¶¨Ê±£¬Èô¼õÉÙ·¸Ò»Àà´íÎóµÄ¸ÅÂÊ£¬Ôò·¸ÁíÒ»Àà´íÎóµÄ¸ÅÂÊÍùÍù»áÔö´ó.ÒªËüÃÇͬʱ¼õÉÙ,Ö»ÓÐÔö¼ÓÑù±¾ÈÝÁ¿n. ÔÚʵ¼ÊÎÊÌâÖÐ,×ÜÊÇ¿ØÖÆ·¸µÚÒ»Àà´íÎóµÄ¸ÅÂʦÁ¶øÊ¹·¸µÚ¶þÀà´íÎóµÄ¸ÅÂʾ¡¿ÉÄÜС.¦ÁµÄ´óСÊÓ¾ßÌåʵ¼ÊÎÊÌâ¶ø¶¨£¬Í¨³£È¡¦Á=0.05,0.005µÈÖµ. ϰÌâ5 ÔÚ¼ÙÉè¼ìÑéÖУ¬ÈçºÎÀí½âÖ¸¶¨µÄÏÔÖøË®Æ½¦Á? ½â´ð£º ÎÒÃÇÏ£ÍûËù×÷µÄ¼ìÑé·¸Á½Àà´íÎóµÄ¸ÅÂʾ¡¿ÉÄܶ¼Ð¡£¬µ«Êµ¼ÊÉÏÕâÊDz»¿ÉÄܵÄ. µ±Ñù±¾ÈÝÁ¿n¹Ì¶¨Ê±£¬Ò»°ãµØ£¬¼õÉÙ·¸ÆäÖÐÒ»¸ö´íÎóµÄ¸ÅÂʾͻáÔö¼Ó·¸ÁíÒ»¸ö´íÎóµÄ¸ÅÂÊ. Òò´Ë£¬Í¨³£µÄ×÷·¨ÊÇÖ»ÒªÇ󷸵ÚÒ»Àà´íÎóµÄ¸ÅÂʲ»´óÓÚÖ¸¶¨µÄÏÔÖøË®Æ½¦Á, Òò¶ø¸ù¾ÝС¸ÅÂÊÔÀí£¬×îÖÕ½áÂÛΪ¾Ü¾øH0½ÏΪ¿É¿¿£¬¶ø×îÖÕÅжÏÁ¦½ÓÊÜH0Ôò²»´ó¿É¿¿£¬ÆäÔÒòÊDz»ÖªµÀ·¸µÚ¶þÀà´íÎóµÄ¸ÅÂʦ¾¿¾¹ÓжàÉÙ£¬ÇÒ¦ÁС£¬¦Â¾Í´ó£¬ËùÒÔͨ³£Óá°H0ÏàÈÝ¡±£¬¡°²»¾Ü¾øH0¡±µÈ´ÊÓïÀ´´úÌæ¡°½ÓÊÜH0¡±£¬¶ø¡°²»¾Ü¾øH0¡±»¹°üº¬ÓÐÔÙ½øÒ»²½×÷³éÑù¼ìÑéµÄÒâ˼. ϰÌâ6 ÔÚ¼ÙÉè¼ìÑéÖУ¬ÈçºÎÈ·¶¨Ô¼ÙÉèH0ºÍ±¸Ôñ¼ÙÉèH1? ½â´ð£º ÔÚʵ¼ÊÖУ¬Í¨³£°ÑÄÇЩÐèÒª×ÅÖØ¿¼ÂǵļÙÉèÊÓΪԼÙÉèH0£¬¶øÓëÖ®¶ÔÓ¦µÄ¼ÙÉèÊÓΪ±¸Ôñ¼ÙÉèH1. (1)Èç¹ûÎÊÌâÊÇÒª¾ö¶¨Ð·½°¸ÊÇ·ñ±ÈÔ·½°¸ºÃ£¬ÍùÍù½«Ô·½°¸È¡¼ÙÉ裬¶ø½«Ð·½°¸È¡Îª±¸Ôñ¼ÙÉ裻 (2)ÈôÌá³öÒ»¸ö¼ÙÉ裬¼ìÑéµÄÄ¿µÄ½ö½öÊÇΪÁËÅжÏÕâ¸ö¼ÙÉèÊÇ·ñ³ÉÁ¢£¬Õâʱֱ½ÓÈ¡´Ë¼ÙÉèΪԼÙÉèH0¼´¿É. ϰÌâ7 ¼ÙÉè¼ìÑéµÄ»ù±¾²½ÖèÓÐÄÄЩ? ½â´ð£º ¸ù¾Ý·´Ö¤·¨µÄ˼ÏëºÍС¸ÅÂÊÔÀí£¬¿É½«¼ÙÉè¼ìÑéµÄ²½Öè¹éÄÉÈçÏÂ: (1)¸ù¾ÝÎÊÌâµÄÒªÇó£¬Ìá³öÔÀí¼ÙÉèH0ºÍ±¸Ôñ¼ÙÉèH1. (2)¸ù¾Ý¼ìÑé¶ÔÏ󣬹¹Ôì¼ìÑéͳ¼ÆÁ¿T(X1,X2,?,Xn), ʹµ±H0ÎªÕæÊ±,TÓÐÈ·¶¨µÄ·Ö²¼. (3)Óɸø¶¨µÄÏÔÖøË®Æ½¦Á, ²éͳ¼ÆÁ¿TËù·þ´ÓµÄ·Ö²¼±í£¬¶¨³öÁÙ½çÖµ¦Ë, ʹ P(¨OT¨O>¦Ë)=¦Á, »ò P(T>¦Ë1)=P(T<¦Ë2)=¦Á/2, ´Ó¶øÇó³öH0µÄ¾Ü¾øÓò:¨OT¨O>¦Ë»òT>¦Ë1,T<¦Ë2. (4)ÓÉÑù±¾¹Û²ìÖµ¼ÆËãͳ¼ÆÁ¿TµÄ¹Û²ìÖµt. (5)×÷³öÅжϣ¬½«tµÄÖµÓëÁÙ½çÖµ±È½Ï´óС×÷³ö½áÂÛ: µ±t¡Ê¾Ü¾øÓòÁ¿Ê±£¬Ôò¾Ü¾øH0£¬·ñÔò£¬²»¾Ü¾øH0£¬¼´ÈÏΪÔÚÏÔÖøË®Æ½¦ÁÏ£¬H0Óëʵ¼ÊÇé¿ö²îÒì²»ÏÔÖø. ϰÌâ8 ¼ÙÉè¼ìÑéÓëÇø¼ä¹À¼ÆÓкÎÒìͬ? ½â´ð£º ¼ÙÉè¼ìÑéÓëÇø¼ä¹À¼ÆµÄÌá·¨Ë䲻ͬ£¬µ«½â¾öÎÊÌâµÄ;¾¶ÊÇÏàͨµÄ. ²ÎÊý¦ÈµÄÖÃÐÅˮƽΪ1-¦ÁµÄÖÃÐÅÇø¼ä¶ÔÓ¦ÓÚË«±ß¼ÙÉè¼ìÑéÔÚÏÔÖøÐÔˮƽ¦ÁϵĽÓÊÜÓò£»²ÎÊý¦ÈµÄÖÃÐÅˮƽΪ1-¦ÁµÄµ¥²àÖÃÐÅÇø¶ÔÓ¦ÓÚµ¥±ß¼ÙÉè¼ìÑéÔÚÏÔÖøÐÔˮƽ¦ÁϵĽÓÊÜÓò. ÔÚ×ÜÌåµÄ·Ö²¼ÒÑÖªµÄÌõ¼þÏ£¬¼ÙÉè¼ìÑéÓëÇø¼ä¹À¼ÆÊÇ´Ó²»Í¬µÄ½Ç¶È»Ø´ðͬһ¸öÎÊÌâ. ¼ÙÉè¼ìÑéÊÇÅбðÔ¼ÙÉèH0ÊÇ·ñ³ÉÁ¢£¬¶øÇø¼ä¹À¼Æ½â¾öµÄÊÇ¡°¶àÉÙ¡±(»ò·¶Î§), ǰÕßÊǶ¨ÐԵģ¬ºóÕßÊǶ¨Á¿µÄ. ϰÌâ9 ijÌ쿪¹¤Ê±£¬Ðè¼ìÑé×Ô¶¯°ü×°¹¤×÷ÊÇ·ñÕý³£. ¸ù¾ÝÒÔÍùµÄ¾Ñ飬Æä×°°üµÄÖÊÁ¿ÔÚÕý³£Çé¿öÏ·þ´ÓÕý̬·Ö²¼ N(100,1.52)(µ¥Î»:kg). ÏÖ³é²âÁË9°ü£¬ÆäÖÊÁ¿Îª: 99.3£¬98.7£¬100.5£¬101.2£¬98.3£¬99.7£¬99.5£¬102.0£¬100.5. ÎÊÕâÌì°ü×°»ú¹¤×÷ÊÇ·ñÕý³££¿½«ÕâÒ»ÎÊÌ⻯Ϊ¼ÙÉè¼ìÑéÎÊÌâ. д³ö¼ÙÉè¼ìÑéµÄ²½Öè(¦Á=0.05). ½â´ð£º (1)Ìá³ö¼ÙÉè¼ìÑéÎÊÌâH0:¦Ì=100, H1:¦Ì¡Ù100; (2)ѡȡ¼ìÑéͳ¼ÆÁ¿U:U=X¡¥-1001.59, H0³ÉÁ¢Ê±, U¡«N(0,1); (3)¦Á=0.05,u¦Á/2=1.96, ¾Ü¾øÓòW={¨Ou¨O>1.96}; (4)x¡¥¡Ö99.97,¨Ou¨O=0.06. Òò¨Ou¨O ϰÌâ10 Éè×ÜÌåX¡«N(¦Ì,1),X1,X2,?,XnÊÇÈ¡×ÔXµÄÑù±¾. ¶ÔÓÚ¼ÙÉè¼ìÑé H0:¦Ì=0,H1:¦Ì¡Ù0, È¡ÏÔÖøË®Æ½¦Á, ¾Ü¾øÓòΪW={¨Ou¨O>u¦Á/2}, ÆäÖÐu=nX¡¥, Çó: (1)µ±H0³ÉÁ¢Ê±, ·¸µÚÒ»Àà´íÎóµÄ¸ÅÂʦÁ0; (2)µ±H0²»³ÉÁ¢Ê±(Èô¦Ì¡Ù0), ·¸µÚ¶þÀà´íÎóµÄ¸ÅÂʦÂ. ½â´ð£º (1)X¡«N(¦Ì,1),X¡¥¡«N(¦Ì,1/n), ¹ÊnX¡¥=u¡«N(0,1). ¦Á0=P{¨Ou¨O>u¦Á/2¨O¦Ì=0}=1-P{-u¦Á/2¡Üu¡Üu¦Á/2} =1-[¦µ(u¦Á/2)-¦µ(-u¦Á/2)]=1-[(1-¦Á2)-¦Á2]=¦Á, ¼´·¸µÚÒ»Àà´íÎóµÄ¸ÅÂÊÊÇÏÔÖøË®Æ½¦Á. (2)µ±H0²»³ÉÁ¢£¬¼´¦Ì¡Ù0ʱ£¬·¸µÚ¶þÀà´íÎóµÄ¸ÅÂÊΪ ¦Â=P{¨Ou¨O¡Üu¦Á/2¨OE(X)=¦Ì} =P{-u¦Á/2¡Üu¡Üu¦Á/2¨OE(X)=¦Ì} =P{-u¦Á/2¡ÜnX¡¥¡Üu¦Á/2¨OE(X)=¦Ì} =P{-u¦Á/2-n¦Ì¡Ün(X¡¥-¦Ì)¡Üu¦Á/2-n¦Ì¨OE(X)=¦Ì} =¦µ(u¦Á/2-n¦Ì)-¦µ(-u¦Á/2-n¦Ì). ×¢1µ±¦Ì¡ú+¡Þ»ò¦Ì¡ú-¡Þʱ£¬¦Â¡ú0. Óɴ˿ɼû£¬µ±Êµ¼Ê¾ùÖµ¦ÌÆ«ÀëÔ¼ÙÉè½Ï´óʱ£¬·¸µÚ¶þÀà´íÎóµÄ¸ÅÂʺÜС£¬¼ìÑéЧ¹û½ÏºÃ. ×¢2µ±¦Ì¡Ù0µ«½Ó½üÓÚ0ʱ£¬¦Â¡Ö1-¦Á. Òò¦ÁºÜС£¬¹Ê·¸µÚ¶þÀà´íÎóµÄ¸ÅÂʺܴ󣬼ìÑéЧ¹û½Ï²î. 7.2 µ¥Õý̬×ÜÌåµÄ¼ÙÉè¼ìÑé ϰÌâ1 ÒÑ֪ijÁ¶Ìú³§ÌúË®º¬Ì¼Á¿·þ´ÓÕý̬·Ö²¼N(4.55,0.1082). ÏÖÔڲⶨÁË9¯ÌúË®£¬Æäƽ¾ùº¬Ì¼Á¿Îª4.484. Èç¹û¹À¼Æ·½²îûÓб仯£¬¿É·ñÈÏΪÏÖÔÚÉú²úµÄÌúˮƽ¾ùº¬Ì¼Á¿ÈÔΪ4.55(¦Á=0.05)? ½â´ð£º ±¾ÎÊÌâÊÇÔÚ¦Á=0.05ϼìÑé¼ÙÉè H0:¦Ì=4.55, H1:¦Ì¡Ù4.55. ÓÉÓÚ¦Ò2=0.1082ÒÑÖª£¬ËùÒÔ¿Éѡȡͳ¼ÆÁ¿ U=X¡¥-4.550.108/9, ÔÚH0³ÉÁ¢µÄÌõ¼þÏ£¬U¡«N(0,1), ÇҴ˼ìÑéÎÊÌâµÄ¾Ü¾øÓòΪ ¨OU¨O=¨OX¡¥-4.550.108/9¨O>u¦Á/2, ÕâÀï u=4.484-4.550.108/9¡Ö-1.833,u¦Á/2=1.96. ÏÔÈ» ¨Ou¨O=1.833<1.96=u¦Á/2. ˵Ã÷UûÓÐÂäÔھܾøÓòÖУ¬´Ó¶ø½ÓÊÜH0, ¼´ÈÏΪÏÖÔÚÉú²úÖ®Ìúˮƽ¾ùº¬Ì¼Á¿ÈÔΪ4.55. ϰÌâ2 ÒªÇóÒ»ÖÖÔª¼þƽ¾ùʹÓÃÊÙÃü²»µÃµÍÓÚ1000Сʱ£¬Éú²úÕß´ÓÒ»ÅúÕâÖÖÔª¼þÖÐËæ»ú³éÈ¡25¼þ£¬²âµÃÆäÊÙÃüµÄƽ¾ùֵΪ950Сʱ. ÒÑÖª¸ÃÖÖÔª¼þÊÙÃü·þ´Ó±ê×¼²îΪ¦Ò=100СʱµÄÕý̬·Ö²¼£¬ÊÔÔÚÏÔÖøÐÔˮƽ¦Á=0.05ÏÂÈ·¶¨ÕâÅúÔª¼þÊÇ·ñºÏ¸ñ£¿Éè×ÜÌå¾ùֵΪ¦Ì,¦Ìδ֪£¬¼´Ðè¼ìÑé¼ÙÉèH0:¦Ì¡Ý1000,H1:¦Ì<1000. ½â´ð£º ¼ìÑé¼ÙÉèH0:¦Ì¡Ý1000,H1:¦Ì<1000. ÕâÊǵ¥±ß¼ÙÉè¼ìÑéÎÊÌâ. ÓÉÓÚ·½²î¦Ò2=0.05, ¹ÊÓÃu¼ìÑé·¨. ¶ÔÓÚÏÔÖøÐÔˮƽ¦Á=0.05, ¾Ü¾øÓòΪ W={X¡¥-1000¦Ò/n<-u¦Á. ²é±ê×¼Õý̬·Ö²¼±í£¬µÃu0.05=1.645. ÓÖÖªn=25,x¡¥=950, ¹Ê¿É¼ÆËã³ö x¡¥-1000¦Ò/n=950-1000100/25=-2.5. ÒòΪ-2.5<-1.645, ¹ÊÔÚ¦Á=0.05ϾܾøH0, ÈÏΪÕâÅúÔª¼þ²»ºÏ¸ñ. ϰÌâ3 ´ò°ü»ú×°ÌÇÈë°ü£¬Ã¿°ü±ê×¼ÖØÎª100kg. ÿÌ쿪¹¤ºó£¬Òª¼ìÑéËù×°ÌǰüµÄ×ÜÌåÆÚÍûÖµÊÇ·ñºÏºõ±ê×¼ (100kg). ijÈÕ¿ª¹¤ºó£¬²âµÃ9°üÌÇÖØÈçÏÂ(µ¥Î»£ºkg): 99.3 98.7 100.5 101.2 98.3 99.7 99.5 102.1 100.5 ´ò°ü»ú×°ÌǵİüµÃ·þ´ÓÕý̬·Ö²¼£¬ÎʸÃÌì´ò°ü»ú¹¤×÷ÊÇ·ñÕý³£(¦Á=0.05)? ½â´ð£º ±¾ÎÊÌâÊÇÔÚ¦Á=0.05ϼìÑé¼ÙÉè H0:¦Ì=100,H1:¦Ì¡Ù100. ÓÉÓÚ¦Ò2δ֪£¬ËùÒÔ¿Éѡȡͳ¼ÆÁ¿T=X¡¥-100S/n, ÔÚH0³ÉÁ¢µÄÌõ¼þÏ£¬T¡«t(n-1), ÇҴ˼ìÑéÎÊÌâµÄ¾Ü¾øÓòΪ ¨OT¨O=¨OX¡¥-100S/n¨O>t¦Á/2(n-1), ÕâÀï t=x¡¥-100s/n¡Ö99.978-1001.2122/9¡Ö-0.0544, t0.025(8)=2.306. ÏÔÈ» ¨Ot¨O=0.0544<2.306=t0.025(8), ¼´tδÂäÔھܾøÓòÖУ¬´Ó¶ø½ÓÊÜH0, ¼´¿ÉÒÔÈÏΪ¸ÃÌì´ò°ü¹¤×÷Õý³£. ϰÌâ4 »úÆ÷°üװʳÑΣ¬¼ÙÉèÿ´üÑεľ»ÖØ·þ´ÓÕý̬·Ö²¼£¬¹æ¶¨Ã¿´ü±ê×¼º¬Á¿Îª500g, ±ê×¼²î²»µÃ³¬¹ý10g. ijÌ쿪¹¤ºó£¬Ëæ»ú³éÈ¡9´ü£¬²âµÃ¾»ÖØÈçÏÂ(µ¥Î»£ºg): 497, 507, 510, 475, 515, 484, 488, 524, 491, ÊÔÔÚÏÔÖøÐÔˮƽ¦Á=0.05ϼìÑé¼ÙÉ裺 H0:¦Ì=500,H1:¦Ì¡Ù500. ½â´ð£º x¡¥=499,s¡Ö16.031,n=9, t=(x¡¥-¦Ì0)sn=499-50016.0319=-0.1871, ¦Á=0.05, t0.025(8)=2.306. Òò¨Ot¨O ´ÓÇåÁ¹ÒûÁÏ×Ô¶¯ÊÛ»õ»ú£¬Ëæ»ú³éÑù36±£¬Æäƽ¾ùº¬Á¿Îª219(mL), ±ê×¼²îΪ14.2mL, ÔÚ¦Á=0.05µÄÏÔÖøÐÔˮƽÏ£¬ÊÔ¼ìÑé¼ÙÉ裺H0:¦Ì=¦Ì0=222,H1:¦Ì<¦Ì0=222. ½â´ð£º Éè×ÜÌåX¡«N(¦Ì,¦Ò2),X´ú±í×Ô¶¯ÊÛ»õ»úÊÛ³öµÄÇåÁ¹ÒûÁϺ¬Á¿£¬¼ìÑé¼ÙÉè H0:¦Ì=¦Ì0=222(mL), H1:¦Ì<222(mL). ÓɦÁ=0.05,n=36, ²é±íµÃt0.05(36-1)=1.6896, ¾Ü¾øÓòΪ W={t=x¡¥-¦Ì0s/n<-t¦Á(n-1). ¼ÆËãtÖµ²¢Åжϣº t=219-22214.2/36¡Ö-1.27>-1.6896, ϰÌâ6 ijÖÖµ¼Ïߵĵç×è·þ´ÓÕý̬·Ö²¼N(¦Ì,0.0052). ½ñ´ÓÐÂÉú²úµÄÒ»Åúµ¼ÏßÖгéÈ¡9¸ù£¬²âÆäµç×裬µÃs=0.008¦¸, ¶ÔÓÚ¦Á=0.05, ÄÜ·ñÈÏΪÕâÅúµ¼Ïßµç×èµÄ±ê×¼²îÈÔΪ0.005? ½â´ð£º ±¾ÎÊÌâÊÇÔÚ¦Á=0.05ϼìÑé¼ÙÉè H0:¦Ò2=0.0052, H1:¦Ò2¡Ù0.0052. ѡȡͳ¼ÆÁ¿¦Ö2=n-1¦Ò2S2, ÔÚH0³ÉÁ¢µÄÌõ¼þÏ£¬ ¦Ö2¡«¦Ö2(n-1), ÇҴ˼ìÑéÎÊÌâµÄ¾Ü¾øÓòΪ ¦Ö2>¦Ö¦Á/22(n-1)»ò¦Ö2<¦Ö1-¦Á/22(n-1). ÕâÀï ¦Ö2=9-10.0052s2=80.0052¡Á0.0082=20.48, ¦Ö0.9752(8)=2.18,¦Ö0.0252(8)=17.5. ÏÔÈ»¦Ö2ÂäÔھܾøÓòÖУ¬´Ó¶ø¾Ü¾øH0, ¼´²»ÄÜÈÏΪÕâÅúµ¼Ïßµç×èµÄ±ê×¼²îÈÔΪ0.005. ϰÌâ7 ij³§Éú²úµÄÍË¿£¬ÒªÇóÆäÕÛ¶ÏÁ¦µÄ·½²î²»³¬¹ý16N2. ½ñ´ÓijÈÕÉú²úµÄÍË¿ÖÐËæ»ú³éÈ¡ÈÝÁ¿Îª9µÄÑù±¾£¬²âµÃÆäÕÛ¶ÏÁ¦ÈçÏÂ(µ¥Î»£ºN): 289, 286, 285, 286, 285, 284, 285, 286, 298, 292 Éè×ÜÌå·þ´ÓÕý̬·Ö²¼£¬ÎʸÃÈÕÉú²úµÄÍÏßµÄÕÛ¶ÏÁ¦µÄ·½²îÊÇ·ñ·ûºÏ±ê×¼(¦Á=0.05)? ½â´ð£º ¼ìÑéÎÊÌâΪ H0:¦Ò2¡Ü16, H1:¦Ò2>16, n=9, s2¡Ö20.3611, ¦Ö2=8¡Ás216¡Ö10.181, ¦Á=0.05, ¦Ö0.052(8)=15.507. Òò¦Ö2<¦Ö0.052(8)=15.507, ¹Ê½ÓÊÜH0, ¿ÉÈÏΪÍË¿µÄÕÛ¶ÏÁ¦µÄ·½²î²»³¬¹ý16N2. ϰÌâ8 ¹ýÈ¥¾ÑéÏÔʾ£¬¸ßÈýѧÉúÍê³É±ê×¼¿¼ÊÔµÄʱ¼äΪһÕý̬±äÁ¿£¬Æä±ê×¼²îΪ6min. ÈôËæ»úÑù±¾Îª20λѧÉú£¬Æä±ê×¼²îΪs=4.51, ÊÔÔÚÏÔÖøÐÔˮƽ¦Á=0.05Ï£¬¼ìÑé¼ÙÉ裺 H0:¦Ò¡Ý6,H1:¦Ò<6. ½â´ð£º H0:¦Ò¡Ý6,H1:¦Ò<6. ¦Á=0.05,n-1=19,s=4.51,¦Ö0.952(19)=10.117. ¾Ü¾øÓòΪW={¦Ö2<10.117}. ¼ÆËã¦Ö2Öµ ¦Ö2=(20-1)¡Á4.51262¡Ö10.74. ÒòΪ10.74>10.117, ¹Ê½ÓÊÜH0, ÈÏΪ¦Ò¡Ý6. ϰÌâ9 ²â¶¨Ä³ÖÖÈÜÒºÖеÄË®·Ö£¬ËüµÄ10¸ö²â¶¨Öµ¸ø³ös=0.037%, Éè²â¶¨Öµ×ÜÌå·þ´ÓÕý̬·Ö²¼£¬¦Ò2Ϊ×ÜÌå·½²î£¬ ¦Ò2δ֪£¬ÊÔÔÚ¦Á=0.05ˮƽϼìÑé¼ÙÉ裺 H0:¦Ò¡Ý0.04%,H1:¦Ò<0.04%. ½â´ð£º ÔÚ¦Á=0.05Ï£¬¾Ü¾øÓòΪ W={(n-1)S2¦Ò02<¦Ö1-¦Á2(9). ²é¦Ö2·Ö²¼±íµÃ¦Ö0.952(9)=3.325. ¼ÆËãµÃ (n-1)s2¦Ò02=(10-1)¡Á(0.037\\per)2(0.04\\per)2¡Ö7.7006>3.325, δÂäÈë¾Ü¾øÓò£¬¹Ê½ÓÊÜH0. 7.3 Ë«Õý̬×ÜÌåµÄ¼ÙÉè¼ìÑé ϰÌâ1 ÖÆÔì³§¼ÒÐû³Æ£¬ÏßAµÄƽ¾ùÕÅÁ¦±ÈÏßBÖÁÉÙÇ¿120N, Ϊ֤ʵÆä˵·¨£¬ÔÚͬÑùÇé¿öϲâÊÔÁ½ÖÖÏ߸÷50Ìõ.ÏßAµÄƽ¾ùÕÅÁ¦x¡¥=867N, ±ê×¼²îΪ¦Ò1=62.8N; ¶øÏßBµÄƽ¾ùÕÅÁ¦Îªy¡¥=778N, ±ê×¼²îΪ¦Ò2=56.1N. ÔÚ ¦Á=0.05µÄÏÔÖøÐÔˮƽÏ£¬ÊÔ¼ìÑé´ËÖÆÔì³§¼ÒµÄ˵·¨. ½â´ð£º H0:¦Ì1-¦Ì2=120,H1:¦Ì1-¦Ì2<120. ¦Á=0.05,u0.05=1.645. ¾Ü¾øÓòΪ W={u=x¡¥-y¡¥-120¦Ò12n1+¦Ò22n2<-u¦Á. ÓÉx¡¥=867,y¡¥=778,n1=n2=50, ¦Ò12=(62.8)2,¦Ò22=(56.1)2, µÃ u=867-778-120(62.8)250+(56.1)250¡Ö-3111.91¡Ö-2.60. ÒòΪ-2.60<-1.645, ¹Ê¾Ü¾øH0, ÈÏΪ¦Ì1-¦Ì2<120, ¼´³§¼ÒµÄ˵·¨²»¶Ô. ϰÌâ2 Óû֪ijÐÂѪÇåÊÇ·ñÄÜÒÖÖÆ°×ѪÇò¹ý¶àÖ¢£¬Ñ¡ÔñÒÑ»¼¸Ã²¡µÄÀÏÊó9Ö»£¬²¢½«ÆäÖÐ5ֻʩÓè´ËÖÖѪÇ壬ÁíÍâ4Ö»Ôò²»È».´ÓʵÑ鿪ʼ£¬Æä´æ»îÄêÏÞ±íʾÈçÏ£º ½ÓÊÜѪÇå 2.1,5.3,1.4,4.6,0.9 δ½ÓÊÜѪÇå 1.9,0.5,2.8,3.1 ¼ÙÉèÁ½×ÜÌå¾ù·þ´Ó·½²îÏàͬµÄÕý̬·Ö²¼£¬ÊÔÔÚÏÔÖøÐÔˮƽ¦Á=0.05ϼìÑé´ËÖÖѪÇåÊÇ·ñÓÐЧ£¿ ½â´ð£º Éè¦Ì1£¬¦Ì2·Ö±ðΪÀÏÊó½ÓÊܺÍδ½ÓÊÜѪÇåµÄƽ¾ù´æ»îÄêÏÞ¡£Ôò¼ìÑé¼ÙÉèH0:¦Ì1-¦Ì2=0,H1:¦Ì1-¦Ì2>0. Êôµ¥±ß¼ìÑéÎÊÌâ. ¶Ô¸ø¶¨µÄ¦Á=0.05, ¾Ü¾øÓòΪ W={x1¡¥-x2¡¥-0sw1n1+1n2>t¦Á(n1+n2-2). ÓÉx1¡¥=2.86,x2¡¥=2.075,s1¡Ö1.971,s2¡Ö1.167, ¿É¼ÆËã³ö sw=(5-1)¡Á(1.971)2+(4-1)¡Á(1.167)25+4-2¡Ö1.674. ²é±íµÃt0.005(7)=1.895. ËãµÃ t=2.86-2.075-01.67415+14¡Ö0.699<1.895. ÒòΪ0.699<1.895, ¹Ê²»¾Ü¾øH0, ÈÏΪ´ËÒ©ÎÞЧ. ϰÌâ3 ¾ÝÏÖÔÚµÄÍÆ²â£¬°«¸ö×ÓµÄÈ˱ȸ߸ö×ÓµÄÈËÊÙÃüÒª³¤Ò»Ð©.ÏÂÃæ¸ø³öÃÀ¹ú31¸ö×ÔÈ»ËÀÍöµÄ×ÜͳµÄÊÙÃü£¬½«ËûÃÇ·ÖΪ°«¸ö×ÓÓë¸ß¸ö×Ó2À࣬ÁбíÈçÏ£º °«¸ö×Ó×Üͳ 85 79 67 90 80 ¸ß¸ö×Ó×Üͳ 68 53 63 70 88 74 64 66 60 60 78 71 67 90 73 71 77 72 57 78 67 56 63 64 83 65 ¼ÙÉè2¸öÊÙÃü×ÜÌå¾ù·þ´ÓÕý̬·Ö²¼ÇÒ·½²îÏàµÈ£¬ÊÔÎÊÕâЩÊý¾ÝÊÇ·ñ·ûºÏÉÏÊöÍÆ³Â³öÍÆ²â(¦Á=0.05)? ½â´ð£º Éè¦Ì1£¬¦Ì2·Ö±ðΪ°«¸ö×ÓÓë¸ß¸ö×Ó×ÜͳµÄƽ¾ùÊÙÃü£¬Ôò¼ìÑéÎÊÌâΪ H0:¦Ì1¡Ü¦Ì2,H1:¦Ì1>¦Ì2, n1=5,x¡¥=80.2,s1¡Ö8.585, n2=26,y¡¥¡Ö69.15,s2¡Ö9.315, sw=4¡Á8.5852+9.315229¡Ö9.218, n1n2n1+n2¡Ö2.048, t=(80.2-69.15)9.218¡Á2.048¡Ö2.455, ¦Á=0.05,t0.05(29)=1.6991, Òòt>t0.05(29)=1.6991, ¹Ê¾Ü¾øH0, ÈÏΪ°«¸ö×Ó×ÜͳµÄÊÙÃü±È¸ß¸ö×Ó×ÜͳÊÙÃü³¤. ϰÌâ4 ÔÚ20ÊÀ¼Í70Äê´úºóÆÚÈËÃÇ·¢ÏÖ£¬ÄðÔìÆ¡¾ÆÊ±£¬ÔÚÂóÑ¿¸ÉÔï¹ý³ÌÖÐÐγÉÖ°©ÎïÖÊÑÇÏõ»ù¶þ¼×°·(NDMA).µ½ÁË20ÊÀ¼Í80Äê´ú³õÆÚ£¬ÈËÃÇ¿ª·¢ÁËÒ»ÖÖеÄÂóÑ¿¸ÉÔï¹ý³Ì£¬ÏÂÃæ¸ø³öÁË·Ö±ðÔÚС¢ÀÏÁ½ÖÖ¹ý³ÌÖÐÐγɵÄNDMAº¬Á¿(ÒÔ10ÒÚ·ÝÖеķÝÊý¼Æ): ÀϹý³Ì 645565564674 йý³Ì 212210321013 ÉèÁ½Ñù±¾·Ö±ðÀ´×ÔÕý̬×ÜÌ壬ÇÒÁ½×ÜÌåµÄ·½²îÏàµÈ£¬µ«²ÎÊý¾ùδ֪. Á½Ñù±¾¶ÀÁ¢. ·Ö±ðÒÔ¦Ì1,¦Ì2¼Ç¶ÔÓ¦ÓÚÀÏ¡¢Ð¹ý³ÌµÄ×ÜÌåµÄ¾ùÖµ£¬ÊÔ¼ìÑé¼ÙÉè(È¡¦Á=0.05): H0:¦Ì1-¦Ì2¡Ü2,H1:¦Ì1-¦Ì2>2. ½â´ð£º ¼ìÑé¼ÙÉè H0:¦Ì1-¦Ì2¡Ü2,H1:¦Ì1-¦Ì2>2. ÉèÀϹý³ÌÖÐÐγɵÄNDMAº¬Á¿ÎªX¡«N(¦Ì1,¦Ò12), йý³ÌÖÐÐγɵÄNDMAº¬Á¿ÎªY¡«N(¦Ì2,¦Ò22). ÒÑÖª¦Ò12=¦Ò22=¦Ò2, µ«Î´Öª£¬n1=n2=12. ²ÉÓÃt¼ìÑé·¨£¬¦Á=0.05, ËãµÃ x¡¥=5.25, y¡¥=1.5, s12¡Ö0.9318, s22=1, sw¡Ö0.9828, ¾Ü¾øÓòΪ W={x¡¥-y¡¥-2sw1n1+1n2>t¦Á(n1+n2-2). ²ét·Ö²¼±íµÃt0.05(22)=1.7171, ¼ÆËãµÃ 5.25-1.5-20.9828¡Á1/2+1/12¡Ö4.3616>1.7171, ¹Ê¾Ü¾øH0, ÈÏΪС¢ÀϹý³ÌÖÐÐγɵÄNDMAƽ¾ùº¬Á¿²î´óÓÚ2. ϰÌâ5 ÓÐÁ½Ì¨³µ´²Éú²úͬһÖÖÐͺŵĹöÖé. ¸ù¾Ý¹ýÈ¥µÄ¾Ñ飬¿ÉÒÔÈÏΪÕâÁ½Ì¨³µ´²Éú²úµÄ¹öÖéµÄÖ±¾¶¶¼·þ´ÓÕý̬·Ö²¼. ÏÖÒª±È½ÏÁ½Ì¨³µ´²ËùÉú²ú¹öÖéµÄÖ±¾¶µÄ·½²î£¬·Ö±ð³é³ö8¸öºÍ9¸öÑùÆ·£¬²âµÃ¹öÖéµÄÖ±¾¶ÈçÏÂ(µ¥Î»:mm). ¼×³µ´²xi:15.0 14.5 15.2 15.5 14.8 15.1 15.2 14.8 ÒÒ³µ´²yi:15.2 15.0 14.8 15.2 15.0 15.0 14.8 15.1 14.8 ÎÊÒÒ³µ´²²úÆ·µÄ·½²îÊÇ·ñ±È¼×³µ´²µÄС(¦Á=0.05)? ½â´ð£º ÒÔX,Y·Ö±ð±íʾ¼×£¬ÒÒ¶þ³µ´²²úÆ·Ö±¾¶. X¡«N(¦Ì1,¦Ò12),Y¡«N(¦Ì2,¦Ò22), X,Y¶ÀÁ¢. ¼ìÑé¼ÙÉèH0:¦Ò12=¦Ò22,H1:¦Ò22<¦Ò22. ÓÃF¼ìÑé·¨, ÔÚH0³ÉÁ¢Ê± F=S12S22¡«F(n1-1,n2-1). ÓÉÒÑÖªÊý¾ÝËãµÃ x¡¥¡Ö15.01,y¡¥¡Ö14.99,s12¡Ö0.0955,s22¡Ö0.0261, n1=8,n2=9,¦Á=0.05. ¾Ü¾øÓòΪR¦Á={F>F¦Á(n1-1,n2-1)}. ²éF·Ö²¼±íµÃF0.05(8-1,9-1)=3.50. ¼ÆËãFÖµF=s12/s22=0.0955/0.0261¡Ö3.66. ÒòΪ3.66>3.50, ¹ÊÓ¦·ñ¶¨H0, ¼´ÈÏΪÒÒ³µ´²²úÆ·µÄÖ±¾¶µÄ·½²î±È¼×³µ´²µÄС. ϰÌâ6 ijµÆÅݳ§²ÉÓÃÒ»Ïîй¤ÒÕµÄǰºó£¬·Ö±ð³éÈ¡10¸öµÆÅݽøÐÐÊÙÃüÊÔÑé. ¼ÆËãµÃµ½:²ÉÓÃй¤ÒÕǰµÆÅÝÊÙÃüµÄÑù±¾¾ùֵΪ2460Сʱ. Ñù±¾±ê×¼²îΪ56Сʱ£»²ÉÓÃй¤ÒÕºóµÆÅÝÊÙÃüµÄÑù±¾¾ùֵΪ2550Сʱ£¬Ñù±¾±ê×¼²îΪ48Сʱ. ÉèµÆÅݵÄÊÙÃü·þ´ÓÕý̬·Ö²¼£¬ÊÇ·ñ¿ÉÒÔÈÏΪ²ÉÓÃй¤ÒÕºóµÆÅÝµÄÆ½¾ùÊÙÃüÓÐÏÔÖøÌá¸ß(¦Á=0.01)? ½â´ð£º (1)¼ìÑé¼ÙÉèH0:¦Ò12=¦Ò22, H1:¦Ò12¡Ù¦Ò22. Ӧѡȡ¼ìÑéͳ¼ÆÁ¿F=S12/S22, ÈôH0Õæ, ÔòF¡«F(m-1,n-1); ¶ÔÓÚ¸ø¶¨µÄ¼ìÑéˮƽ¦Á=0.01, ²é×ÔÓɶÈΪ(9,9)µÄF·Ö²¼±íµÃ F0.005(9,9)=6.54; ÒÑÖªm=n=10,s1=56,s2=48, Óɴ˵Ãͳ¼ÆÁ¿FµÄ¹Û²ìֵΪ F=562/482¡Ö1.36; ÒòΪF (2)¼ìÑé¼ÙÉèH0¡ä:¦Ì1=¦Ì2,H1¡ä:¦Ì1<¦Ì2. °´ÉÏÊö¹ØÓÚË«×ÜÌå·½²îµÄ¼ÙÉè¼ìÑéµÄ½áÂÛÖªÕâÁ½¸ö×ÜÌåµÄ·½²îδ֪µ«ÏàµÈ,¦Ò12=¦Ò22, ËùÒÔӦѡȡ¼ìÑéͳ¼ÆÁ¿: T=X¡¥-Y¡¥(m-1)S12+(n-1)S22m+n-2(1m+1n), ÈôH0¡äÕæ£¬ÔòT¡«t(m+n-2); ¶Ô¸ø¶¨µÄ¼ìÑéˮƽ¦Á=0.01, ²é×ÔÓɶÈΪm+n-2=18µÄt·Ö²¼±íµÃÁÙ½çÖµ t¦Á(m+n-2)=t0.01(18)=2.55, ¹Ê½ÓÊÜÓòΪ{T>-2.55}; ÒÑÖªm=n=10,x¡¥=2460,y¡¥=2550,s1=56,s2=48, Óɴ˵Ãͳ¼ÆÁ¿TµÄ¹Û²âֵΪT¡Ö-3.86; ÒòΪt<-t0.01(18)=-2.55, ËùÒԾܾøÔ¼ÙÉèH0¡ä. ¶ø½ÓÊܱ¸Ôñ¼ÙÉèH1¡ä, ¼´ÈÏΪ²ÉÓÃй¤ÒÕºóµÆÅÝµÄÆ½¾ùÊÙÃüÏÔÖøÌá¸ß. ϰÌâ7 Ëæ»úµØÑ¡ÁË8¸öÈË£¬·Ö±ð²âÁ¿ÁËËûÃÇÔÚÔ糿Æð´²Ê±ºÍÍíÉϾÍÇÞʱµÄÉí¸ß(cm), µÃµ½ÒÔÏÂÊý¾Ý: ÐòºÅ 1 2 3 4 5 6 7 8 ÔçÉÏ(xi) 172 ÍíÉÏ(yi) 172 168 180 181 160 163 165 177 167 177 179 159 161 166 175 Éè¸÷¶ÔÊý¾ÝµÄ²îZiÊÇÀ´×ÔÕý̬×ÜÌåN(¦Ìz,¦Òz2)µÄÑù±¾,¦ÌZ,¦Òz2¾ùδ֪£¬ÎÊÊÇ·ñ¿ÉÒÔÈÏΪÔ糿µÄÉí¸ß±ÈÍíÉϵÄÉí¸ßÒª¸ß(¦Á=0.05)? ½â´ð£º ÉèÔç¡¢ÍíÉí¸ß²îZ¡«N(¦Ìz,¦Òz2), ¼ìÑé¼ÙÉè H0:¦Ìz=0,H1:¦Ìz>0, zi=xi-yi=0,1,3,2,1,2,-1,2, n=8,¦Á=0.05, ËãµÃz¡¥=1.25,s=1.282. ¾Ü¾øÓòΪW={z¡¥-0s/n>t¦Á(n-1). ²ét·Ö²¼±íµÃt0.05(7)=1.8946. ¼ÆËãtÖµ t=1.251.282/8=2.755>1.8946, ¹Ê·ñ¶¨H0, ÈÏΪÔ糿±ÈÍíÉÏÉí¸ßÒª¸ß. ϰÌâ8 ÓÃ5¸öº¬ÌúÎïÖʵÄÑù±¾×öʵÑ飬ÒÔ¾ö¶¨»¯Ñ§·ÖÎöºÍX¹â·ÖÎö¶ÔÌúº¬Á¿´óСÊÇ·ñÓвîÒì. ÿ¸öÑù±¾·ÖΪÁ½¸öСÑù±¾£¬ÒÔÁ½ÖÖ·ÖÎö·½·¨×ö¶Ô±ÈʵÑ飬µÃµ½ÈçÏÂÊý¾Ý: Ñù±¾i 1 2 3 4 5 X¹â·ÖÎöxi 2.0 2.0 2.3 2.1 2.4 »¯Ñ§·ÖÎöyi 2.2 1.9 2.5 2.3 2.4 ¼ÙÉèÁ½×ÜÌå¾ù·þ´ÓÕý̬·Ö²¼£¬ÊÔÔÚ¦Á=0.05µÄÏÔÖøÐÔˮƽÏ£¬¼ìÑéÁ½ÖÖ·ÖÎö·½·¨ËùµÃµÄƽ¾ùÖµÊÇ·ñÏàͬ. ½â´ð£º ÓÃͬһ¿éÑù±¾Ò»·ÖΪ¶þ£¬ÓÃÁ½ÖÖ·ÖÎö·½·¨×ö¶Ô±ÈÊÔÑ飬ÆäÊý¾ÝÖ®²î¼´·´Ó³ÁËÁ½ÖÖ·ÖÎö·½·¨µÄ²îÒì. Éè²îÖµZ·þ´ÓÕý̬·Ö²¼£¬Z¡«N(¦Ìz,¦Òz2), ÆäȡֵΪ zi=xi-yi -0.2 ÈôÁ½ÖÖ·½·¨ÎÞ²îÒ죬Ôò¦Ìz=0. ¼ìÑé¼ÙÉè H0:¦Ìz=0,H1:¦Ìz¡Ù0. ÓÉÒÑÖªÊýÖµËãµÃz¡¥=-0.1,sz¡Ö0.141,n=5. 0.1 -0.2 -0.2 0 ¦Á=0.05, ²ét·Ö²¼±íµÃt0.025(5-1)=2.776, ËùÒԾܾøÓòΪ W={t>2.776»òt<-2.776}. ¼ÆËãtÖµ t=z¡¥-0sz/n=-0.1-00.141/5¡Ö-1.59>-2.776, ¹Ê½ÓÊÜH0:¦Ìz=0, ¼´ÔÚ¦Á=0.05Ï£¬ÈÏΪÁ½ÖÖ·ÖÎö·½·¨ËùµÃµÄ¾ùÖµ½á¹ûÏàͬ. 7.4 ¹ØÓÚÒ»°ã×ÜÌåÊýѧÆÚÍûµÄ¼ÙÉè¼ìÑé ϰÌâ1 ÉèÁ½×ÜÌåX,Y·Ö±ð·þ´Ó²´ËÉ·Ö²¼P(¦Ë1),P(¦Ë2), ¸ø¶¨ÏÔÖøÐÔˮƽ¦Á, ÊÔÉè¼ÆÒ»¸ö¼ìÑéͳ¼ÆÁ¿£¬Ê¹Ö®ÄÜÈ·¶¨¼ìÑé H0:¦Ë1=¦Ë2,H1:¦Ë1¡Ù¦Ë2 µÄ¾Ü¾øÓò£¬²¢ËµÃ÷Éè¼ÆµÄÀíÂÛÒÀ¾Ý. ½â´ð£º Òò·ÇÕý̬×ÜÌ壬¹ÊÒËÓôóÑùͳ¼Æ£¬Éè X¡¥=1n1¡Æi=1n1Xi,S12=1n1-1¡Æi=1n1(Xi-X¡¥)2; Y¡¥=1n2¡Æi=1n2Yi,S22=1n2-1¡Æi=1n2(Yi-Y¡¥)2. \\because (X¡¥-Y¡¥)-(¦Ë1-¦Ë2)S12n1+S22n2¡úN(0,1) ¡à¿ÉÑ¡ÓÃÑù±¾º¯Êýu=(X¡¥-Y¡¥)-(¦Ë1-¦Ë2)S12n1+S22n2×÷Ϊ¾Ü¾øÓòµÄ¼ìÑéͳ¼ÆÁ¿. ϰÌâ2 Éèij¶Î¸ßËÙ¹«Â·ÉÏÆû³µÏÞÖÆËÙ¶ÈΪ104.6km/h, ÏÖ¼ìÑén=85Á¾Æû³µµÄÑù±¾£¬²â³öƽ¾ù³µËÙΪ x¡¥=106.7km/h, ÒÑÖª×ÜÌå±ê×¼²îΪ¦Ò=13.4km/h, µ«²»Öª×ÜÌåÊÇ·ñ·þ´ÓÕý̬·Ö²¼. ÔÚÏÔÖøÐÔˮƽ¦Á=0.05Ï£¬ ÊÔ¼ìÑé¸ßËÙ¹«Â·ÉÏµÄÆû³µÊÇ·ñ±ÈÏÞÖÆËÙ¶È104.6km/hÏÔÖøµØ¿ì£¿ ½â´ð£º Éè¸ßËÙ¹«Â·ÉϵijµËÙÎªËæ»ú±äÁ¿X, ½üËÆÓÐ X¡«N(¦Ì,¦Ò2),¦Ò=13.4km/h, Òª¼ìÑé¼ÙÉè H0:¦Ì=¦Ì0=104.6,H1:¦Ì>104.6. ¦Á=0.05,n=85,u¦Á=u0.05=1.645. ¾Ü¾øÓòW={u=x¡¥-¦Ì0¦Ò/n>u¦Á. ÓÉx¡¥=106.7,¦Ò=13.4,¦Ì0=104.6,n=85µÃ u=106.7-104.613.4/85¡Ö1.44<1.645. ÒòΪ1.44<1.645, ËùÒÔ½ÓÊÜH0, ¼´Òª¦Á=0.05ÏÔÖøÐÔˮƽÏ£¬Ã»ÓÐÃ÷ÏÔµÄÖ¤¾Ý˵Ã÷Æû³µÐÐÊ»¿ìÓÚÏÞÖÆËÙ¶È. ϰÌâ3 ijҩƷ¹ã¸æÉÏÉù³Æ¸ÃÒ©Æ·¶ÔijÖÖ¼²²¡ºÍÖÎÓúÂÊΪ90%, Ò»¼ÒÒ½Ôº¶Ô¸ÃÖÖÒ©Æ·ÁÙ´²Ê¹ÓÃ120Àý£¬ÖÎÓú85ÈË£¬ÎʸÃÒ©Æ·¹ã¸æÊÇ·ñÕæÊµ(¦Á=0.02)? ½â´ð£º Éè¸ÃÒ©Æ·¶ÔijÖÖ¼²²¡µÄÖÎÓúÂÊΪp, Ëæ»ú±äÁ¿XΪ X={1,ÁÙ´²ÕßʹÓøÃÒ©Æ·ÖÎÓú0,·´Ö® ÔòX¡«b(1,p), ÎÊÌâ¸Ã¹é½áΪ¼ìÑé¼ÙÉ裺 H0:p=0.9,H1:p¡Ù0.9. ÓÉÓÚn=120×ã¹»´ó£¬¿ÉÒÔÓÃu¼ìÑé·¨£¬Ëù¸øÑùÖµ(x1,x2,?,x120)ÖÐÓÐ85¸ö1£¬35¸ö0£¬ËùÒÔ x¡¥=1120¡Æi=1120xi=1120¡Æi=1851=85120¡Ö0.71, ÓÖp0=0.9, ÒÔÖ®´úÈëͳ¼ÆÁ¿UµÃUµÄ¹Û²ìֵΪ ¨Ou¨O=¨O0.71-0.9¨O0.9¡Á0.1120=6.94>u0.01=2.33, ¹Ê¾Ü¾øH0, ¼´ÈÏΪ¸ÃÒ©Æ·²»ÕæÊµ. ϰÌâ4 һλÖÐѧУ³¤ÔÚ±¨Ö½ÉÏ¿´µ½ÕâÑùµÄ±¨µÀ£º¡°ÕâÒ»³ÇÊеijõÖÐѧÉúƽ¾ùÿÖÜ¿´8СʱµçÊÓ.¡±ËýÈÏΪËýËùÁìµ¼µÄѧУ£¬Ñ§Éú¿´µçÊÓʱ¼äÃ÷ÏÔСÓÚ¸ÃÊý×Ö. Ϊ´Ë£¬ËýÏòËýµÄѧУµÄ100Ãû³õÖÐѧÉú×÷Á˵÷²é£¬µÃ֪ƽ¾ùÿÖÜ¿´µçÊÓµÄʱ¼äx¡¥=6.5Сʱ£¬Ñù±¾±ê×¼²îΪs=2Сʱ£¬ÎÊÊÇ·ñ¿ÉÒÔÈÏΪÕâλУ³¤µÄ¿´·¨ÊǶԵÄ(¦Á=0.05)? ½â´ð£º ¼ìÑé¼ÙÉèH0:¦Ì=8,H1:¦Ì<8. ÓÉÓÚn=100, ËùÒÔT=X¡¥-¦ÌS/n½üËÆ·þ´ÓN(0,1)·Ö²¼£¬¦Á=0.05,u0.05=1.645. ÓÖÖªx¡¥=6.5,s=2, ¹Ê¼ÆËãµÃ t=6.5-82/100=-7.5, ·ñ¶¨ÓòW={X¡¥-8S/n<-u0.05. ÒòΪ-7.5<-1.645, ¹Ê·ñ¶¨H0, ÈÏΪÕâλУ³¤µÄ¿´·¨ÊǶԵÄ. ϰÌâ5 ÒÑ֪ijÖÖµç×ÓÔª¼þµÄʹÓÃÊÙÃüX(h)·þ´ÓÖ¸Êý·Ö²¼e(¦Ë), ³é²é100¸öÔª¼þ£¬µÃÑù±¾¾ùÖµx¡¥=950(h), ÄÜ·ñÈÏΪ²ÎÊý¦Ë=0.001(¦Á=0.05)? ½â´ð£º ÓÉÌâÒâÖªX¡«e(¦Ë),E(X)=1/¦Ë,D(X)=1/¦Ë2, ¹Êµ±n³ä·Ö´óʱ u=x¡¥-1/¦Ë1n¦Ë=(x¡¥-1¦Ë)¦Ën=(¦Ëx¡¥-1)n(0,1). ÏÖÔÚ¼ìÑéÎÊÌâΪ H0:¦Ë=0.001,H1:¦Ë¡Ù0.001, Ñù±¾Öµ u=(0.001¡Á950-1)¡Á100=0.5,¦Á=0.05,u0.025=1.96. Òò¨Ou¨O ij²úÆ·µÄ´ÎÆ·ÂÊΪ0.17, ÏֶԴ˲úÆ·½øÐÐй¤ÒÕÊÔÑ飬´ÓÖгéÈ¡400¼ì²é£¬·¢ÏÖ´ÎÆ·56¼þ£¬ÄÜ·ñÈÏΪÕâÏîй¤ÒÕÏÔÖøµØÓ°Ïì²úÆ·ÖÊÁ¿(¦Á=0.05)? ½â´ð£º ¼ìÑéÎÊÌâΪ H0:p=0.17,H1:p¡Ù0.17, ÓÉÌâÒâÖª ?p=mn=56400=0.14, u=(?p-p0)p0q0n=0.14-0.170.17¡Á0.83¡Á400¡Ö-1.597, ¦Á=0.05,u0.025=1.96. Òò¨Ou¨O ij³§Éú²úÁËÒ»´óÅú²úÆ·£¬°´¹æ¶¨´ÎÆ·ÂÊp¡Ü0.05²ÅÄܳö³§£¬·ñÔò²»Äܳö³§£¬ÏÖ´Ó²úÆ·ÖÐËæ»ú³é²é50¼þ£¬·¢ÏÖÓÐ4¼þ´ÎÆ·£¬ÎʸÃÅú²úÆ·ÄÜ·ñ³ö³§(¦Á=0.05)? ½â´ð£º ÎÊÌâ¹é½áΪÔÚ¦Á=0.05Ï£¬¼ìÑé¼ÙÉè H0:p¡Ü0.05,H1:p>0.05. ÕâÊÇÒ»¸öµ¥²à¼ìÑéÎÊÌ⣬ÓÃu¼ìÑé·¨£¬H0µÄ¾Ü¾øÓòΪ U=X¡¥-p0p0(1-p0)n>u¦Á. ÒÑÖªn=50,p0=0.05,x¡¥=450=0.08, ´úÈëUµÄ±í´ïʽµÃ u=0.08-0.050.05¡Á0.9550¡Ö0.97 ´ÓÑ¡ÇøAÖгéÈ¡300ÃûÑ¡ÃñµÄѡƱ£¬´ÓÑ¡ÇøBÖгéÈ¡200ÃûÑ¡ÃñµÄѡƱ£¬ÔÚÕâÁ½×éѡƱÖУ¬·Ö±ðÓÐ168ƱºÍ96Ʊ֧³ÖËùÌáºòÑ¡ÈË£¬ÊÔÔÚÏÔÖøË®Æ½¦Á=0.05Ï£¬¼ìÑéÁ½¸öÑ¡ÇøÖ®¼ä¶ÔºòÑ¡È˵ÄÖ§³ÖÊÇ·ñ´æÔÚ²îÒì.