Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 1
Ô˳ïѧ1ÖÁ6ÕÂϰÌâ²Î¿¼´ð°¸
µÚ1Õ ÏßÐԹ滮
1.1 ¹¤³§Ã¿ÔÂÉú²úA¡¢B¡¢CÈýÖÖ²úÆ· ,µ¥¼þ²úÆ·µÄÔ²ÄÁÏÏûºÄÁ¿¡¢É豸̨ʱµÄÏûºÄÁ¿¡¢×ÊÔ´ÏÞÁ¿¼°µ¥¼þ²úÆ·ÀûÈóÈç±í1£23Ëùʾ£®
±í1£23 ²úÆ· ×ÊÔ´ ²ÄÁÏ(kg) É豸(̨ʱ) ÀûÈó(Ôª/¼þ) A 1.5 3 10 B 1.2 1.6 14 C 4 1.2 12 ×ÊÔ´ÏÞÁ¿ 2500 1400 ¸ù¾ÝÊг¡ÐèÇó,Ô¤²âÈýÖÖ²úÆ·×îµÍÔÂÐèÇóÁ¿·Ö±ðÊÇ150¡¢260ºÍ120,×î¸ßÔÂÐèÇóÊÇ250¡¢310ºÍ130.ÊÔ½¨Á¢¸ÃÎÊÌâµÄÊýѧģÐÍ,ʹÿÔÂÀûÈó×î´ó£®
¡¾½â¡¿Éèx1¡¢x2¡¢x3·Ö±ðΪ²úÆ·A¡¢B¡¢CµÄ²úÁ¿£¬ÔòÊýѧģÐÍΪ
maxZ?10x1?14x2?12x3?1.5x1?1.2x2?4x3?2500?3x?1.6x?1.2x?140023?1? ?150?x1?250??260?x2?310?120?x3?130???x1,x2,x3?01.2 ½¨Öþ¹«Ë¾ÐèÒªÓÃ5m³¤µÄËֲܸÄÁÏÖÆ×÷A¡¢BÁ½ÖÖÐͺŵĴ°¼Ü£®Á½ÖÖ´°¼ÜËùÐè²ÄÁϹæ¸ñ
¼°ÊýÁ¿Èç±í1£24Ëùʾ£º
ÿÌ×´°¼ÜÐèÒª²ÄÁÏ ±í1£24 ´°¼ÜËùÐè²ÄÁϹæ¸ñ¼°ÊýÁ¿ ÐͺÅA ÐͺÅB ³¤¶È£¨m£© A1£º2 A2£º1.5 ÐèÒªÁ¿£¨Ì×£© ÊýÁ¿(¸ù) 2 3 300 ³¤¶È(m) B1£º2.5 B2£º2 400 ÊýÁ¿(¸ù) 2 3 ÎÊÔõÑùÏÂÁÏʹµÃ£¨1£©ÓÃÁÏ×îÉÙ£»£¨2£©ÓàÁÏ×îÉÙ£® ¡¾½â¡¿ µÚÒ»²½£ºÇóÏÂÁÏ·½°¸£¬¼ûÏÂ±í¡£ ·½°¸ B1 B2 A1 A2 2.5 2 2 1.5 Ò» 2 0 0 0 ¶þ Èý ËÄ Îå Áù Æß °Ë ¾Å Ê® ÐèÒªÁ¿ 1 1 0 0 1 0 1 0 1 0 0 1 0 2 0 0 0 1 1 0 0 1 0 2 0 0 2 0 1 0 0 1 2 0 0 0 0 3 0.5 800 1200 600 900 0.5 0.5 1 1 1 0 ÓàÁÏ(m) 0 µÚ¶þ²½£º½¨Á¢ÏßÐԹ滮ÊýѧģÐÍ Éèxj£¨j=1,2,¡£¬10£©ÎªµÚjÖÖ·½°¸Ê¹ÓÃÔ²ÄÁϵĸùÊý£¬Ôò £¨1£©ÓÃÁÏ×îÉÙÊýѧģÐÍΪ
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸
102
minZ??xjj?1?2x1?x2?x3?x4?800??x2?2x5?x6?x7?1200 ??x3?x6?2x8?x9?600?x?2x?2x?3x?9007910?4??xj?0,j?1,2,,10£¨2£©ÓàÁÏ×îÉÙÊýѧģÐÍΪ
minZ?0.5x2?0.5x3?x4?x5?x6?x8?0.5x10?2x1?x2?x3?x4?800??x2?2x5?x6?x7?1200??x3?x6?2x8?x9?600?x?2x?2x?3x?9007910?4??xj?0,j?1,2,,10
1.3ijÆóÒµÐèÒªÖÆ¶¨1¡«6Ô·ݲúÆ·AµÄÉú²úÓëÏúÊۼƻ®¡£ÒÑÖª²úÆ·AÿÔµ׽»»õ£¬Êг¡ÐèÇóûÓÐÏÞÖÆ£¬ÓÉÓÚ²Ö¿âÈÝÁ¿ÓÐÏÞ£¬²Ö¿â×î¶à¿â´æ²úÆ·A1000¼þ£¬1Ô³õ²Ö¿â¿â´æ200¼þ¡£1¡«6Ô·ݲúÆ·AµÄµ¥¼þ³É±¾ÓëÊÛ¼ÛÈç±í1£25Ëùʾ¡£
±í1£25 1 2 3 4 5 6 ÔÂ·Ý ²úÆ·³É±¾(Ôª/¼þ) 300 330 320 360 360 300 ÏúÊÛ¼Û¸ñ(Ôª/¼þ) 350 340 350 420 410 340 £¨1£©1¡«6Ô·ݲúÆ·A¸÷Éú²úÓëÏúÊÛ¶àÉÙ×ÜÀûÈó×î´ó£¬½¨Á¢ÊýѧģÐÍ£» £¨2£©µ±1Ô³õ¿â´æÁ¿ÎªÁã²¢ÇÒÒªÇó6Ôµ×ÐèÒª¿â´æ200¼þʱ£¬Ä£ÐÍÈçºÎ±ä»¯¡£ ¡¾½â¡¿Éèxj¡¢yj£¨j£½1£¬2£¬?£¬6£©·Ö±ðΪ1¡«6Ô·ݵÄÉú²úÁ¿ºÍÏúÊÛÁ¿£¬ÔòÊýѧģÐÍΪ
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 3
maxZ??300x1?350y1?330x2?340y2?320x3?350y3?360x4?420y4?360x5?410y5?300x6?340y6?x1?800??x1?y1?x2?800?x1?y1?x2?y2?x3?800??x1?y1?x2?y2?x3?y3?x4?800?x?y?x?y?x?y?x?y?x?800233445?112?x1?y1?x2?y2?x3?y3?x4?y4?x5?y5?x6?800£¨1£©???x1?y1?200??x?y?x?y?2002?112??x1?y1?x2?y2?x3?y3?200???x1?y1?x2?y2?x3?y3?x4?y4?200??x1?y1?x2?y2?x3?y3?x4?y4?x5?y5?200???x1?y1?x2?y2?x3?y3?x4?y4?x5?y5?x6?y6?200?x,y?0;j?1,2,,6?jj
£¨2£©Ä¿±êº¯Êý²»±ä£¬Ç°6¸öÔ¼ÊøÓҶ˳£Êý800¸ÄΪ1000£¬µÚ7¡«11¸öÔ¼ÊøÓҶ˳£Êý200¸ÄΪ0£¬µÚ12¸öÔ¼Êø¡°¡Ü200¡±¸ÄΪ¡°£½£200¡±¡£
1.4 ijͶ×ÊÈËÏÖÓÐÏÂÁÐËÄÖÖͶ×Ê»ú»á, ÈýÄêÄÚÿÄêÄê³õ¶¼ÓÐ3ÍòÔª£¨²»¼ÆÀûÏ¢£©¿É¹©Í¶×Ê£º ·½°¸Ò»£ºÔÚÈýÄêÄÚͶ×ÊÈËÓ¦ÔÚÿÄêÄê³õͶ×Ê£¬Ò»Äê½áËãÒ»´Î£¬ÄêÊÕÒæÂÊÊÇ20£¥£¬ÏÂÒ»Äê¿É¼ÌÐø½«±¾Ï¢Í¶Èë»ñÀû£»
·½°¸¶þ£ºÔÚÈýÄêÄÚͶ×ÊÈËÓ¦ÔÚµÚÒ»ÄêÄê³õͶ×Ê£¬Á½Äê½áËãÒ»´Î£¬ÊÕÒæÂÊÊÇ50£¥£¬ÏÂÒ»Äê¿É¼ÌÐø½«±¾Ï¢Í¶Èë»ñÀû£¬ÕâÖÖͶ×Ê×î¶à²»³¬¹ý2ÍòÔª£»
·½°¸Èý£ºÔÚÈýÄêÄÚͶ×ÊÈËÓ¦ÔÚµÚ¶þÄêÄê³õͶ×Ê£¬Á½Äê½áËãÒ»´Î£¬ÊÕÒæÂÊÊÇ60£¥£¬ÕâÖÖͶ×Ê×î¶à²»³¬¹ý1.5ÍòÔª£»
·½°¸ËÄ£ºÔÚÈýÄêÄÚͶ×ÊÈËÓ¦ÔÚµÚÈýÄêÄê³õͶ×Ê£¬Ò»Äê½áËãÒ»´Î£¬ÄêÊÕÒæÂÊÊÇ30£¥£¬ÕâÖÖͶ×Ê×î¶à²»³¬¹ý1ÍòÔª£®
Ͷ×ÊÈËÓ¦²ÉÓÃÔõÑùµÄͶ×ʾö²ßʹÈýÄêµÄ×ÜÊÕÒæ×î´ó£¬½¨Á¢ÊýѧģÐÍ. ¡¾½â¡¿ÊÇÉèxijΪµÚiÄêͶÈëµÚjÏîÄ¿µÄ×ʽðÊý£¬±äÁ¿±íÈçÏ µÚ1Äê µÚ2Äê µÚ3Äê ÊýѧģÐÍΪ
ÏîĿһ x11 x21 x31 ÏîÄ¿¶þ x12 ÏîÄ¿Èý x23 ÏîÄ¿ËÄ x34 Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 4
maxZ?0.2x11?0.2x21?0.2x31?0.5x12?0.6x23?0.3x34?x11?x12?30000???1.2x11?x21?x23?30000??1.5x12?1.2x21?x31?x34?30000???x12?20000?x?15000?23?x34?10000???xij?0,i?1,,3;j?1,4×îÓŽâX=(30000£¬0£¬66000£¬0£¬109200£¬0)£»Z£½84720
1.5 Á¶Óͳ§¼Æ»®Éú²úÈýÖֳɯ·ÓÍ£¬²»Í¬µÄ³ÉÆ·ÓÍÓɰë³ÉÆ·ÓÍ»ìºÏ¶ø³É£¬ÀýÈç¸ß¼¶ÆûÓÍ¿ÉÒÔÓÉÖÐʯÄÔÓÍ¡¢ÖØÕûÆûÓͺÍÁÑ»¯ÆûÓÍ»ìºÏ£¬ÐÁÍéÖµ²»µÍÓÚ94£¬Ã¿Í°ÀûÈó5Ôª£¬¼û±í1£26¡£
±í1£26 ³ÉÆ·ÓÍ ¸ß¼¶ÆûÓÍ ÖÐʯÄÔÓÍ ÖØÕûÆûÓÍ ÁÑ»¯ÆûÓÍ ¡Ý94 Ò»°ãÆûÓÍ ÖÐʯÄÔÓÍ ÖØÕûÆûÓÍ ÁÑ»¯ÆûÓÍ ¡Ý84 ¡Ü1 º½¿ÕúÓÍ ÇáÓÍ¡¢ÁÑ»¯ÓÍ¡¢ÖØÓÍ¡¢²ÐÓÍ Ò»°ãúÓÍ ÇáÓÍ¡¢ÁÑ»¯ÓÍ¡¢ÖØÓÍ¡¢²ÐÓͰ´10:4:3:1µ÷ºÏ¶ø³É 1.5
°ë³ÉÆ·ÓÍ ÐÁÍéÖµ ÕôÆûѹ£º¹«½ï£¯Æ½·½ÀåÃ× ÀûÈó(Ôª/Ͱ) 5 4.2 3 °ë³ÉÆ·Ó͵ÄÐÁÍéÖµ¡¢ÆøÑ¹¡¢¼°Ã¿Ìì¿É¹©Ó¦ÊýÁ¿¼û±í1£27¡£ ±í1£27
1ÖÐʯÄÔÓÍ 2ÖØÕûÆûÓÍ 3ÁÑ»¯ÆûÓÍ 4ÇáÓÍ 5ÁÑ»¯ÓÍ 6ÖØÓÍ °ë³ÉÆ·ÓÍ 80 115 105 ÐÁÍéÖµ ÕôÆûѹ£º¹«½ï£¯ 1.0 1.5 0.6 ƽ·½ÀåÃ× Ã¿Ì칩ӦÊýÁ¿2000 1000 1500 1200 1000 1000 (Ͱ) ÎÊÁ¶Óͳ§Ã¿ÌìÉú²ú¶àÉÙͰ³ÉÆ·ÓÍÀûÈó×î´ó£¬½¨Á¢ÊýѧģÐÍ¡£ ½â ÉèxijΪµÚi£¨i£½1,2,3,4£©Öֳɯ·ÓÍÅäµÚj(j=1,2,?,7)ÖÖ°ë³ÉÆ·Ó͵ÄÊýÁ¿£¨Í°£©¡£ ×ÜÀûÈó£º
7²ÐÓÍ 0.05 800 Z?5(x11?x12?x13)?4.2(x21?x22?x23)?3(x34?x35?x36?x37)?1.5(x44?x45?x46?x47)¸ß¼¶ÆûÓͺÍÒ»°ãÆûÓ͵ÄÐÁÍéÖµÔ¼Êø
80x11?115x12?105x1380x21?115x22?105x23?94,84??94
x11?x12?x13x21?x22?x23º½¿ÕúÓÍÕôÆøÑ¹Ô¼Êø
x34?1.5x35?0.6x36£«0.05x37?1
x34?x35?x36£«x37Ò»°ãúÓͱÈÀýÔ¼Êø
x44:x45:x46:x47?10:4:3:1
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 5
¼´
x4410x454x463?,?,? x454x463x471°ë³ÉÆ·Ó͹©Ó¦Á¿Ô¼Êø
x11?x21?2000x12?x22?1000x13?x23?1500x34?x44?1200 x35?x45?1000x36?x46?1000x37?x47?800ÕûÀíºóµÃµ½
maxZ?5x11?5x12?5x13?4.2x21?4.2x22?4.2x23?3x34?3x35?3x36?3x37?1.5x44?1.5x45?1.5x46?1.5x47??14x11?21x12?11x13?0???14x21?21x22?11x23?0??4x21?31x22?21x23?0??0.5x35?0.4x36?0.95x37?0?4x?10x?045?44?3x45?4x46?0??x46?3x47?0??x11?x21?2000?x?x?1000?1222?x13?x23?1500??x34?x44?1200?x35?x45?1000??x36?x46?1000?x?x?800?3747??xij?0;i?1,2,3,4;j?1,2,,71.6 ͼ½âÏÂÁÐÏßÐԹ滮²¢Ö¸³ö½âµÄÐÎʽ£º
maxZ?5x1?2x2?2x1?x2?8?(1) ?x1?3??x2?5??x1,x2?0
¡¾½â¡¿×îÓŽâX£½£¨3£¬2£©£»×îÓÅÖµZ=19
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 6
maxZ?x1?4x2?x1?4x2?5?(2) ?x1?3x2?2??x1?2x2?4??x1,x2?0
¡¾½â¡¿ÓжàÖØ½â¡£×îÓŽâX
£¨1£©
£½£¨0£¬5/4£©£»X
£¨2£©
£½£¨3£¬1/2£©×îÓÅÖµZ=5
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 7
minZ??3x1?2x2?x1?2x2?11??x?4x?1012(3)???2x1?x2?7?x?3x?12?1??x1,x2?0
¡¾½â¡¿×îÓŽâX£½£¨4£¬1£©£»×îÓÅÖµZ=£10£¬ÓÐΨһ×îÓŽâ
minZ?4x1?6x2?x1?2x2?8?(4) ?x1?x2?8?x2?3???x1?0,x2?0
¡¾½â¡¿×îÓŽâX£½£¨2£¬3£©£»×îÓÅÖµZ=26£¬ÓÐΨһ×îÓŽâ
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 8
maxZ?x1?2x2?x1?x2?2?(5) ?x1?3??x2?6??x1,x2?0¡¾½â¡¿ÎÞ½ç½â¡£
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 9
minZ?2x1?5x2 (6)
?x1?2x2?6??x1?x2?2?x,x?0?12
¡¾½â¡¿ÎÞ¿ÉÐн⡣
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 10
1.7 ½«ÏÂÁÐÏßÐԹ滮»¯Îª±ê×¼ÐÎʽ minZ?x1?6x2?x3?x1?x2?3x3?15 (1) ?
?5x1?7x2?4x3?32??10x1?3x2?6x3??5??x1?0,x2?0,x3ÎÞÏÞÖÆ'''¡¾½â¡¿£¨1£©Áîx3?x3?x3,x4,x5,x6ΪËɳ۱äÁ¿ £¬Ôò±ê×¼ÐÎʽΪ '''maxZ??x1?6x2?x3?x3'''?x1?x2?3x3?3x3?x4?15?'''?5x1?7x2?4x3?4x3?x5?32 ?'''??10x1?3x2?6x3?6x3?x6?5'''??x1,x2,x3,x3,x4,x5,x6?0minZ?9x1?3x2?5x3?|6x1?7x2?4x3|?20? (2) ?x1?5
??x1?8x2??8??x1?0,x2?0,x3?0¡¾½â¡¿£¨2£©½«¾ø¶ÔÖµ»¯ÎªÁ½¸ö²»µÈʽ£¬Ôò±ê×¼ÐÎʽΪ
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 11
maxZ???9x1?3x2?5x3?6x1?7x2?4x3?x4?20??6x?7x?4x?x?201235? ?x?x?5?16??x?8x?82?1??x1,x2,x3,x4,x5,x6?0maxZ?2x1?3x2?1?x1?5 (3)???x1?x2??1?x?0,x?02?1¡¾½â¡¿·½·¨1£º
maxZ?2x1?3x2?x1?x3?1?x?x?5 ?14??x1?x2?1??x1,x2,x3,x4?0??x1?1,ÓÐx1£½x1??1,x1??5?1?4 ·½·¨2£ºÁîx1??1)?3x2maxZ?2(x1??4?x1???1)?x2??1??(x1?x,x?0?12Ôò±ê×¼ÐÍΪ
??3x2maxZ?2?2x1??x3?4?x1???x2?0??x1?x?,x,x?0?123
maxZ?min(3x1?4x2,x1?x2?x3)?x1?2x2?x3?30?(4) ?4x1?x2?2x3?15
??9x1?x2?6x3??5?x1ÎÞÔ¼Êø,x2¡¢x3?0?¡¾½â¡¿Áîy?3x1?4x2,y?x1?x2?x3,x1?x1??x1??£¬ÏßÐԹ滮ģÐͱäΪ
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 12
maxZ?y??x1??)?4x2?y?3(x1?y?x??x???x?x1123????x1???2x2?x3?30 ?x1???x1??)?x2?2x3?15?4(x1?9(x1??x1??)?x2?6x3??5??,x1??,x2¡¢x3?0??x1±ê×¼ÐÍΪ
maxZ?y??3x1???4x2?x4?0?y?3x1?y?x??x???x?x?x?011235????x1???2x2?x3?x6?30 ?x1???4x1???x2?2x3?x7?15?4x1??9x1??9x1???x2?6x3?x8?5??,x1??,x2,x3,x4,x5,x6,x7,x8?0??x1
1.8 ÉèÏßÐԹ滮
maxZ?5x1?2x2?2x1?2x2?x3?40 ?4x?2x?x?60?124?x?0,j?1,,4?j?21??20?È¡»ùB1??·Ö±ðÖ¸³öB1ºÍB2¶ÔÓ¦µÄ»ù±äÁ¿ºÍ·Ç»ù±äÁ¿£¬Çó³ö»ù±¾?¡¢B2£½??21?£¬40????½â£¬²¢ËµÃ÷B1¡¢B2ÊDz»ÊÇ¿ÉÐлù£®
¡¾½â¡¿B1£ºx1¡¢x3Ϊ»ù±äÁ¿£¬x2¡¢x4Ϊ·Ç»ù±äÁ¿,»ù±¾½âΪX=£¨15£¬0£¬10£¬0£©T£¬B1ÊÇ¿ÉÐлù¡£B2£ºx2¡¢x4ÊÇ»ù±äÁ¿£¬x1¡¢x3Ϊ·Ç»ù±äÁ¿£¬»ù±¾½âX=£¨0£¬20£¬0£¬100£©T£¬B2ÊÇ¿ÉÐлù¡£
1.9·Ö±ðÓÃͼ½â·¨ºÍµ¥´¿Ðη¨Çó½âÏÂÁÐÏßÐԹ滮£¬Ö¸³öµ¥´¿Ð稵ü´úµÄÿһ²½µÄ»ù¿ÉÐнâ¶ÔÓ¦ÓÚͼÐÎÉϵÄÄÇÒ»¸ö¼«µã£®
maxZ?x1?3x2 (1)???2x1?x2?2
?2x1?3x2?12?x,x?0?12¡¾½â¡¿Í¼½â·¨
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 13
µ¥´¿Ð稣º C(j) C(i) 0 0 3 0 3 1 ¶ÔÓ¦µÄ¶¥µã£º Basis X3 X4 X2 X4 X2 X1 1 X1 -2 2 1 -2 [8] 7 0 1 0 »ù¿ÉÐнâ 3 X2 [1] 3 3 1 0 0 1 0 0 0 X3 1 0 0 1 -3 -3 0.25 -0.375 -0.375 0 X4 0 1 0 0 1 0 0.25 0.125 -0.875 b 2 12 0 2 6 6 7/2 3/4 45/4 Ratio 2 4 M 0.75 C(j)-Z(j) C(j)-Z(j) C(j)-Z(j) ¿ÉÐÐÓòµÄ¶¥µã ¡¢X(1)=£¨0£¬0£¬2£¬12£© ¡¢X(2)=£¨0£¬2£¬0£¬6£¬£© £¨0£¬0£© £¨0£¬2£© 37,,0,0)¡¢ 423745×îÓŽâX?(,),Z?
424X(3)=£¨
37(,) 42Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 14
minZ??3x1?5x2
?x1?2x2?6? (2) ?x1?4x2?10?
?x1?x2?4??x1?0,x2?0
¡¾½â¡¿Í¼½â·¨
µ¥´¿Ð稣º C(j) Basis X3 X4 X5 C(j)-Z(j) X3 X2 X5 C(j)-Z(j) X1 X2 X5 C(j)-Z(j) X1 X2 X4 C(j)-Z(j) -3 -5 0 -3 -5 0 0 -5 0 C(i) 0 0 0 -3 X1 1 1 1 -3 [0.5] 0.25 0.75 -1.75 1 0 0 0 1 0 0 0 -5 X2 2 [4] 1 -5 0 1 0 0 0 1 0 0 0 1 0 0 0 X3 1 0 0 0 1 0 0 0 2 -0.5 -1.5 3.5 -1 1 -3 2 0 X4 0 1 0 0 -0.5 0.25 -0.25 1.25 -1 0.5 [0.5] -0.5 0 0 1 0 0 X5 0 0 1 0 0 0 1 0 0 0 1 0 2 -1 2 1 b 6 10 4 0 1 2.5 1.5 -12.5 2 2 0 -16 2 2 0 -16
Ratio 3 2.5 4 2 10 2 M 4 0 Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 15
¶ÔÓ¦µÄ¶¥µã£º »ù¿ÉÐнâ X(1)=£¨0£¬0£¬6£¬10£¬4£© ¡¢X(2)=£¨0£¬2.5£¬1£¬0£¬1.5£¬£© X(3)=£¨2£¬2£¬0£¬0£¬0£© X(4)=£¨2£¬2£¬0£¬0£¬0£© ¡¢¿ÉÐÐÓòµÄ¶¥µã £¨0£¬0£© £¨0£¬2.5£© (2£¬2) £¨2£¬2£© ×îÓŽ⣺X=£¨2£¬2£¬0£¬0£¬0£©£»×îÓÅÖµZ£½£16 ¸ÃÌâÊÇÍË»¯»ù±¾¿ÉÐн⣬5¸ö»ù±¾¿ÉÐнâ¶ÔÓ¦4¸ö¼«µã¡£
1.10Óõ¥´¿Ðη¨Çó½âÏÂÁÐÏßÐԹ滮
maxZ?3x1?4x2?x3?2x1?3x2?x3?4(1)??x1?2x2?2x3?3?x?0,j?1,2,3?j¡¾½â¡¿µ¥´¿ÐÎ±í£º C(j) Basis X4 X5 C(j)-Z(j) X2 X5 C(j)-Z(j) X1 X5 C(j)-Z(j) 3 0 4 0 C(i) 0 0 3 X1 2 1 3 [2/3] -1/3 1/3 1 0 0
4 X2 [3] 2 4 1 0 0 3/2 1/2 -1/2 1 X3 1 2 1 1/3 4/3 -1/3 1/2 3/2 -1/2 0 X4 1 0 0 1/3 -2/3 -4/3 1/2 -1/2 -3/2 0 X5 0 1 0 0 1 0 0 1 0 R. H. S. 4 3 0 4/3 1/3 £16/3 2 1 -6 Ratio 4/3 3/2 2 M ×îÓŽ⣺X=£¨2£¬0£¬0£¬0£¬1£©£»×îÓÅÖµZ£½6
maxZ?2x1?x2?3x3?5x4?x1?5x2?3x3?7x4?30? (2) ?3x1?x2?x3?x4?10??2x1?6x2?x3?4x4?20?xj?0,j?1,,4?¡¾½â¡¿µ¥´¿ÐÎ±í£º C(j) Basis X5 X6 X7 C(i) 0 0 0
2 X1 1 3 2 1 X2 5 -1 -6 -3 X3 3 [1] -1 5 X4 -7 1 [4] 0 X5 1 0 0 0 X6 0 1 0 0 X7 0 0 1 R. H. S. Ratio 30 10 20 M 10 5 Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 16
C(j)-Z(j) X5 X6 X4 C(j)-Z(j) X5 X2 X4 C(j)-Z(j) 0 1 5 0 0 5 2 9/2 1 -3 5 0 0 1 0 0 0 1 0 0 0 0 0 1 0 65 M -11/2 5/4 5/2 1/2 -1/2 32 5 8 -43 [1/2] 5/4 -3/2 -1/4 17/2 -7/4 0 1 0 0 15 5/2 7/2 -23 0 1 0 0 0 1 0 0 0 11 -1 2 -1/2 3 -1/2 -17 3 7/4 -1/4 1/4 -5/4 5 5 120 10 20 10 M M 10 M ÒòΪ¦Ë7£½3>0²¢ÇÒai7<0(i=1,2,3)£¬¹ÊÔÎÊÌâ¾ßÓÐÎÞ½ç½â£¬¼´ÎÞ×îÓŽ⡣
maxZ?3x1?2x2?18x3??x1?2x2?3x3?4? (3)?4x1?2x3?12??3x1?8x2?4x3?10??x1,x2,x3?0¡¾½â¡¿ C(j) Basis X4 X5 X6 C(j)-Z(j) X4 X1 X6 C(j)-Z(j) X4 X1 X2 0 3 2 0 3 0 C(i) 0 0 0 3 X1 -1 [4] 3 3 0 1 0 0 0 1 0 2 X2 2 0 8 2 2 0 [8] 2 0 0 1 -0.125 X3 3 -2 4 -1/8 5/2 -1/2 11/2 11/8 9/8 -1/2 [11/16] 0 X4 1 0 0 0 1 0 0 0 1 0 0 0 0 X4 1 0 0 0 0 X5 0 1 0 0 1/4 1/4 -3/4 -3/4 7/16 1/4 -3/32 -9/16 0 X5 13/22 2/11 -3/22 -9/16 0 X6 0 0 1 0 0 0 1 0 -1/4 0 1/8 -1/4 0 X6 -5/11 1/11 2/11 -1/4 R. H. S. 4 12 10 0 7 3 1 9 27/4 3 1/8 Ratio M 3 10/3 3.5 M 1/8 6 M 0.181818 Ratio 6 M 0.1818
C(j)-Z(j) 0 0 0 X3½ø»ù¡¢X2³ö»ù£¬µÃµ½ÁíÒ»¸ö»ù±¾×îÓŽ⡣ 37/4 R. H. S. 72/11 34/11 2/11 37/4 Basis X4 X1 X3 C(j) 3 X1 0 1 0 0 2 X2 -18/11 8/11 16/11 0 -0.125 X3 0 0 1 0 0 3 -0.125 C(j)-Z(j) ÔÎÊÌâ¾ßÓжàÖØ½â¡£ »ù±¾×îÓŽâX(1)1273427237?(3,,0,,0)¼°X(2)?(,0,,,0)T;Z?,×îÓŽâµÄͨ½â¿É±í
841111114Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 17
ʾΪX?aX(1)?(1?a)X(2)¼´
X?(
3411227272?a,a,?a,?a,0)T,(0?a?1) 1111811111111maxZ?3x1?2x2?x3?5x1?4x2?6x3?25£¨4£©?
8x?6x?3x?24?123?x?0,j?1,2,3?j¡¾½â¡¿µ¥´¿ÐÎ±í£º C(j) Basis X4 X5 C(j)-Z(j) X4 X1 0 3 C(i) 0 0 3 X1 5 [8] 3 0 1 2 X2 4 6 2 1/4 1 X3 6 3 1 33/8 3/8 0 X4 1 0 0 1 0 0 0 X5 0 1 0 -5/8 1/8 -3/8 R. H. S. 25 24 0 10 3 9 Ratio 5 3 C(j)-Z(j) 0 -1/8 ×îÓŽ⣺X=£¨3£¬0£¬0£¬10£¬0£©£»×îÓÅÖµZ£½9
1.11 ·Ö±ðÓôóM·¨ºÍÁ½½×¶Î·¨Çó½âÏÂÁÐÏßÐԹ滮£º
3/4 -1/4 maxZ?10x1?5x2?x3 (1) ??5x1?3x2?x3?10??5x1?x2?10x3?15?x?0,j?1,2,3?j
¡¾½â¡¿´óM·¨¡£ÊýѧģÐÍΪ
maxZ?10x1?5x2?x3?Mx5?5x1?3x2?x3?x5?10???5x1?x2?10x3?x4?15?x?0,j?1,2,,5?jC(j) Basis X5 X4 C(j)-Z(j) * Big M X1 X4 C(j)-Z(j) * Big M 10 0 C(i) -M 0 10 5 -5 10 5 1 0 0 0
-5 3 1 -5 3 4 -11 0 1 X3 1 -10 1 1 -9 -1 0 0 X4 0 1 0 0 0 1 0 0 -M X5 1 0 0 0 X1 X2 R. H. S. Ratio 10 15 0 0 2 25 20 0 2 M 3/5 1/5 1/5 1 -2 -1 Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 18
×îÓŽâX£½(2,0,0)£»Z=20 Á½½×¶Î·¨¡£
µÚÒ»½×¶Î£ºÊýѧģÐÍΪ
minw?x5?5x1?3x2?x3?x5?10 ??5x?x?10x?x?15?1234?x?0,j?1,2,,5?jC(j) Basis X5 X4 C(j)-Z(j) X1 X4 C(j)-Z(j) µÚ¶þ½×¶Î C(j) Basis X1 X4 C(j)-Z(j) ×îÓŽâX=(2,0,0)£»Z=20
C(i) 10 0 0 0 C(i) 1 0 0 X1 [5] -5 -5 1 0 0 10 X1 1 0 0 0 X2 3 1 -3 4 0 -5 X2 4 0 X3 1 -10 -1 -9 0 1 X3 -9 0 X4 0 1 0 0 1 0 0 X4 0 1 0 1 X5 1 0 0 R. H. S. 10 15 2 25 R. H. S. 2 25 Ratio 2 M Ratio 2 M 3/5 1/5 1/5 1 1 3/5 1/5 -11 -1 minZ?5x1?6x2?7x3?x1?5x2?3x3?15?(2) ?5x1?6x2?10x3?20
??x1?x2?x3?5?xj?0,j?1,2,3?¡¾½â¡¿´óM·¨¡£ÊýѧģÐÍΪ
minZ?5x1?6x2?7x3?MA1?MA3?x1?5x2?3x3?S1?A1?15?5x?6x?10x?S?20?1232??x1?x2?x3?A3?5??ËùÓбäÁ¿·Ç¸ºC(j) 5 -6 Basis C(i) X1 X2 A1 M 1 [5] S2 0 5 -6 A3 M 1 1 C(j)-Z(j) 5 -6
-7 X3 -3 10 1 -7 0 S1 -1 0 0 0 0 S2 0 1 0 0 M A1 1 0 0 0 M A3 0 0 1 0 R.H.S. Ratio 15 20 5 3 M 5 Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 19
* Big M X2 S2 A3 C(j)-Z(j) * Big M X2 S2 X3 -6 0 -7 -6 0 M -2 1/5 31/5 4/5 31/5 -4/5 1/2 3 1/2 -6 1 0 0 0 0 1 0 0 0 2 -3/5 32/5 [8/5] -53/5 -8/5 0 0 1 0 0 1 -1/5 -6/5 1/5 -6/5 -1/5 -1/8 -2 1/8 1/8 0 0 0 1 0 0 0 0 1 0 0 0 0 1/5 6/5 -1/5 6/5 6/5 1/8 2 -1/8 -1/8 1 0 0 0 1 0 0 3/8 -4 5/8 53/8 1 30 5/4 38 2 3 M 95/16 5/4 15/4 C(j)-Z(j) 23/2 0 * Big M 0 Á½½×¶Î·¨¡£ µÚÒ»½×¶Î£ºÊýѧģÐÍΪ
minw?A1?A3?x1?5x2?3x3?S1?A1?15?5x?6x?10x?S?20 ?1232??x1?x2?x3?A3?5??ËùÓбäÁ¿·Ç¸ºC(j) 0 0 0 Basis C(i) X1 X2 X3 A1 1 1 -3 [5] S2 0 5 -6 10 A3 1 1 1 1 C(j)-Z(j) -2 -6 2 X2 0 1/5 1 -3/5 S2 0 31/5 0 32/5 A3 1 4/5 0 [8/5] C(j)-Z(j) -4/5 0 -8/5 X2 0 1/2 1 0 S2 0 3 0 0 X3 0 1/2 0 1 C(j)-Z(j) 0 0 0 µÚ¶þ½×¶Î£º C(j) Basis X2 S2 X3 C(j)-Z(j) ×îÓŽ⣺X?(0,C(i) -6 0 -7 5 X1 1/2 3 1/2 -6 X2 1 0 0 -7 X3 0 0 1 0 0 S1 -1/8 -2 1/8 1/8 0 S2 0 1 0 0 R.H.S. Ratio 15/4 3 30 5/4 M 5 0 S1 -1 0 0 1 -1/5 -6/5 1/5 -1/5 -1/8 -2 1/8 0 0 S2 0 1 0 0 0 1 0 0 0 1 0 0 1 A1 1 0 0 0 1/5 6/5 -1/5 6/5 1/8 2 -1/8 1 1 A3 0 0 1 0 0 0 1 0 3/8 -4 5/8 1 R.H.S. Ratio 15 20 5 3 M 5 M 95/16 5/4 3 38 2 30 5/4 15/4 23/2 0 155T125,),Z?? 444Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 20
maxZ?10x1?15x2?5x1?3x2?9?(3)??5x1?6x2?15??2x1?x2?5??x1¡¢x2¡¢x3?0
¡¾½â¡¿´óM·¨¡£ÊýѧģÐÍΪ
maxZ?10x1?15x2?Mx6?5x1?3x2?x3?9??5x?6x?x?15?124??2x1?x2?x5?x6?5?xj?0,j?1,2,,6?15 0 0 0 X2 X3 X4 X5 3 1 0 0 6 0 1 0 1 0 0 -1 15 0 0 0 1 0 0 -1 3/5 0 0 1/5 9 1 1 0 -1/5 -2/5 0 -1 9 -2 0 0 -1/5 -2/5 0 -1
C(j) Basis C(i) X3 X4 X6 0 0 -M 10 X1 [5] -5 2 10 2 1 0 0 0 -M X6 0 0 1 0 0 0 0 1 0 0 R. H. S. Ratio 9 15 5 0 0 9/5 24 7/5 18 0 1.8 M 2.5 C(j)-Z(j) * Big M X1 X4 X6 10 0 -M C(j)-Z(j) * Big M 0 ÒòΪX6>0,ÔÎÊÌâÎÞ¿ÉÐн⡣ Á½½×¶Î·¨
µÚÒ»½×¶Î£ºÊýѧģÐÍΪ
minZ?x6?5x1?3x2?x3?9??5x?6x?x?15 ?124??2x1?x2?x5?x6?5?xj?0,j?1,2,,6?0 0 0 0 X2 X3 X4 X5 3 1 0 0 6 0 1 0 1 0 0 -1 -1 0 0 1 3/5 0 0 1/5 9 1 1 0 C(j) Basis C(i) X3 X4 X6 X1 X4 0 0 1 0 0 0 X1 [5] -5 2 -2 1 0 1 X6 0 0 1 0 0 0 R. H. S. Ratio 9 15 5 5 9/5 24 1.8 M 2.5 14 C(j)-Z(j) Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 21
X6 1 0 -1/5 -2/5 0 0 -1 1 1 0 7/5 C(j)-Z(j) 0 1/5 2/5 ÒòΪX6>0,ÔÎÊÌâÎÞ¿ÉÐн⡣ͼ½â·¨ÈçÏ£º
maxZ?4x1?2x2?5x3?6x1?x2?4x3?10? (4) ?3x1?3x2?5x3?8??x1?2x2?x3?20?xj?0,j?1,2,3?
¡¾½â¡¿´óM·¨¡£X7ÊÇÈ˹¤±äÁ¿£¬ÊýѧģÐÍΪ
maxZ?4x1?2x2?5x3?Mx7?6x1?x2?4x3?x4?10?3x?3x?5x?x?8 ?1235??x1?2x2?2x3?x6?x7?20?xj?0,j?1,2,,7?Cj CB 0 0 £M XB X4 X5 X7 4 X1 2 X2 5 X3 0 X4 0 X5 0 X6 £M R.H.S. X7 Ratio 10 6 3 1 4 M -1 -3 [2] 2 2M 4 -5 1 5 M 1 C(j)-Z(j) * Big M 1 £1 1 £1 10 8 20 Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸
X4 13/2 X5 X2 22
0 0 2 9/2 1/2 3 C(j)-Z(j) * Big M 5 0 2 X3 13/9 X5 86/9 X2 -2/9 -25/9 C(j)-Z(j) * Big M 1 1 [9/2] -7/2 1/2 4 1 1 2/9 7/9 -1/9 -8/9 1 1 -1/2 -3/2 -1/2 1 1/2 3/2 1/2 -1 -1 1/9 4/9 -1 20 38 10 -1/9 -4/9 40/9 70/9 -17/9 17/9 482/9 13/9 -13/9 ÎÞ½ç½â¡£ Á½½×¶Î·¨¡£µÚÒ»½×¶Î£º
minZ?x7?6x1?x2?4x3?x4?10?3x?3x?5x?x?8 ?1235??x1?2x2?x3?x6?x7?20?xj?0,j?1,2,,7?Cj CB 0 0 1 XB X4 X5 X7 X1 X2 X3 0 X4 0 X5 0 X6 1 X7 R.H.S. Ratio 10 6 3 1 £1 13/2 9/2 1/2 -1 -3 [2] 4 -5 1 [9/2] -7/2 1/2 1 C(j)-Z(j) 0 0 2 X4 X5 X2 £2 £1 C(j)-Z(j) 1 1 1 1 £1 1 -1/2 -3/2 -1/2 1 1/2 3/2 1/2 1 10 8 20 20 38 10 µÚ¶þ½×¶Î£º Cj CB 0 0 1 XB X4 X5 X2 4 X1 2 X2 5 X3 0 X4 0 X5 0 X6 R.H.S. Ratio 13/2 9/2 1/2 C(j)-Z(j) 0 0 2 X3 X5 X2 C(j)-Z(j) 7/2 13/9 86/9 -2/9 -3 1 1 [9/2] -7/2 1/2 1 9/2 1 2/9 7/9 -1/9 -1 1 1 -1/2 -3/2 -1/2 20 38 10 1/2 -1/9 40/9 -17/9 482/9 -4/9 70/9 1 ÔÎÊÌâÎÞ½ç½â¡£
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 23
?21?1.12 ÔÚµÚ1.9ÌâÖУ¬¶ÔÓÚ»ùB???,ÇóËùÓбäÁ¿µÄ¼ìÑéÊý?j(j?1,?,4),²¢ÅжÏBÊDz»
40??ÊÇ×îÓÅ»ù£®
1??0?4??1¡¾½â¡¿B??4,B???,
1?1????2????C?CBB?1A1??0???2210?4?(5,2,0,0)?(5,0)????
14?201??1?????2??5595?(5,2,0,0)?(5,?,0,)?(0,,0,?)2424??(0,,0,?), B²»ÊÇ×îÓÅ»ù£¬¿ÉÒÔÖ¤Ã÷BÊÇ¿ÉÐлù¡£
1.13ÒÑÖªÏßÐԹ滮
9254maxz?5x1?8x2?7x3?4x4?2x1?3x2?3x3?2x4?20 ?3x?5x?4x?2x?30?1234?x?0,j?1,,4?j?23?µÄ×îÓÅ»ùΪB???£¬ÊÔÓþØÕó¹«Ê½Çó£¨1£©×îÓŽ⣻(2)µ¥´¿ÐγË×Ó£»
25??(3)N1¼°N3£»(4)?1ºÍ?3¡£
¡¾½â¡¿
?5?4B?1????1??23???4?,CB?(c4,c2)?(4,8,),Ôò 1?2??T?1(1)XB?(x4,x2)?Bb?(,5),×îÓŽâX?(0,5,0,),Z?50 (2)??CBB(3)
?152T52T?(1,1)
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 24
3??5?1???44??2??4??1N1?BP??????1??11????3??1????22???2??
3??5?3???4??3??4?4?1N3?BP3??????????11??4??1????22???2??(4)
?1??4??1?c1?CBN1?5?(4,8)???5?5?0?1???2??
?3??4??3?c3?CBN3?7?(4,8)???7?7?0?1???2??×¢£º¸ÃÌâÓжàÖØ½â£º
X(1)=(0£¬5£¬0£¬5/2)
X(2)=(0£¬10/3£¬10/3£¬0)
X(3)=(10£¬0£¬0£¬0)£¬x2ÊÇ»ù±äÁ¿£¬X(3)ÊÇÍË»¯»ù±¾¿ÉÐнâ Z£½50
1.14 ÒÑ֪ijÏßÐԹ滮µÄµ¥´¿Ðαí1£28, Çó¼ÛֵϵÊýÏòÁ¿C¼°Ä¿±êº¯ÊýÖµZ£®
±í1£28 Cj CB 3 4 0 ¦Ëj ¡¾½â¡¿ÓÉ?j?cj?ic1 XB x4 x1 x6 x1 0 1 0 0 c2 x2 1 0 £1 £1 c3 x3 2 £1 4 £1 c4 x4 1 0 0 0 iijc5 x5 £3 2 £4 1 c6 x6 0 0 1 0 c7 x7 2 £1 2 £2 b 4 0 3/2 ?caiijÓÐcj??j??cai
c2£½£1£«£¨3¡Á1£«4¡Á0£«0¡Á£¨£1£©£©£½2 c3£½£1£«£¨3¡Á2£«4¡Á£¨£1£©£«0¡Á4£©£½1 c5£½1£«£¨3¡Á£¨£3£©£«4¡Á2£«0¡Á£¨£4£©£©£½0 c7£½-2£«£¨3¡Á2£«4¡Á(£1)£«0¡Á2£©£½0 ÔòC£½(4,2,1,3,0,0,0,)£¬Z=CBXB=12
1.15 ÒÑÖªÏßÐԹ滮
maxZ?c1x1?c2x2?c3x3
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 25
?a11x1?a12x2?a13x3?b1??a21x1?a22x2?a23x3?b2 ?x,x,x?0?123µÄ×îÓŵ¥´¿ÐαíÈç±í1£29Ëùʾ£¬ÇóÔÏßÐԹ滮¾ØÕóC¡¢A¡¢¼°b£¬×îÓÅ»ùB¼°B£®
Cj CB c1 c2 ¦Ëj XB x1 x2 c1 x1 1 0 0 c2 x2 0 1 0 ±í1£29 c3 x3 4 £3 £1 c4 x4 1/6 0 £2 c5 x5 1/15 1/5 £3 b 6 2 ?1?11??615??6?2??1?1?1£¬µÃµ½B?(B)?,c4£½c5£½0£¬ ¡¾½â¡¿ÓÉB??????05??01??5???Óɹ«Ê½?j?cj??ciaijµÃ
i?16?c4??2?(c1,c2)????2?c1/6?0?c1?12
?0??115?c5??3?(12,c2)??0?c2?11 ??15??4?c3???1?(12,11)???14
??3??1ÓÉ A?BA
4??6?2??10?µÃ A?BA??????01??305??????1ÓÉ b?Bb
32??6?2??6??µÃ b?Bb?? ??????10??05??2??6?2?30
05??1?51.16˼¿¼Óë¼ò´ð
£¨1£©ÔÚÀý1.2ÖУ¬Èç¹ûÉèxj(j=1£¬2£¬¡£¬7)Ϊ¹¤×÷ÁË5ÌìºóÐÇÆÚÒ»µ½ÐÇÆÚÈÕ¿ªÊ¼ÐÝÏ¢µÄÓªÒµÔ±£¬¸ÃÄ£ÐÍÈçºÎ±ä»¯¡£
£¨2£©ÔÚÀý1.3ÖУ¬ÄÜ·ñ½«Ô¼ÊøÌõ¼þ¸ÄΪµÈʽ£»Èç¹ûÒªÇóÓàÁÏ×îÉÙ£¬ÊýѧģÐÍÈçºÎ±ä»¯£»¼òÊö°å²ÄÏÂÁϵÄ˼·¡£
£¨3£©ÔÚÀý1.4ÖУ¬ÈôÔÊÐíº¬ÓÐÉÙÁ¿ÔÓÖÊ£¬µ«ÔÓÖʺ¬Á¿²»³¬¹ý1£¥£¬Ä£ÐÍÈçºÎ±ä»¯¡£
£¨4£©ÔÚÀý1.6ÖУ¬¼Ù¶¨Í¬ÖÖÉ豸µÄ¼Ó¹¤Ê±¼ä¾ùÔÈ·ÖÅäµ½¸÷̨É豸ÉÏ£¬ÒªÇóÒ»ÖÖÉ豸ÿ̨ÿÌìµÄ¼Ó¹¤Ê±¼ä²»³¬¹ýÁíÒ»ÖÖÉ豸ÈÎһ̨¼Ó¹¤Ê±¼ä1Сʱ£¬Ä£ÐÍÈçºÎ±ä»¯¡£
(5)ÔÚµ¥´¿Ðη¨ÖУ¬ÎªÊ²Ã´Ëµµ±?k?0²¢ÇÒaik?0(i?1,2,,m)ʱÏßÐԹ滮¾ßÓÐÎÞ½ç½â¡£ (6)Ñ¡Ôñ³ö»ù±äÁ¿ÎªÊ²Ã´Òª×ñÑ×îС±ÈÖµ¹æÔò£¬Èç¹û²»×ñÑ×îС±ÈÖµ¹æÔò»áÊÇʲô½á¹û¡£ £¨7£©¼òÊö´óM·¨¼ÆËãµÄ»ù±¾Ë¼Â·£¬ËµÃ÷ÔÚʲôÇéÐÎÏÂÏßÐԹ滮ÎÞ¿ÉÐн⡣ £¨8£©ÉèX(1)¡¢X(2)¡¢X(3)ÊÇÏßÐԹ滮µÄ3¸ö×îÓŽ⣬ÊÔ˵Ã÷
X??1X(1)??2X(2)??3X(3)(ÆäÖÐ?1,?2,?3?0²¢ÇÒ?1??2??3?1)
Ò²ÊÇÏßÐԹ滮µÄ×îÓŽ⡣
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 26
£¨9£©Ê²Ã´ÊÇ»ù±¾½â¡¢¿ÉÐн⡢»ù±¾¿ÉÐн⡢»ù±¾×îÓŽ⣬ÕâËĸö½âÖ®¼äÓкιØÏµ¡£ £¨10£©¼òÊöÏßÐԹ滮ÎÊÌâ¼ìÑéÊýµÄ¶¨Òå¼°Æä¾¼Ãº¬Òå¡£
·µ»Ø¶¥²¿
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 27
µÚ2Õ ÏßÐԹ滮µÄ¶ÔżÀíÂÛ
2.1ijÈ˸ù¾ÝÒ½Öö£¬Ã¿ÌìÐè²¹³äA¡¢B¡¢CÈýÖÖÓªÑø£¬A²»ÉÙÓÚ80µ¥Î»£¬B²»ÉÙÓÚ150µ¥Î»£¬C²»ÉÙÓÚ180µ¥Î»£®´ËÈË×¼±¸Ã¿Ìì´ÓÁùÖÖʳÎïÖÐÉãÈ¡ÕâÈýÖÖÓªÑø³É·Ö£®ÒÑÖªÁùÖÖʳÎïÿ°Ù¿ËµÄÓªÑø³É·Öº¬Á¿¼°Ê³Îï¼Û¸ñÈç±í2-22Ëùʾ£®£¨1£©ÊÔ½¨Á¢´ËÈËÔÚÂú×㽡¿µÐèÒªµÄ»ù´¡ÉÏ»¨·Ñ×îÉÙµÄÊýѧģÐÍ£»£¨2£©¼Ù¶¨ÓÐÒ»¸ö³§É̼ƻ®Éú²úÒ»ÖÐÒ©Í裬ÊÛ¸ø´ËÈË·þÓã¬Ò©ÍèÖаüº¬ÓÐA£¬B£¬CÈýÖÖÓªÑø³É·Ö£®ÊÔΪ³§ÉÌÖÆ¶¨Ò»¸öÒ©ÍèµÄºÏÀí¼Û¸ñ£¬¼Èʹ´ËÈËÔ¸Ò⹺Âò£¬ÓÖʹ³§ÉÌÄÜ»ñµÃ×î´óÀûÒæ£¬½¨Á¢ÊýѧģÐÍ£®
º¬Á¿ ʳÎï ÓªÑø³É·Ö A B C ʳÎïµ¥¼Û£¨Ôª/100g£© Ò» 13 24 18 0.5 ¶þ 25 9 7 0.4 ±í2-22 Èý 14 30 21 0.8 ËÄ 40 25 34 0.9 Îå 8 12 10 0.3 Áù 11 15 0 0.2 ÐèÒªÁ¿ ¡Ý80 ¡Ý150 ¡Ý180 ¡¾½â¡¿£¨1£©ÉèxjΪÿÌìµÚjÖÖʳÎïµÄÓÃÁ¿£¬ÊýѧģÐÍΪ
minZ?0.5x1?0.4x2?0.8x3?0.9x4?0.3x5?0.2x6?13x1?25x2?14x3?40x4?8x5?11x6?80?24x?9x?30x?25x?12x?15x?150?123456??18x1?7x2?21x3?34x4?10x5?180??x1¡¢x2¡¢x3¡¢x4¡¢x5¡¢x6?0£¨2£©ÉèyiΪµÚiÖÖµ¥Î»ÓªÑøµÄ¼Û¸ñ£¬ÔòÊýѧģÐÍΪ
maxw?80y1?150y2?180y3?13y1?24y2?18y3?0.5?25y?9y?7y?0.4123??14y1?30y2?21y3?0.8??40y1?25y2?34y3?0.9?8y?12y?10y?0.323?1?11y1?15y2??0.2??y1,y2,y3?0
2.2д³öÏÂÁÐÏßÐԹ滮µÄ¶ÔżÎÊÌâ
?y1?2y2?1?x1?3x2?5x3?10?£¨1£©? ¡¾½â¡¿?3y1?y2?3?2x1?x2?x3?4??x,x,x?0?5y1?y2?2?123??y1,y2?0min?x1?3x2?2x3maxw?10y1?4y2
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 28
?y1?y2?2?x1?2x2?4x3?15?£¨2£©? ¡¾½â¡¿?2y1?3y2?1 ??x1?3x2?x3?10??x,x?0,xÎÞÔ¼Êø??4y1?y2?13?12??y1ÎÞÔ¼Êø£»y2?0maxZ?2x1?x2?x3minw?15y1?10y2?10y1?7y2?4y3?210x?x?x?4x?14?1234?y?6y?8y?1123?£¨3£©?7x1?6x2?2x3?5x4?20 ¡¾½â¡¿? ??y?2y?6y??4??1234x?8x?6x?x£½91234???4y?5y?y?3123??x,x?0,xÎÞÔ¼Êø£¬x?034?12??y1?0,y2?0,y3ÎÞÔ¼ÊømaxZ?2x1?x2?6x3?7x4maxZ?2x1?x2£4x3?3x4minw?14y1?20y2?9y3maxZ?2x1?x2?6x3?7x4?3x1?2x2?x3?6x4?12?3x1?2x2?x3?6x4?12?6x?5x?x?634?6x?5x?x?6?1134£¨4£©? ¡¾½â¡¿????x1?2x2?x3?2x4??2
?x?2x?x?2x??2?1?234?8?x?20?x1?81??x1?20???x1?0£¬x2,x3,x4ÎÞÔ¼Êø??x1?0£¬x2,x3,x4ÎÞÔ¼Êøminw?12y1?6y2?2y3+8y4?20y5?3y1?6y2?y3?y4?y5?2??2y?2y?113¶ÔżÎÊÌâΪ£º ? ?y?5y?y??6?123??6y?y?2y?7123???y1?0,y2?0£¬y3,?0£¬y4?0£¬y5?02.3¿¼ÂÇÏßÐԹ滮
minZ?12x1?20x2?x1?4x2?4?x?5x?2?12??2x1?3x2?7??x1,x2?0
(1)˵Ã÷ÔÎÊÌâÓë¶ÔżÎÊÌâ¶¼ÓÐ×îÓŽ⣻
(2)ͨ¹ý½â¶ÔżÎÊÌâÓÉ×îÓűíÖй۲ì³öÔÎÊÌâµÄ×îÓŽ⣻
£
(3)ÀûÓù«Ê½CBB1ÇóÔÎÊÌâµÄ×îÓŽ⣻ (4)ÀûÓû¥²¹ËɳÚÌõ¼þÇóÔÎÊÌâµÄ×îÓŽ⣮ ¡¾½â¡¿(1)ÔÎÊÌâµÄ¶ÔżÎÊÌâΪ
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 29
maxw?4y1?2y2?7y3?y1?y2?2y3?12??4y1?5y2?3y3?20?y?0,j?1,2,3?j
ÈÝÒ׿´³öÔÎÊÌâºÍ¶ÔżÎÊÌâ¶¼ÓпÉÐн⣬ÈçX£½(2£¬1)¡¢Y£½(1£¬0£¬1)£¬Óɶ¨Àí2.4Öª¶¼ÓÐ×îÓŽ⡣
(2)¶ÔżÎÊÌâ×îÓŵ¥´¿ÐαíΪ C(j) Basis y3 y1 C(j)-Z(j) C(i) 7 4 4 y1 0 1 2 y2 -1/5 7/5 7 y3 1 0 0 y4 4/5 -3/5 0 y5 -1/5 R. H. S. 28/5 2/5 0 -11/5 0 -16/5 -1/5 4/5 w=42.4 ¶ÔżÎÊÌâµÄ×îÓŽâY£½(4/5,0,28/5)£¬Óɶ¨Àí2.6£¬ÔÎÊÌâµÄ×îÓŽâΪX=(16/5£¬1/5)£¬Z£½42.4
1?1??4?4???5?55?5??1£¨3£©CB=(7,4),B???, X?(7,4)???(16/5,1/5)
??32???32????55???55??(4)ÓÉy1¡¢y3²»µÈÓÚÁãÖªÔÎÊÌâµÚÒ»¡¢Èý¸öÔ¼ÊøÊǽôµÄ£¬½âµÈʽ
?x1?4x2?4 ?2x?3x?7?12µÃµ½ÔÎÊÌâµÄ×îÓŽâΪX=(16/5£¬1/5)¡£
2.4Ö¤Ã÷ÏÂÁÐÏßÐԹ滮ÎÊÌâÎÞ×îÓŽâ
minZ?x1?2x2?2x3?2x1?x2?2x3?3 ?x?2x?3x?2?123?x,x?0,xÎÞÔ¼Êø3?12Ö¤Ã÷£ºÊ×ÏÈ¿´µ½¸ÃÎÊÌâ´æÔÚ¿ÉÐн⣬ÀýÈçx=(2,1,1)£¬¶øÉÏÊöÎÊÌâµÄ¶ÔżÎÊÌâΪ
maxw?3y1?2y2?2y1?y2?1?y?2y??2 ?12???2y1?3y2??2??y2?0,y1ÎÞÔ¼ÊøÓÉÔ¼ÊøÌõ¼þ¢Ù¢ÚÖªy1¡Ü0£¬ÓÉÔ¼ÊøÌõ¼þ¢Ûµ±y2¡Ý0Öªy1¡Ý1£¬¶ÔżÎÊÌâÎÞ¿ÉÐн⣬Òò´ËÔÎÊÌâ
Ò²ÎÞ×îÓŽâ(ÎÞ½ç½â)¡£
2.5ÒÑÖªÏßÐԹ滮
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 30
maxZ?15x1?20x2?5x3?x1?5x2?x3?5?5x?6x?x?6 ?123??3x1?10x2?x3?7??x1?0,x2?0,x3ÎÞÔ¼ÊøµÄ×îÓŽâX?(,0,1419T)£¬Çó¶ÔżÎÊÌâµÄ×îÓŽ⣮ 4¡¾½â¡¿Æä¶ÔżÎÊÌâÊÇ£º
minw?5y1?6y2?7y3?y1?5y2?3y3?15?5y?6y?10y?20 ?123??y1?y2?y3?5??y1,y2,y3?0ÓÉÔÎÊÌâµÄ×îÓŽâÖª£¬ÔÎÊÌâÔ¼Êø¢ÛµÄËɳڱäÁ¿²»µÈÓÚÁã(xs3?0)£¬x1¡¢x3²»µÈÓÚÁ㣬Ôò¶ÔżÎÊÌâµÄÔ¼Êø¢Ù¡¢Ô¼Êø¢ÛΪµÈʽ£¬ÓÖÓÉÓÚxs3?0Öªy3£½0£»½â·½³Ì
?y1?5y2?15 ?y?y?5?12µÃµ½¶ÔżÎÊÌâµÄ×îÓŽâY=(5/2,5/2,0)£»w£½55/2£½27.5
2.6ÓöÔżµ¥´¿Ðη¨Çó½âÏÂÁÐÏßÐԹ滮
£¨£©1minZ?3x1?4x2?6x3?x1?2x2?3x3?10??2x1?2x2?x3?12?x,x,x?0?123
¡¾½â¡¿½«Ä£ÐÍ»¯Îª
minZ?3x1?4x2?6x3??x1?2x2?3x3?x4??10 ???2x1?2x2?x3?x5??12?x?0,j?1,2,3,4,5?j¶Ôżµ¥´¿ÐÎ±í£º
cj CB 0 0 XB X4 X5 C(j)-Z(j) 3 X1 £1 [£2] 3 4 X2 £2 £2 4 6 X3 £3 £1 6 0 X4 1 0 0 0 X5 0 1 0 b £10 £12 0 Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 31
0 3 X4 X1 C(j)-Z(j) 0 1 0 0 1 0 [£1] 1 1 1 0 0 £5/2 1/2 9/2 5/2 £2 2 1 0 0 £1 1 1 £1/2 £1/2 3/2 1/2 £1 1 £4 6 £18 4 2 £22 5 3 X2 X1 C(j)-Z(j) bÁÐȫΪ·Ç¸º£¬×îÓŽâΪx£½(2£¬4£¬0)£»Z£½22
£¨2£©
minZ?5x1?4x2?x1?x2?6??2x1?x2?2?x?0,x?02?1
¡¾½â¡¿½«Ä£ÐÍ»¯Îª
minZ?5x1?4x2??x1?x2?x3??6 ?2x?x?x?2?124?x?0,j?1,2,3,4?j XB X3 X4 Cj£Zj X1 X4 Cj£Zj X1 X2 Cj£Zj 3 4 3 0 CB 0 0 5 X1 [-1] 2 3 1 0 0 1 0 0 4 X2 -1 1 4 1 [-1] 1 0 1 0 0 X3 1 0 0 -1 2 3 1 -2 5 0 X4 0 1 0 0 1 0 1 -1 1 b -6 2 6 -10 -4 10 ³ö»ùÐÐϵÊýÈ«²¿·Ç¸º£¬×îС±ÈֵʧЧ£¬ÔÎÊÌâÎÞ¿ÉÐн⡣
(3)minZ?2x1?4x2?2x1?3x2?24?x?2x?10?12??x1?3x2?18??x1,x2?0
¡¾½â¡¿½«Ä£ÐÍ»¯Îª
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 32
minZ?2x1?4x2?2x1?3x2?x3?24??x?2x?x??10 ?124???x1?3x2?x5??18?xj?0,j?1,2,3,4,5? cj XB X3 X4 X5 Cj£Zj X3 X4 X2 Cj£Zj 0 0 4 CB 0 0 0 2 X1 2 -1 -1 2 1 -1/3 1/3 2/3 4 X2 3 -2 [-3] 4 0 0 1 0 0 X3 1 0 0 0 1 0 0 0 0 X4 0 1 0 0 0 1 0 0 0 X5 0 0 1 0 1 £2/3 £1/3 4/3 b 24 -10 -18 6 2 6 ×îÓŽâX=(0£¬6)£»Z£½24
£¨4£©minZ?2x1?3x2?5x3?6x4?x1?2x2?3x3?x4?2???2x1?x2?x3?3x4??3?x?0,j?1,,4?j
¡¾½â¡¿½«Ä£ÐÍ»¯Îª
minZ?2x1?3x2?5x3?6x4??x1?2x2?3x3?x4?x5??2 ??2x?x?x?3x?x??3?12346?x?0,j?1,,6?jCj XB X5 X6 Cj£Zj X2 X6 Cj£Zj X2 X3 Cj£Zj X1 X3 2 5 3 5 3 0 CB 0 0 2 X1 -1 -2 2 1/2 -5/2 1/2 [-1] 1 0 1 0 3 X2 [-2] 1 3 1 0 0 1 0 0 -1 [1] 5 X3 -3 -1 5 3/2 [-5/2] 1/2 0 1 0 0 1 6 X4 -4 3 6 2 1 0 13/5 -2/5 1/5 -13/5 11/5 0 X5 1 0 0 -1/2 1/2 3/2 -1/5 -1/5 8/5 1/5 -2/5 0 X6 b -2 -3 1 -4 -7/5 8/5 0 1 0 0 1 0 3/5 -2/5 1/5 -3/5 1/5 7/5 1/5 Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 33
Cj£Zj X1 X2 Cj£Zj 2 3 0 1 0 0 0 0 1 0 0 1 1 0 1/5 -2/5 11/5 1/5 8/5 -1/5 -2/5 8/5 1/5 -2/5 1/5 1/5 8/5 1/5 ÔÎÊÌâÓжàÖØ½â£ºX(1)£½(7/5£¬0£¬1/5£¬)£»×îÓŽâX(2)£½(8/5£¬1/5£¬0)£»Z£½19/5 Èç¹ûµÚÒ»ÕűíX6³ö»ù£¬ÔòÓÐ
Cj XB X5 X6 Cj£Zj X5 X1 Cj£Zj X2 X1 Cj£Zj 3 2 0 2 CB 0 0 2 X1 -1 [-2] 2 0 1 0 0 1 0 3 X2 -2 1 3 [-5/2] -1/2 4 1 0 0 5 X3 -3 -1 5 -5/2 1/2 4 1 1 0 6 X4 -4 3 6 -11/2 -3/2 9 11/5 -7/5 1/5 0 X5 1 0 0 1 0 0 -2/5 -1/5 8/5 0 X6 b -2 -3 -1/2 3/2 1/5 8/5 0 1 0 -1/2 -1/2 1 1/5 -2/5 1/5
2£®7ij¹¤³§ÀûÓÃÔ²ÄÁϼס¢ÒÒ¡¢±ûÉú²ú²úÆ·A¡¢B¡¢C£¬ÓйØ×ÊÁϼû±í2-23£®
±í2-23
²Ä ²úÆ· ²ú²ÄÁÏÏûºÄÁÏ Æ·ÏûÔ²ÄÁÏ ºÄ²ÄÁÏ¼× ÒÒ ±û ÿ¼þ²úÆ·ÀûÈó A 2 1 2 4 B 1 2 2 1 C 1 3 1 3 ÿÔ¿ɹ©Ô²ÄÁÏ£¨Kg£© 200 500 600 £¨1£©ÔõÑù°²ÅÅÉú²ú£¬Ê¹ÀûÈó×î´ó£®
£¨2£©ÈôÔö¼Ó1kgÔ²ÄÁϼף¬×ÜÀûÈóÔö¼Ó¶àÉÙ£®
£¨3£©ÉèÔ²ÄÁÏÒÒµÄÊг¡¼Û¸ñΪ1.2Ôª/Kg£¬ÈôҪתÂôÔ²ÄÁÏÒÒ£¬¹¤³§Ó¦ÖÁÉٽм۶àÉÙ£¬ÎªÊ²Ã´£¿
£¨4£©µ¥Î»²úÆ·ÀûÈó·Ö±ðÔÚʲô·¶Î§Äڱ仯ʱ£¬ÔÉú²ú¼Æ»®²»±ä£®
£¨5£©Ô²ÄÁϷֱ𵥶ÀÔÚʲô·¶Î§ÄÚ²¨¶¯Ê±£¬ÈÔÖ»Éú²úAºÍCÁ½ÖÖ²úÆ·£®
£¨6£©ÓÉÓÚÊг¡µÄ±ä»¯£¬²úÆ·B¡¢CµÄµ¥¼þÀûÈó±äΪ3ÔªºÍ2Ôª£¬ÕâʱӦÈçºÎµ÷ÕûÉú²ú¼Æ»®£® £¨7£©¹¤³§¼Æ»®Éú²úвúÆ·D£¬Ã¿¼þ²úÆ·DÏûºÄÔ²ÄÁϼס¢ÒÒ¡¢±û·Ö±ðΪ2kg£¬2kg¼°1kg£¬Ã¿¼þ²úÆ·DÓ¦»ñÀû¶àÉÙʱ²ÅÓÐÀûÓÚͶ²ú£® ¡¾½â¡¿£¨1£©Éè x1¡¢x2¡¢x3·Ö±ðΪ²úÆ·A¡¢B¡¢CµÄÔÂÉú²úÁ¿£¬ÊýѧģÐÍΪ
maxZ?4x1?x2?3x3?2x1?1x2?x3?200?x?2x?3x?500 ?123??2x1?x2?x3?600??x1?0,x2?0,x3?0×îÓŵ¥´¿ÐÎ±í£º
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 34
C(j) X1 X3 X6 4 3 0 4 1 0 0 0 1 X2 1/5 3/5 0 -8/5 3 X3 0 1 0 0 0 X4 3/5 -1/5 -1 -9/5 0 X5 -1/5 2/5 0 -2/5 0 X6 0 0 1 0 XB CB X1 R.H.S. 20 160 400 Z=560 Ratio ×îÓŽâX=£¨20£¬0£¬160£©£¬Z=560¡£¹¤³§Ó¦Éú²ú²úÆ·A20¼þ£¬²úÆ·C160ÖÖ£¬×ÜÀûÈóΪ560Ôª¡£
£¨2£©ÓÉ×îÓűí¿ÉÖª£¬Ó°×Ó¼Û¸ñΪy1?C(j)-Z(j) 92,y2?,y3?0,¹ÊÔö¼ÓÀûÈó1.8Ôª¡£ 55£¨3£©ÒòΪy2=0.4£¬ËùÒԽмÛÓ¦²»ÉÙÓÚ1.6Ôª¡£
£¨4£©ÒÀ¾Ý×îÓÅ±í¼ÆËãµÃ
8?3??c1?2,?c2?,?1??c3?95
13c1?[1,6],c2?(??,],c3?[2,12]5£¨5£©ÒÀ¾Ý×îÓÅ±í¼ÆËãµÃ
100??b1?400,?400??b2?100,?400??b33 500b1?[,600],b2?[100,600],b3?[200,??).3?£¨6£©±ä»¯ºóµÄ¼ìÑéÊýΪ¦Ë2=1,¦Ë4=-2,¦Ë5=0¡£¹Êx2½ø»ùx1³ö»ù,µÃµ½×î×îÓŽâX=(0,200,0)£¬¼´Ö»Éú²ú²úÆ·B 200¼þ,×ÜÀûÈóΪ600Ôª¡£ C(j) XB X1 X3 X6 X2 X3 X6 X2 X4 X6
(7)Éè²úÆ·DµÄ²úÁ¿Îªx7, µ¥¼þ²úÆ·ÀûÈóΪc7£¬Ö»Óе±?7?c7?CBB?1P7?0ʱ²ÅÓÐÀûÓÚͶ²ú¡£
CB 4 2 0 2 3 0 2 0 0 4 X1 1 0 0 0 5 -3 0 -5 2 -3 0 -2 3 X2 [1/5] 3/5 0 1 1 0 0 0 1 0 0 0 2 X3 0 1 0 0 0 1 0 0 1 1 0 -1 0 X4 3/5 -1/5 -1 -2 3 -2 -1 -5 1 -2 -1 -3 0 X5 -1/5 2/5 0 0 -1 [1] 0 1 0 1 0 0 0 X6 0 0 1 0 0 0 1 0 0 0 1 0 R.H.S. 20 160 400 560 100 100 400 200 100 400 Ratio 100 800/3 M M 100 M C(j)-Z(j) C(j)-Z(j) C(j)-Z(j) Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 35
?2?92????22c7?CBB?1P7?YP7??,,0??2??
?55???5?1?Ôòµ±µ¥Î»²úÆ·DµÄÀûÈ󳬹ý4.4Ԫʱ²ÅÓÐÀûÓÚͶ²ú¡£
2£®8¶ÔÏÂÁÐÏßÐԹ滮×÷²ÎÊý·ÖÎö
maxZ?(3?2?)x1?(5??)x2?x1?4?£¨1£©?x2?6??3x1?2x2?18??x1,x2?0
¡¾½â¡¿¦Ì£½0ʱ×îÓŽâX=(4,3,0)£»×îÓÅ±í£º C(j) 3 5 0 Basis X1 X2 X5 C(i) 3 5 0 X1 1 0 0 0 3£«2¦Ì X1 1 0 0 X2 0 1 0 0 5£¦Ì X2 0 1 0 X3 1 0 -3 -3 0 X4 0 0.5 -1 -2.5 0 X3 1 0 -3 0 X5 0 0 1 0 0 X4 0 0.5 -1 R. H. S. 4 3 0 27 0 X5 0 0 1 R.H.S. 4 3 0 C(j)-Z(j) ½«²ÎÊýÒýÈëµ½ÉÏ±í£º C(j) Basis X1 X2 X5 C(i) 3£«2¦Ì 5£¦Ì 0 C(j)-Z(j) 0 0 0 27 £3£2¦Ì -2.5£«0.5¦Ì µ±£3£2¦Ì¡Ü0¼°-2.5£«0.5¦Ì¡Ü0ʱ×îÓÅ»ù²»±ä£¬ÓУ1.5¡Ü¦Ì¡Ü5¡£µ±¦Ì<£1.5ʱX3½ø»ùX1³ö»ù£»¦Ì>5ʱX4½ø»ùX2³ö»ù£¬Óõ¥´¿Ðη¨¼ÆËã¡£²ÎÊý±ä»¯ÓëÄ¿±êÖµ±ä»¯µÄ¹ØÏµÈçϱíËùʾ¡£ From To From To Leaving Entering Range 1 2 3 (Vector) 0 5 0 (Vector) OBJ Value OBJ Value 5 M -1.5 27 52 27 19.5 52 M 19.5 M Slope 5 8 5 -3 Variable Variable X2 X1 X4 X3 4 -1.5 -M Ä¿±êÖµ±ä»¯ÈçÏÂͼËùʾ¡£
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 36
(¦Ì£½5,Z=52)
(¦Ì£½0,Z=27)
(¦Ì£½-1.5,Z=19.5)
0
maxZ?3x1?5x2?x1?4???£¨2£©?x2?6 ??3x1?2x2?18?2???x1,x2?0¡¾½â¡¿¦Ì£½0ʱ×îÓŽâX=(4,3,0)£¬Z£½27£»×îÓÅ±í£º C(j) 3 5 0 0 Basis X1 X2 X5 C(j)-Z(j) C(i) 3 5 0 X1 1 0 0 0 X2 0 1 0 0 X3 1 0 -3 -3 X4 0 0.5 -1 -2.5 0 X5 0 0 1 0 R. H. S. 4 3 0 27 ?4??1????0??
b?b??b????6??????18?????2??b?B?1(b??b???)?B?1b??B?1b???00??1??4??1???00.50??0????3????????0?????3?11?????2???4??1????0????3??????0?????5??
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 37
Ìæ»»×îÓűíµÄÓҶ˳£Êý£¬µÃµ½ÏÂ±í¡£ C(j) 3 5 Basis X1 X2 X5 C(i) 3 5 0 X1 1 0 0 X2 0 1 0 0 X3 1 0 [-3] 0 X4 0 0.5 -1 0 X5 0 0 1 R.H.S. 4£«¦Ì 3 £5¦Ì C(j)-Z(j) 0 0 -3 -2.5 0 ¢Ù¦Ì<£4ʱÎÊÌâ²»¿ÉÐУ¬£4¡Ü¦Ì<0ʱ×îÓÅ»ù²»±ä¡£¦Ì£½£4ʱZ£½15¡£ ¢Ú¦Ì>0ʱX5³ö»ùX3½ø»ùµÃµ½ÏÂ±í£º C(j) 3 5 0 0 0 Basis X1 X2 X3 C(i) 3 5 0 X1 1 0 0 X2 0 1 0 X3 0 0 1 0 X4 -1/3 1/2 1/3 -3/2 X5 1/3 0 -1/3 -1 R.H.S. 4-2/3¦Ì 3 5¦Ì/3 C(j)-Z(j) 0 0 0¡Ü¦Ì¡Ü6ʱΪ×îÓŽ⡣¦Ì£½6ʱZ£½15¡£ ¢Û¦Ì>6ʱX1³ö»ùX4½ø»ùµÃµ½ÏÂ±í£º C(j) 3 5 Basis X4 X2 X3 C(i) 0 5 0 X1 -3 3/2 1 X2 0 1 0 0 X3 0 0 1 0 X4 1 0 0 0 X5 -1 1/2 0 R.H.S. -12+2¦Ì 9-¦Ì 4+¦Ì C(j)-Z(j) ¦Ì£½9ʱ×îÓŽâX=(0£¬0£¬13£¬6£¬0)£¬Z=0£»¦Ì>9ʱÎÞ¿ÉÐн⡣ ×ۺϷÖÎöÈçϱíËùʾ¡£ From To From To Leaving Range (Vector) (Vector) OBJ Value OBJ Value Slope Variable 1 0 0 27 27 3 X5 2 0 6 27 15 -2 X1 3 6 9 15 0 -5 X2 4 9 Infinity Infeasible 5 0 -4 27 15 3 X1 6 -4 -Infinity Infeasible Ä¿±êÖµ±ä»¯ÈçÏÂͼËùʾ¡£ Entering Variable X3 X2 Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 38
2.9 ÓÐÈý¸ö¾ö²ßµ¥ÔªµÄÊäÈëÊä³ö¾ØÕó
?9510??628???X£½?364?£¬Y£½?? 535????439??£¨1£©½¨Á¢C2RÄ£ÐͲ¢Çó½â£¬Åжϸ÷¾ö²ßµ¥ÔªµÄDEAÓÐЧÐÔ¡£
(2) ½¨Á¢BC2Ä£ÐͲ¢Çó½â£¬Åжϸ÷¾ö²ßµ¥ÔªµÄDEAÓÐЧÐÔ¡£
£¨3£©Ö¸³öÄÄЩ¾ö²ßµ¥ÔªÊǼ¼ÊõÓÐЧÓÖ¹æÄ£ÓÐЧ¡¢ÊǼ¼ÊõÓÐЧ·Ç¹æÄ£ÓÐЧ¡¢¼È²»ÊǼ¼ÊõÓÐЧÓַǹæÄ£ÓÐЧ¡£
(4) ·Ö±ðÇóÈý¸ö¾ö²ßµ¥ÔªµÄÕûÌåЧÂÊ¡¢¼¼ÊõЧÂÊ¡¢¹æÄ£Ð§Âʼ°¹æÄ£±¨³ê ¡¾½â¡¿£¨1£©m?3,n?3,s?2£»¦Ø?(?1,?2,?3)T,¦Ì?(?1,?2)T
¶ÔµÚÒ»¾ö²ßµ¥ÔªÓÐ
X1?(9£¬3£¬4)T,Y1?(6,5)T
maxZ1P?6?1?5?2??9?1?3?2?4?3?6?1?5?2?0??5??6??3??2??3??012312? ???10?1?4?2?9?3?8?1?5?2?0?9??3??4??123?1???1,?2,?3,?1,?2?0TT×îÓÅ½â¦Ø?(0.0894,0,0.0488),¦Ì?(0.1667,0)£¬Z1P=1 ¶ÔżÎÊÌâµÄ×îÓŽ⣺(?1£¬?2£¬?3£¬?)?(1,0,0,1)£¬Z1D=1¡£
DEAÓÐЧ
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 39
¶ÔµÚ¶þ¾ö²ßµ¥ÔªÓÐ
maxZ2P?2?1?3?2??9?1?3?2?4?3?6?1?5?2?0??5??6??3??2??3??012312? ???10?1?4?2?9?3?8?1?5?2?0?5??6??3??123?1???1,?2,?3,?1,?2?0×îÓÅ½â¦Ø?(0.0820,0,0.1475)T,¦Ì?(0,0.2656)T£¬Z2P=0.7967
¶ÔżÎÊÌâµÄ×îÓŽ⣺(?1£¬?2£¬?3£¬?)?(0.4426,0,0.1574,0.7967)£¬Z2D=0.7967
·ÇDEAÓÐЧ
¶ÔµÚÈý¾ö²ßµ¥ÔªÓÐ
maxZ3P?8?1?5?2??9?1?3?2?4?3?6?1?5?2?0??5??6??3??2??3??012312? ???10?1?4?2?9?3?4?1?9?2?0?10??4??9??1123????1,?2,?3,?1,?2?0×îÓÅ½â¦Ø?(0.0253,0,0.0829)T,¦Ì?(0.0933,0)T£¬Z3P=0.7465
¶ÔżÎÊÌâµÄ×îÓŽ⣺(?1£¬?2£¬?3,?)?(0.8295,0,0.3779,0.7465)£¬Z3D=0.7465¡£
·ÇDEAÓÐЧ
£¨2£©µÚÒ»¾ö²ßµ¥ÔªBC2Ä£ÐÍ
maxWkP?¦ÌTYk?ck?9510??¦ØTXj?¦ÌTYj?ck?0,j?1,2,n?364?£¬Y£½?628?
?X£½?T?535???¦ØX?1???k??439???¦Ø?0,¦Ì?0??maxW1P?6?1?5?2?c1??9?1?3?2?4?3?6?1?5?2?c1?0??5??6??3??2??3??c?0123121? ???10?1?4?2?9?3?8?1?5?2?c1?0?9??3??4??123?1???1,?2,?3,?1,?2?0×îÓÅ½â¦Ø?(0.0894,0,0.0488)T,¦Ì?(0.1667,0)Tc1?0£¬W1P=1
¶ÔżÎÊÌâµÄ×îÓŽ⣺(?1£¬?2£¬?3£¬?)?(1,0,0,1)£¬W1D=1¡£ ¼¼ÊõÓÐЧ
µÚ¶þ¾ö²ßµ¥ÔªBC2Ä£ÐÍ
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 40
maxW2P?2?1?3?2?c2??9?1?3?2?4?3?6?1?5?2?c2?0???5?1?6?2?3?3?2?1?3?2?c2?0 ???10?1?4?2?9?3?8?1?5?2?c2?0?5??6??3??123?1???1,?2,?3,?1,?2?0,c1ÎÞÏÞÖÆ×îÓÅ½â¦Ø?(0.0962,0,0.1731)T,¦Ì?(0£¬0.3115)Tc2?0£¬W2P=0.9346
¶ÔżÎÊÌâµÄ×îÓŽ⣺(?1£¬?2£¬?3,?)?(0.5192,0,0.0808,0.9346)£¬W2D=0.9346 ·Ç¼¼ÊõÓÐЧ
µÚÈý¾ö²ßµ¥ÔªBC2Ä£ÐÍ
maxW3P?8?1?5?2?c3??9?1?3?2?4?3?6?1?5?2?c3?0???5?1?6?2?3?3?2?1?3?2?c3?0 ???10?1?4?2?9?3?8?1?5?2?c3?0?10??4??9??1123????1,?2,?3,?1,?2?0,c3ÎÞÏÞÖÆ×îÓÅ½â¦Ø?(0,0,0.1111)T,¦Ì?(0.2778£¬0)Tc3?1.2222£¬W3P=1
¶ÔżÎÊÌâµÄ×îÓŽ⣺(?1£¬?2£¬?3,?)?(0,0,1,1)£¬W3D=1 ¼¼ÊõÓÐЧ
£¨3£©µÚÒ»¾ö²ßµ¥ÔªDEAÓÐЧ£¬´Ó¶ø¼È¼¼ÊõÓÐЧÓÖ¹æÄ£ÓÐЧ£»
µÚ¶þ¾ö²ßµ¥Ôª·ÇDEAÓÐЧ£¬ÓÉBC2Ä£ÐÍÖª¼È²»ÊǼ¼ÊõÓÐЧÓַǹæÄ£ÓÐЧ£» µÚÈý¾ö²ßµ¥Ôª·ÇDEAÓÐЧ£¬ÓÉBC2Ä£ÐÍÖªÊǼ¼ÊõÓÐЧ·Ç¹æÄ£ÓÐЧ£» £¨4£©Óɶ¨Ò弰ʽ£¨2£12£©¡¢£¨2£13£©µÃµ½Ï±í½á¹û¡£
Wkp ck ¾ö²ßµ¥Ôªk Zkp ÕûÌåЧÂÊ ¼¼ÊõЧÂÊ ¹æÄ£Ð§ÂÊ ¹æÄ£±¨³ê
DMU1 1 1 0 1 1 1 1 DMU2 0.7967 0.9346 0 0.7967 0.9346 0.8524 1 DMU3 0.7465 1 1.2222 0.7465 1 0.7465 0.45
·µ»Ø¶¥²¿
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 41
µÚ3Õ ÕûÊý¹æ»®
3.1ij¹«Ë¾½ñºóÈýÄêÄÚÓÐÎåÏ³Ì¿ÉÒÔ¿¼ÂÇͶ×Ê¡£Ã¿Ï³ÌµÄÆÚÍûÊÕÈëºÍÄê¶È·ÑÓÃ(ÍòÔª)Èç±í3-8Ëùʾ¡£
±í3-8
¹¤ ³Ì 1 2 3 4 5 ×ʽðÓµÓÐÁ¿ ·Ñ Óà µÚÒ»Äê µÚ¶þÄê µÚÈýÄê 5 1 8 4 7 2 5 9 6 7 5 2 8 6 9 30 25 30 ÊÕ Èë 30 40 20 15 30 ÿÏ³Ì¶¼ÐèÒªÈýÄêÍê³É£¬Ó¦Ñ¡ÔñÄÄЩÏîĿʹ×ÜÊÕÈë×î´ó£¬½¨Á¢¸ÃÎÊÌâµÄÊýѧģÐÍ¡£ ¡¾½â¡¿Éèxj???1Ͷ×ÊjÏîÄ¿?0²»Í¶×ÊjÏîÄ¿maxZ?30x1?40x2?20x3?15x4?30x5?5x1?4x2?5x3?7x4?8x5?30?x?7x?9x?5x?6x?252345?1??8x1?2x2?6x3?2x4?9x5?30?xj£½0»ò1,j?1,,5?
£¬Ä£ÐÍΪ
×îÓŽâX£½(1,1,1,0,1)£¬Z=120ÍòÔª£¬¼´Ñ¡ÔñÏîÄ¿1¡¢2¡¢3¡¢5ʱ×ÜÊÕÈë×î´ó¡£
3.2ѡַÎÊÌâ¡£ÒÔºº½¡¢³¤½Îª½ç½«Î人Êл®·ÖΪºº¿Ú¡¢ººÑôºÍÎä²ýÈýÕò¡£Ä³ÉÌÒµÒøÐмƻ®Í¶×Ê9000ÍòÔªÔÚÎ人Êб¸Ñ¡µÄ12¸öµã¿¼ÂÇÉèÁ¢Ö§ÐУ¬Èçͼ3-8Ëùʾ¡£Ã¿¸öµãµÄͶ×ʶîÓëÒ»ÄêµÄÊÕÒæ¼û±í3£9¡£¼Æ»®ºº¿ÚͶ×Ê2¡«3¸öÖ§ÐУ¬ººÑôͶ×Ê1¡«2¸öÖ§ÐУ¬Îä²ýͶ×Ê3¡«4¸öÖ§ÐС£
ÈçºÎͶ×Êʹ×ÜÊÕÒæ×î´ó£¬½¨Á¢¸ÃÎÊÌâµÄÊýѧģÐÍ£¬ËµÃ÷ÊÇʲôģÐÍ£¬¿ÉÒÔÓÃʲô·½·¨Çó½â¡£ ͼ3-8
±í3-9
µØÖ·i 1 2 3 4 5 6 7 8 9 10 11 12 Ͷ×ʶî(ÍòÔª) 900 1200 1000 750 680 800 720 1150 1200 1250 850 1000 ÊÕÒæ£¨ÍòÔª£© 400 500 450 350 300 400 320 460 500 510 380 400 ¡¾½â¡¿ÉèxjΪͶ×ʵÚj¸öµãµÄ״̬£¬xj=1»ò0£¬j=1,2,¡,12 Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 42
maxZ?400x1?500x2?450x3??400x12?900x1?1200x2?1000x3??850x11?1000x12?9000?44771212 ?x?2,x?3,x?1,x?2,x?3,x?4??j?????jjjjjj?1j?5j?5j?8j?8?j?1?x?1»ò0£¬j?1,,12?j×îÓŽ⣺x1£½x5=x12=0£¬ÆäÓàxj=1,×ÜÊÕÒæZ=3870ÍòÔª£¬Êµ¼ÊÍê³ÉͶ×ʶî8920ÍòÔª¡£
3.3 Ò»Á¾»õ³µµÄÓÐÐ§ÔØÖØÁ¿ÊÇ20¶Ö£¬ÔØ»õÓÐЧ¿Õ¼äÊÇ8m¡Á2m¡Á1.5m¡£ÏÖÓÐÁù¼þ»õÎï¿É¹©Ñ¡ÔñÔËÊ䣬ÿ¼þ»õÎïµÄÖØÁ¿¡¢Ìå»ý¼°ÊÕÈëÈç±í±í3-10¡£ÁíÍ⣬ÔÚ»õÎï4ºÍ5ÖÐÓÅÏÈÔË»õÎï5£¬»õÎï1ºÍ2²»ÄÜ»ì×°£¬»õÎï3ºÍ»õÎï6Ҫô¶¼²»×°ÒªÃ´Í¬Ê±×°¡£ÔõÑù°²ÅÅ»õÎïÔËÊäʹÊÕÈë×î´ó£¬½¨Á¢ÊýѧģÐÍ¡£
±í3-10
»õ Îï ºÅ ÖØÁ¿£¨T£© Ìå»ý£¨m3£© ÊÕÈ루°ÙÔª£© 1 6 3 3 2 5 7 7 3 4 2 3 4 5 5 4 5 7 6 8 6 2 2 3 ¡¾½â¡¿ÉèxjÎª×°ÔØµÚj¼þ»õÎïµÄ״̬£¬xj=1±íÊ¾×°ÔØµÚj¼þ»õÎxj=0±íʾ²»×°ÔصÚj¼þ»õÎÓÐ
maxZ?3x1?7x2?2x3?5x4?8x5?3x6?6x1?5x2?3x3?4x4?7x5?2x6?20?3x?7x?4x?5x?6x?2x?2423456?1??x4?x5?0??x1?x2?1?x3?x6?0???xj?0»ò1,j?1,2,,6
3.4 Å®×ÓÌå²ÙÍÅÌåÈü¹æ¶¨£º£¨1£©Ã¿¸ö´ú±í¶ÓÓÉ5ÃûÔ˶¯Ô±×é³É£¬±ÈÈüÏîÄ¿ÊǸߵ͸ܡ¢Æ½ºâ
ľ¡¢°°Âí¼°×ÔÓÉÌå²Ù¡££¨2£©Ã¿¸öÔ˶¯Ô±×î¶àÖ»ÄܲμÓ3¸öÏîÄ¿²¢ÇÒÿ¸öÏîĿֻÄܲÎÈüÒ»´Î£»£¨3£©Ã¿¸öÏîÄ¿ÖÁÉÙÒªÓÐÈ˲ÎÈüÒ»´Î£¬²¢ÇÒ×ܵIJÎÈüÈË´ÎÊýµÈÓÚ10£»£¨4£©Ã¿¸öÏîÄ¿²ÉÓÃ10·ÖÖÆ¼Ç·Ö£¬½«10´Î±ÈÈüµÄµÃ·ÖÇóºÍ£¬°´ÆäµÃ·Ö¸ßµÍÅÅÃû£¬·ÖÊýÔ½¸ß³É¼¨Ô½ºÃ¡£ÒÑÖª´ú±í¶Ó5ÃûÔ˶¯Ô±¸÷µ¥ÏîµÄÔ¤Èü³É¼¨Èç±í3-11Ëùʾ¡£
±í3-11
¼× ÒÒ ±û ¶¡ Îì
¸ßµÍ¸Ü ƽºâľ °°Âí
×ÔÓÉÌå²Ù
8.6 9.2 8.8 8.5 8.0
9.7 8.3 8.7 7.8 9.4
8.9 8.5 9.3 9.5 8.2
9.4 8.1 9.6 7.9 7.7
ÔõÑù°²ÅÅÔ˶¯Ô±µÄ²ÎÈüÏîĿʹÍÅÌå×Ü·Ö×î¸ß£¬½¨Á¢¸ÃÎÊÌâµÄÊýѧģÐÍ¡£
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 43
¡¾½â¡¿Éèxij£¨i=1£¬2£¬¡£¬5£»j£½1£¬2£¬3£¬4£©ÎªµÚiÈ˲ÎÈüjÏîÄ¿µÄ״̬£¬¼´
?1xij???0µÚiÈ˲ÎÈüjÏîÄ¿
µÚiÈ˲»²ÎÈüjÏîÄ¿54¼ÇµÚiÈ˲ÎÈüjÏîÄ¿µÄ³É¼¨ÎªCij,£¬Ä¿±êº¯Êý
maxZ???Cijxij
i?1j?1ÿ¸öÔ˶¯Ô±×î¶àÖ»ÄܲμÓ3¸öÏîÄ¿²¢ÇÒÿ¸öÏîĿֻÄܲÎÈüÒ»´Î,Ô¼ÊøÌõ¼þ£º
xi1?xi2?xi3?xi4?3i?1,2,?,5 ÿ¸öÏîÄ¿ÖÁÉÙÒªÓÐÈ˲ÎÈüÒ»´Î£¬²¢ÇÒ×ܵIJÎÈüÈË´ÎÊýµÈÓÚ10£¬Ô¼ÊøÌõ¼þ£º
x1j?x2j?x3j?x4j?x5j?1j?1,2,3,4
??xi?1j?154ij?10
ÊýѧģÐÍΪ
maxZ???Cijxiji?1j?154?xi1?xi2?xi3?xi4?3i?1,2,,5?x?x?x?x?x?1j?1,2,3,4 2j3j4j5j?1j?54????xij?10?i?1j?1??xij?1»ò0,i?1,2,,5;j?1,2,3,43.5ijµç×ÓϵͳÓÉ3ÖÖÔª¼þ×é³É£¬ÎªÁËʹϵͳÕý³£ÔËת£¬Ã¿¸öÔª¼þ¶¼±ØÐ빤×÷Á¼ºÃ£¬ÈçÒ»¸ö
»ò¶à¸öÔª¼þ°²×°¼¸¸ö±¸Óüþ½«Ìá¸ßϵͳµÄ¿É¿¿ÐÔ£¬ÒÑ֪ϵͳÔËת¿É¿¿ÐÔΪ¸÷Ôª¼þ¿É¿¿ÐԵij˻ý£¬¶øÃ¿Ò»Ôª¼þµÄ¿É¿¿ÐÔÊDZ¸ÓüþÊýÁ¿µÄº¯Êý£¬¾ßÌåÈç±í3£12Ëùʾ¡£
±í3£12 ±¸ÓüþÊý 0 1 2 3 4 Ôª¼þ¿É¿¿ÐÔ 1 0.5 0.6 0.75 0.9 1.0 2 3 0.7 0.9 1.0 1.0 1.0 0.6 0.8 0.9 1.0 1.0 3ÖÖÔª¼þµÄ¼Û¸ñ·Ö±ðΪ30¡¢40ºÍ50Ôª/¼þ£¬ÖØÁ¿·Ö±ðΪ2¡¢4ºÍ6kg/¼þ¡£¶øÈ«²¿±¸ÓüþµÄ·ÑÓÃÔ¤ËãÏÞÖÆÎª220Ôª£¬ÖØÁ¿ÏÞÖÆÎª20kg£¬ÎÊÿÖÖÔª¼þ¸÷°²×°¶àÉÙ¸ö±¸Óüþ£¬Ê¹ÏµÍ³¿É¿¿ÐÔ×î´ó¡£ÊÔ½¨Á¢¸ÃÎÊÌâµÄÕûÊý£¨·ÇÏßÐÔ£©¹æ»®ÊýѧģÐÍ¡£
¡¾½â¡¿Éèx1¡¢x2¡¢x3·Ö±ðΪԪ¼þ1¡¢2¡¢3µÄ±¸¼þÊý£¬Óɿɿ¿ÐÔÖªx2?3¡¢x3?2
Éèy1¡¢y2¡¢y3¡¢y4¡¢y5ΪԪ¼þ1±¸¼þÊýµÄ״̬±äÁ¿£¬yi?1£¨±¸¼þÊýΪj¼þ£¬j£½0£¬1?£¬
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 44
4£©»òyi?0£¨±¸¼þÊýΪ0¼þ£¬i£½1£¬2£¬?£¬5£©
Éèy6¡¢y7¡¢y8¡¢y9ΪԪ¼þ2±¸¼þÊý0¡¢1¡¢2¡¢3¼þʱµÄ״̬±äÁ¿£¬yi?1»ò0£¨i£½6¡¢7¡¢8¡¢9£©
Éèy10¡¢y11¡¢y12ΪԪ¼þ3±¸¼þÊý0¡¢1¡¢2¼þʱµÄ״̬±äÁ¿£¬yi?1»ò0£¨i£½10¡¢11¡¢12£© ÊýѧģÐÍΪ£º
maxz?(0.5y1?0.6y2?0.75y3?0.9y4?y5)?(0.6y6?0.8y7?0.9y8?y9)?(0.7y10?0.9y11?y12)?30x1?40x2?50x3?220?2x?4x?6x?2023?1?y1?y2?y3?y4?y5?1??y6?y7?y8?y9?1?y?y?y?1?101112 ?x?y?2y?3y?4y2345?1?x2?y7?2y8?3y9??x3?y11?2y12?x¡¢x¡¢x?0²¢ÇÒΪÕûÊý?123??yi?1»ò0£¬i?1,2,,12
×¢Ò⣺Èç¹ûÈ¥µôµÚ6¡¢7¡¢8¸öÔ¼Êø£¬ÒòÄ¿±êº¯ÊýÖÐûÓÐx£¬ÔòxÓëyÖ®¼ä¾ÍûÓÐÂß¼¹ØÏµ¡£
3.6ÀûÓÃ0£1±äÁ¿¶ÔÏÂÁи÷Ìâ·Ö±ð±íʾ³ÉÒ»°ãÏßÐÔÔ¼ÊøÌõ¼þ
£¨1£©x1+2x2¡Ü8¡¢4x1+x2¡Ý10¼°2x1+6x2¡Ü18 Èý¸öÔ¼ÊøÖÐÖÁÉÙÁ½¸öÂú×ã £¨2£©Èôx1¡Ý5£¬Ôòx2¡Ý10£¬·ñÔòx2¡Ü8 £¨3£©x1ȡֵ2£¬4£¬6£¬8ÖеÄÒ»¸ö
?x1?2x2?8?y1M?x1?5?yM??x?5?(1?y)M?x1?2y1?4y2?6y3?8y4?4x1?x2?10?y2M1???¡¾½â¡¿(1)?2x1?6x2?18?y3M (2)?x?10?yM(3)?y1?y2?y3?y4?1?2?y?y?y?1?y?0»ò1£¬j?1,2,3,4?x?8?(1?y)M1222?j??
???y?0»ò1?yj?0»ò1£¬j?1,2,33.7¿¼ÂÇÏÂÁÐÊýѧģÐÍ
minZ?f(x1)?g(x2)
ÆäÖÐ
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 45
?10?6x1,Èôx1?0?15?10x2,Èôx2?0 f(x1)??,g(x2)??Èôx1?0Èôx2?0?0,?0,Âú×ãÔ¼ÊøÌõ¼þ
£¨1£©x1¡Ý8»òx2¡Ý6 £¨2£©|x1£x2|=0£¬4»ò8
£¨3£©x1+2x2¡Ý20¡¢2x1+x2¡Ý20¼°x1+x2¡Ý20 Èý¸öÔ¼ÊøÖÐÖÁÉÙÒ»¸öÂú×ã £¨4£©x1¡Ý0£¬x2¡Ý0
½«´ËÎÊÌâ¹é½áΪ»ìºÏÕûÊý¹æ»®µÄÊýѧģÐÍ¡£
minZ?10y1?6x1?15y2?10x2?x1?y1M;x2?y2M?x?8?yM3?1?x2?6?(1?y3)M??x1?x2?0y4?4y5?4y6?8y7?8y8¡¾½â¡¿??y4?y5?y6?y7?y8?1??x1?2x2?20?y9M?2x1?x2?20?y10M??x1?x2?20?y11M?y?y?y?21011?911??x1?0,x2?0;yj?0»ò1£¬j?1,2,?£¬3.8Ó÷ÖÖ¦¶¨½ç·¨Çó½âÏÂÁÐIPÎÊÌâ
Ìõ¼þ£¨1£©Ìõ¼þ£¨2£©Ìõ¼þ£¨3£©
Ìõ¼þ£¨4£©maxZ?x1?4x2minZ?x1?2x2?3x1?2x2?9?3x1?x2?10£¨1£©? £¨2£©?
2x?4x?85x?6x?30?1?122?x,x?0ÇÒΪÕûÊý?x,x?0ÇÒΪÕûÊý?12?12¡¾½â¡¿(1)X=(4£¬0),Z=4 £¨Ë«»÷´ò¿ªPPT£©
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 46
ϰÌâ3.8£¨1£©maxZ?x1?4x2x24.53x1?2x2?9?3x1?2x2?9LP0:?2x?4x?8?12?x,x?0?122x1?4x2?82ËɳÚÎÊÌâLP0µÄ×îÓŽâX=(2.5,0.75),Z0=5.5o34x1 (2) X(1)=(2,4)£¬X(2)£½(0£¬5)£»Z=10 £¨Ë«»÷´ò¿ªPPT£©
ϰÌâ3.8£¨2£©x210minZ?x1?2x23x1?x2?10LP0:?3x1?x2?10??5x1?6x2?30?x,x?0?125x1?6x2?305ËɳÚÎÊÌâLP0µÄ×îÓŽâX=(2.31, 3.08),Z0=8.46o3.336x1 3.9ÓÃ¸îÆ½Ãæ·¨Çó½âÏÂÁÐIPÎÊÌâ
maxZ?2x1?x2£¨1£©?minZ?2x1?3x2?4x1?2x2?14?x1?2x2?9 £¨2£©?
?2x1?x2?10?2x1?x2?10?x,x?0ÇÒΪÕûÊý?x,x?0ÇÒΪÕûÊý?12?12¡¾½â¡¿(1) ¼ÓÈëËɳڱäÁ¿x3¡¢x4£¬µ¥´¿ÐαíÈçÏ£º
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 47
1 0 0 CB XB X2 X3 X4 0 X3 2 1 0 0 X4 1 0 1 C(j)-Z(j) 1 0 0 2 X1 1/2 1/4 0 0 X4 0 £1/2 1 C(j)-Z(j) 0 £1/2 0 X1ÐÐΪÀ´Ô´ÐУ¬¸îÆ½Ãæ·½³ÌΪ£ºs1?2x2?x3??2£¬²åÈëµ½×îÓűíµÃµ½
C(j) CB XB 2 X1 0 X4 0 S1 C(j)-Z(j) 2 X1 0 X4 1 X2 C(j)-Z(j) 2 S1 0 X4 1 X2 C(j)-Z(j) 2 X1 1 0 0 0 1 0 0 0 4 0 2 0 1 X2 1/2 0 [£2] 0 0 0 1 0 0 0 1 0 0 X3 1/4 £1/2 £1 £1/2 0 £1/2 1/2 £1/2 0 £1/2 1/2 £1/2 0 X4 0 1 0 0 0 1 0 0 0 1 0 0 0 S1 0 0 1 0 [1/4] 0 £1/2 0 1 0 0 0 C(j) 2 X1 4 2 2 1 0 0 b 14 10 0 7/2 3 £7 b 7/2 3 £2 £7 3 3 1 £7 12 3 7 £7 ´Ó±íÖп´³ö£¬ÓÐÁ½¸ö×îÓŽ⣺X(1)=(3,1)£¬X(2)£½(0£¬7)£»Z=7 (2) ¼ÓÈëËɳڱäÁ¿x3¡¢x4£¬µ¥´¿ÐαíÈçÏ£º 3 0 0 b CB XB X2 X3 X4 0 X3 £2 1 0 £9 0 X4 £1 0 1 £10 C(j)-Z(j) 3 0 0 0 0 X3 [£3/2] 1 £1/2 £4 2 X1 1/2 0 £1/2 5 C(j)-Z(j) 2 0 1 £10 3 X2 1 £2/3 1/3 8/3 2 X1 0 1/3 £2/3 11/3 C(j)-Z(j) 0 4/3 1/3 £46/3 ÒÔX1ÐÐΪÀ´Ô´ÐУ¬¸îÆ½Ãæ·½³ÌΪ£ºs2?x3?x4??2£¬²åÈëµ½×îÓűíµÃµ½
C(j) CB 3 2 0 XB X2 X1 S2 2 X1 0 1 0 3 X2 1 0 0 0 X3 £2/3 1/3 £1 0 X4 1/3 £2/3 [£1] 0 S2 0 0 1 b 8/3 11/3 £2 C(j) 2 X1 £1 [£2] 2 0 1 0 0 1 0 Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 48
C(j)-Z(j) 3 X2 2 X1 0 X4 C(j)-Z(j) 0 0 1 0 0 0 1 0 0 0 4/3 £1 1 1 1 1/3 0 0 1 0 0 1/3 £2/3 £1 1/3 £46/3 2 5 2 £16 ×îÓŽâX=(5,2)£»×îÓÅÖµZ=16
3.10ÓÃÒþö¾Ù·¨Çó½âÏÂÁÐBIPÎÊÌâ
??x1?x2?4x3?2x4?5?5x1?2x2?x3?6?£¨1£©? £¨2£©?3x1?x2?2x3?2x4?4??4x1?2x2?3x3?8?x1?3x2?2x3?x4?9?x?0»ò1£¬j?1,2,3?j?xj?0»ò1£¬j?1,2,3,4?¡¾½â¡¿(1)X=(1,0£¬1),Z=8 (2)X=(1,0,1,0),Z=9
3.11˼¿¼Óë¼ò´ðÌâ £¨1£©¡°ÕûÊý¹æ»®µÄ×îÓŽâÊÇÇóÆäËɳÚÎÊÌâ×îÓŽâºóÈ¡ÕûµÃµ½¡±ÎªÊ²Ã´²»¶Ô¡£ £¨2£©½âÊÍ¡°·ÖÖ§¡±Óë¡°¶¨½ç¡±µÄº¬Òå¡£ £¨3£©¼òÊö·ÖÖ§¶¨½ç·¨µÄ»ù±¾²½Öè¡£
£¨4£©¸ßĪÀ×·½³ÌÊÇÔõÑùµÃµ½µÄ£¬ÔÚ¸îÆ½Ãæ·¨ÖÐÆðµ½Ê²Ã´×÷Óá£
£¨5£©¸îÆ½Ãæ·¨¼ÆËã¹ý³ÌÖУ¬Ê²Ã´Ê±ºò¿ÉÒÔÈ¥µôµ¥´¿ÐαíÖÐÒ»ÐкÍÒ»ÁС£
maxZ?4x1?3x2£«4x3minZ?4x1?2x2?5x3?3x4
·µ»Ø¶¥²¿
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 49
µÚ4Õ Ŀ±ê¹æ»®
4.1 ÒÑ֪ijʵ¼ÊÎÊÌâµÄÏßÐԹ滮ģÐÍΪ
maxz?100x1?50x2
?10x1?16x2?200??11x1?3x2?25?x,x?0?12¼Ù¶¨ÖØÐÂÈ·¶¨Õâ¸öÎÊÌâµÄÄ¿±êΪ£º £Ð1£º£úµÄÖµÓ¦²»µÍÓÚ1900 £Ð2£º×ÊÔ´£±±ØÐëÈ«²¿ÀûÓÃ
½«´ËÎÊÌâת»»ÎªÄ¿±ê¹æ»®ÎÊÌ⣬ÁгöÊýѧģÐÍ¡£ ¡¾½â¡¿ÊýѧģÐÍΪ
??minZ?p1d1??p2(d2?d2)(×ÊÔ´1)(×ÊÔ´2)
?100x1?50x2?d1??d1??1900????10x1?16x2?d2?d2?200 ??11x1?3x2?25?x,d?,d??0,j?1,2?jjj??
4.2 ¹¤³§Éú²ú¼×¡¢ÒÒÁ½ÖÖ²úÆ·£¬ÓÉ£Á¡¢£Â¶þ×éÈËÔ±À´Éú²ú¡££Á×éÈËÔ±ÊìÁ·¹¤È˱Ƚ϶࣬¹¤×÷ЧÂʸߣ¬³É±¾Ò²¸ß£»£Â×éÈËÔ±ÐÂÊֽ϶๤×÷ЧÂʱȽϵͣ¬³É±¾Ò²½ÏµÍ¡£ÀýÈ磬A×éÖ»Éú²ú¼×²úƷʱÿСʱÉú²ú10¼þ£¬³É±¾ÊÇ50ÔªÓйØ×ÊÁÏÈç±í4.21Ëùʾ¡£
±í4.21 A×é B×é ²úÆ·ÊÛ¼Û(Ôª/¼þ) ²úÆ·¼× ЧÂÊ(¼þ/Сʱ) 10 8 80 ³É±¾(Ôª/¼þ) 50 45 ²úÆ·ÒÒ Ð§ÂÊ(¼þ/Сʱ) 8 5 75 ³É±¾(Ôª/¼þ) 45 40 ¶þ×éÈËԱÿÌìÕý³£¹¤×÷ʱ¼ä¶¼ÊÇ8Сʱ£¬Ã¿ÖÜ5Ìì¡£Ò»ÖÜÄÚÿ×é×î¶à¿ÉÒÔ¼Ó°à10Сʱ£¬¼Ó°àÉú²úµÄ²úƷÿ¼þÔö¼Ó³É±¾5Ôª¡£
¹¤³§¸ù¾ÝÊг¡ÐèÇó¡¢ÀûÈó¼°Éú²úÄÜÁ¦È·¶¨ÁËÏÂÁÐÄ¿±ê˳Ðò£º P1£ºÃ¿Öܹ©Ó¦Êг¡¼×²úÆ·400¼þ£¬ÒÒ²úÆ·300¼þ P2£ºÃ¿ÖÜÀûÈóÖ¸±ê²»µÍÓÚ500Ôª
P3£ºÁ½×é¶¼¾¡¿ÉÄÜÉټӰ࣬Èç±ØÐë¼Ó°àÓÉ£Á×éÓÅÏÈ¼Ó°à ½¨Á¢´ËÉú²ú¼Æ»®µÄÊýѧģÐÍ¡£
¡¾½â¡¿ ½â·¨Ò»£ºÉèx1, x2·Ö±ðΪA×éÒ»ÖÜÄÚÕý³£Ê±¼äÉú²ú²úÆ·¼×¡¢ÒҵIJúÁ¿£¬x3, x4·Ö±ðΪA×éÒ»ÖÜÄÚ¼Ó°àʱ¼äÉú²ú²úÆ·¼×¡¢ÒҵIJúÁ¿£»x5, x6·Ö±ðΪB×éÒ»ÖÜÄÚÕý³£Ê±¼äÉú²ú²úÆ·¼×¡¢ÒҵIJúÁ¿£¬x7, x8·Ö±ðΪB×éÒ»ÖÜÄÚ¼Ó°àʱ¼äÉú²ú²úÆ·¼×¡¢ÒҵIJúÁ¿¡£ ×ÜÀûÈóΪ
Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 50
80(x1?x3?x5?x7)?(50x1?55x3?45x5?50x7)?75(x2?x4?x6?x8)?(45x2?50x4?40x6?45x8)?30x1?30x2?25x3?25x4?35x5?35x6?30x7?30x8Éú²úʱ¼äΪ
A×飺0.1x1?0.125x2?0.1x3?0.125x4 B×飺0.125x5?0.2x6?0.125x7?0.2x8 ÊýѧģÐÍΪ£º
££minZ?p1(d1??d2)?p2d3?p3(d4??d5?)?p4(d6??2d7?)
?x1?x3?x5?x7?d1£?d1??400?£??x2?x4?x6?x8?d2?d2?300?30x?30x?25x?25x?35x?35x?30x?30x?d£?d??500234567833?1??? ?0.1x1?0.125x2?d4?d4?40????0.125x5?0.2x6?d5?d5?40?0.1x?0.125x?d??d??103466??0.125x7?0.2x8?d7??d7??10???x?0,d,d?0,i?1,2,,7;j?1,2,,8?jii?½â·¨¶þ£ºÉèx1, x2·Ö±ðΪA×éÒ»ÖÜÄÚÉú²ú²úÆ·¼×¡¢ÒÒµÄÕý³£Ê±¼ä£¬x3, x4·Ö±ðΪA×éÒ»ÖÜÄÚ
Éú²ú²úÆ·¼×¡¢ÒҵļӰàʱ¼ä£»x5, x6·Ö±ðΪB×éÒ»ÖÜÄÚÉú²ú²úÆ·¼×¡¢ÒÒµÄÕý³£Ê±¼ä£¬x7, x8·Ö±ðΪB×éÒ»ÖÜÄÚÉú²ú²úÆ·¼×¡¢ÒҵļӰàʱ¼ä¡£
×ÜÀûÈóΪ
10x1?80?50??8x2(75?45)?10x3?80?55??8x4(75?50)?8x5(80?45)?5x6(75?40)?8x7(80?50)?5x8(75?45)?300x1?240x2?250x3?200x4?280x5?175x6?240x7?150x8ÊýѧģÐÍΪ
minz?p1(d1??d2?)?p2d3??p3(d4??d5?)?p4(d6??2d7?)?10x1?10x3?8x5?8x7?d1??d1??400???8x?8x?5x?5x?d?d?246822?300?300x?240x?250x?200x?280x?175x?240x?150x?d??d??5001234567833?????x1?x2?d4?d4?40???x?x?d?d?405655??x?x?d??d??1066?34?x7?x8?d7??d7??10???x?0,d,d,7;j?1,2,,8?ii?0,i?1,2,?j
4.3¡¾½â¡¿ÉèxijΪAiµ½BjµÄÔËÁ¿£¬ÊýѧģÐÍΪ