Ô˳ïѧ1ÖÁ6ÕÂϰÌâ²Î¿¼´ð°¸ ÏÂÔØ±¾ÎÄ

Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 29

maxw?4y1?2y2?7y3?y1?y2?2y3?12??4y1?5y2?3y3?20?y?0,j?1,2,3?j

ÈÝÒ׿´³öÔ­ÎÊÌâºÍ¶ÔżÎÊÌâ¶¼ÓпÉÐн⣬ÈçX£½(2£¬1)¡¢Y£½(1£¬0£¬1)£¬Óɶ¨Àí2.4Öª¶¼ÓÐ×îÓŽ⡣

(2)¶ÔżÎÊÌâ×îÓŵ¥´¿ÐαíΪ C(j) Basis y3 y1 C(j)-Z(j) C(i) 7 4 4 y1 0 1 2 y2 -1/5 7/5 7 y3 1 0 0 y4 4/5 -3/5 0 y5 -1/5 R. H. S. 28/5 2/5 0 -11/5 0 -16/5 -1/5 4/5 w=42.4 ¶ÔżÎÊÌâµÄ×îÓŽâY£½(4/5,0,28/5)£¬Óɶ¨Àí2.6£¬Ô­ÎÊÌâµÄ×îÓŽâΪX=(16/5£¬1/5)£¬Z£½42.4

1?1??4?4???5?55?5??1£¨3£©CB=(7,4),B???, X?(7,4)???(16/5,1/5)

??32???32????55???55??(4)ÓÉy1¡¢y3²»µÈÓÚÁãÖªÔ­ÎÊÌâµÚÒ»¡¢Èý¸öÔ¼ÊøÊǽôµÄ£¬½âµÈʽ

?x1?4x2?4 ?2x?3x?7?12µÃµ½Ô­ÎÊÌâµÄ×îÓŽâΪX=(16/5£¬1/5)¡£

2.4Ö¤Ã÷ÏÂÁÐÏßÐԹ滮ÎÊÌâÎÞ×îÓŽâ

minZ?x1?2x2?2x3?2x1?x2?2x3?3 ?x?2x?3x?2?123?x,x?0,xÎÞÔ¼Êø3?12Ö¤Ã÷£ºÊ×ÏÈ¿´µ½¸ÃÎÊÌâ´æÔÚ¿ÉÐн⣬ÀýÈçx=(2,1,1)£¬¶øÉÏÊöÎÊÌâµÄ¶ÔżÎÊÌâΪ

maxw?3y1?2y2?2y1?y2?1?y?2y??2 ?12???2y1?3y2??2??y2?0,y1ÎÞÔ¼ÊøÓÉÔ¼ÊøÌõ¼þ¢Ù¢ÚÖªy1¡Ü0£¬ÓÉÔ¼ÊøÌõ¼þ¢Ûµ±y2¡Ý0Öªy1¡Ý1£¬¶ÔżÎÊÌâÎÞ¿ÉÐн⣬Òò´ËÔ­ÎÊÌâ

Ò²ÎÞ×îÓŽâ(ÎÞ½ç½â)¡£

2.5ÒÑÖªÏßÐԹ滮

Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 30

maxZ?15x1?20x2?5x3?x1?5x2?x3?5?5x?6x?x?6 ?123??3x1?10x2?x3?7??x1?0,x2?0,x3ÎÞÔ¼ÊøµÄ×îÓŽâX?(,0,1419T)£¬Çó¶ÔżÎÊÌâµÄ×îÓŽ⣮ 4¡¾½â¡¿Æä¶ÔżÎÊÌâÊÇ£º

minw?5y1?6y2?7y3?y1?5y2?3y3?15?5y?6y?10y?20 ?123??y1?y2?y3?5??y1,y2,y3?0ÓÉÔ­ÎÊÌâµÄ×îÓŽâÖª£¬Ô­ÎÊÌâÔ¼Êø¢ÛµÄËɳڱäÁ¿²»µÈÓÚÁã(xs3?0)£¬x1¡¢x3²»µÈÓÚÁ㣬Ôò¶ÔżÎÊÌâµÄÔ¼Êø¢Ù¡¢Ô¼Êø¢ÛΪµÈʽ£¬ÓÖÓÉÓÚxs3?0Öªy3£½0£»½â·½³Ì

?y1?5y2?15 ?y?y?5?12µÃµ½¶ÔżÎÊÌâµÄ×îÓŽâY=(5/2,5/2,0)£»w£½55/2£½27.5

2.6ÓöÔżµ¥´¿Ðη¨Çó½âÏÂÁÐÏßÐԹ滮

£¨£©1minZ?3x1?4x2?6x3?x1?2x2?3x3?10??2x1?2x2?x3?12?x,x,x?0?123

¡¾½â¡¿½«Ä£ÐÍ»¯Îª

minZ?3x1?4x2?6x3??x1?2x2?3x3?x4??10 ???2x1?2x2?x3?x5??12?x?0,j?1,2,3,4,5?j¶Ôżµ¥´¿ÐÎ±í£º

cj CB 0 0 XB X4 X5 C(j)-Z(j) 3 X1 £­1 [£­2] 3 4 X2 £­2 £­2 4 6 X3 £­3 £­1 6 0 X4 1 0 0 0 X5 0 1 0 b £­10 £­12 0 Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 31

0 3 X4 X1 C(j)-Z(j) 0 1 0 0 1 0 [£­1] 1 1 1 0 0 £­5/2 1/2 9/2 5/2 £­2 2 1 0 0 £­1 1 1 £­1/2 £­1/2 3/2 1/2 £­1 1 £­4 6 £­18 4 2 £­22 5 3 X2 X1 C(j)-Z(j) bÁÐȫΪ·Ç¸º£¬×îÓŽâΪx£½(2£¬4£¬0)£»Z£½22

£¨2£©

minZ?5x1?4x2?x1?x2?6??2x1?x2?2?x?0,x?02?1

¡¾½â¡¿½«Ä£ÐÍ»¯Îª

minZ?5x1?4x2??x1?x2?x3??6 ?2x?x?x?2?124?x?0,j?1,2,3,4?j XB X3 X4 Cj£­Zj X1 X4 Cj£­Zj X1 X2 Cj£­Zj 3 4 3 0 CB 0 0 5 X1 [-1] 2 3 1 0 0 1 0 0 4 X2 -1 1 4 1 [-1] 1 0 1 0 0 X3 1 0 0 -1 2 3 1 -2 5 0 X4 0 1 0 0 1 0 1 -1 1 b -6 2 6 -10 -4 10 ³ö»ùÐÐϵÊýÈ«²¿·Ç¸º£¬×îС±ÈֵʧЧ£¬Ô­ÎÊÌâÎÞ¿ÉÐн⡣

(3)minZ?2x1?4x2?2x1?3x2?24?x?2x?10?12??x1?3x2?18??x1,x2?0

¡¾½â¡¿½«Ä£ÐÍ»¯Îª

Ô˳ïѧ(µÚ3°æ) ϰÌâ´ð°¸ 32

minZ?2x1?4x2?2x1?3x2?x3?24??x?2x?x??10 ?124???x1?3x2?x5??18?xj?0,j?1,2,3,4,5? cj XB X3 X4 X5 Cj£­Zj X3 X4 X2 Cj£­Zj 0 0 4 CB 0 0 0 2 X1 2 -1 -1 2 1 -1/3 1/3 2/3 4 X2 3 -2 [-3] 4 0 0 1 0 0 X3 1 0 0 0 1 0 0 0 0 X4 0 1 0 0 0 1 0 0 0 X5 0 0 1 0 1 £­2/3 £­1/3 4/3 b 24 -10 -18 6 2 6 ×îÓŽâX=(0£¬6)£»Z£½24

£¨4£©minZ?2x1?3x2?5x3?6x4?x1?2x2?3x3?x4?2???2x1?x2?x3?3x4??3?x?0,j?1,,4?j

¡¾½â¡¿½«Ä£ÐÍ»¯Îª

minZ?2x1?3x2?5x3?6x4??x1?2x2?3x3?x4?x5??2 ??2x?x?x?3x?x??3?12346?x?0,j?1,,6?jCj XB X5 X6 Cj£­Zj X2 X6 Cj£­Zj X2 X3 Cj£­Zj X1 X3 2 5 3 5 3 0 CB 0 0 2 X1 -1 -2 2 1/2 -5/2 1/2 [-1] 1 0 1 0 3 X2 [-2] 1 3 1 0 0 1 0 0 -1 [1] 5 X3 -3 -1 5 3/2 [-5/2] 1/2 0 1 0 0 1 6 X4 -4 3 6 2 1 0 13/5 -2/5 1/5 -13/5 11/5 0 X5 1 0 0 -1/2 1/2 3/2 -1/5 -1/5 8/5 1/5 -2/5 0 X6 b -2 -3 1 -4 -7/5 8/5 0 1 0 0 1 0 3/5 -2/5 1/5 -3/5 1/5 7/5 1/5