µÚ3ÕÂϰÌ⣨´ø´ð°¸£© ÏÂÔØ±¾ÎÄ

1.Á´Ê½Õ»Óë˳ÐòÕ»Ïà±È£¬Ò»¸ö±È½ÏÃ÷ÏÔµÄÓŵãÊÇ ( )¡£ A. ²åÈë²Ù×÷¸ü¼Ó·½±ã C. ²»»á³öÏÖÕ»¿ÕµÄÇé¿ö

B. ͨ³£²»»á³öÏÖÕ»ÂúµÄÇé¿ö D. ɾ³ý²Ù×÷¸ü¼Ó·½±ã

2.ÔÚÒ»¸ö˳Ðò´æ´¢µÄÑ­»·¶ÓÁÐÖУ¬¶ÓÍ·Ö¸ÕëÖ¸Ïò¶ÓÍ·ÔªËØµÄ ( )¡£ A. ǰһ¸öλÖÃ

B. ºóÒ»¸öλÖÃ

D. ¶ÓÎ²ÔªËØµÄǰһλÖÃ

C. ¶ÓÍ·ÔªËØÎ»ÖÃ

3.ÉèS±íʾ½øÕ»£¬X±íʾ³öÕ»£¬Ôò½«CABDBÖ´ÐвÙ×÷ÐòÁÐSSXXSSXXSXºóµÃµ½ ACDBB ¡£

4.ÉèÑ­»·¶ÓÁÐÖÐÊý×éµÄϱ귶ΧÊÇ0ÖÁm-1£¬ÆäͷβָÕë·Ö±ðΪfºÍr,ÔòÆäÔªËØ¸öÊýΪ ¡£

A. r-f B. r-f+1 C. (r-f)%m+1 D. (r-f+m)%m

5.Åж¨Ò»¸öÑ­»·¶ÓÁÐQ£¨Êý×éÔªËØÎªm0¸ö£©¶ÓÂúµÄÌõ¼þΪ ¡£ A£®Q.front==Q.rear B. Q.front!=Q.rear C. Q.front==(Q.rear+1)%m0 D. Q.front!=(Q.rear+1)%m0

6.³¤¶ÈΪmµÄÑ­»·¶ÓÁÐqµÄ¶ÓÂúÌõ¼þΪ q.front==(q.rear+1)%m £¬¶Ó¿ÕÌõ¼þΪ q.front==q.rear¡£

7.¶ÓÁÐÊÇÒ»ÖÖÌØÊâµÄÏßÐÔ±í£¬ËüµÄÌØµãÊǺó½øÏȳö¡££¨ ´í £©

8.Õ»ºÍ¶ÓÁеĴ洢·½Ê½£¬¼È¿ÉÒÔÊÇ˳Ðò·½Ê½£¬ÓÖ¿ÉÒÔÊÇÁ´Ê½·½Ê½¡££¨¶Ô£© 9. Ñ­»·¶ÓÁвÉÓõĴ洢½á¹¹Îª ˳Ðò´æ´¢½á¹¹ £¬ÆäÒýÈëµÄÄ¿µÄÊÇΪÁ˿˷þ__¼ÙÒç³öµÄÏÖÏó _____¡£

10.ÓÐÁù¸öÔªËØ6£¬5£¬4£¬3£¬2£¬1 µÄ˳Ðò½øÕ»£¬ÎÊÏÂÁÐÄÄÒ»¸ö²»ÊǺϷ¨µÄ³öÕ»ÐòÁУ¿£¨ £©

A. 543612 B. 453126 C. 346521 D. 234156

11. Õ»ºÍ¶ÓÁж¼ÊÇÏßÐÔ±í£¬Ö»ÊÇÔÚ²åÈëºÍɾ³ýʱÊܵ½ÁËһЩÏÞÖÆ¡££¨¶Ô£© 12. Á´Õ»Í¨³£²»»á³öÏÖÂúµÄÇé¿ö¡££¨¶Ô£©

13.Íù˳ÐòÕ»ÖвåÈëÒ»¸öÔªËØÊ±£¬Õ»¶¥Ö¸ÕëÊÇ( )¡£

A) ¼Ó1

B) ¼õ1

C) ²»±ä D) Çå0

14.Õ»ºÍ¶ÓÁеĹ²Í¬µãÊÇ( )¡£

A)¶¼ÊÇÏȽøºó³ö B)¶¼ÊÇÏȽøÏȳö C)Ö»ÔÊÐíÔڶ˵㴦²åÈëºÍɾ³ýÔªËØ D)ûÓй²Í¬µã

15.Ϊ½â¾ö¼ÆËã»úÖ÷»úÓë´òÓ¡»úÖ®¼äËٶȲ»Æ¥ÅäÎÊÌ⣬ͨ³£ÉèÖÃÒ»¸ö´òÓ¡»º³åÇø£¬Ö÷»ú½«Òª´òÓ¡µÄÊý¾ÝÒÀ´ÎдÈë¸Ã»º³åÇø£¬¶ø´òÓ¡»úÔòÒÀ´Î´Ó¸Ã»º³åÇøÖÐÈ¡³öÊý¾Ý£¬¸Ã»º³åÇøµÄÂß¼­½á¹¹Ó¦¸ÃÊÇ£º

A.Õ» B. ͼ C.Ê÷ D. ¶ÓÁÐ

16.ÏßÐÔ±í¡¢Õ»ºÍ¶ÓÁж¼ÊÇ( ÏßÐÔ )½á¹¹£¬¿ÉÒÔÔÚÏßÐÔ±íµÄ( ÈÎÒâ )λÖòåÈëºÍɾ³ýÔªËØ£»¶ÔÓÚÕ»Ö»ÄÜÔÚ( Õ»¶¥ )²åÈëºÍɾ³ýÔªËØ£»¶ÔÓÚ¶ÓÁÐÖ»ÄÜÔÚ( ¶Óβ )²åÈëºÍ( ¶ÓÍ· )ɾ³ýÔªËØ¡£

17.ÉèÕ»SºÍ¶ÓÁÐQµÄ³õʼ״̬¾ùΪ¿Õ£¬ÔªËØa,b,c,d,e,f,gÒÀ´Î½øÈëÕ»S¡£Èôÿ¸öÔªËØ³öÕ»ºóÁ¢¼´½øÈë¶ÓÁУ¬ÇÒ7¸öÔªËØ³ö¶ÓµÄ˳ÐòÊÇb,d,c,f,e,a,g£¬ÔòÕ»SµÄÈÝÁ¿ÖÁÉÙÊÇ( )¡£

A.1 B.2 C.3 D.4

18.ÔÚ¾ßÓÐn¸öµ¥ÔªµÄÑ­»·¶ÓÁÐÖУ¬¶ÓÂúʱ¹²ÓÐ( n-1 )¸öÔªËØ¡£ 19£®ÈôÒ»¸öÕ»µÄÊäÈëÐòÁÐΪ1£¬2£¬¡­£¬100£¬ÔòÆäÊä³öÐòÁеĵÚ2¸öÔªËØÎª100µÄÊä³öÐòÁеÄÖÖÊýÊÇ 99 ¡£

20£®Ò»¸öÕ»µÄÊäÈëÐòÁÐΪ123¡­n£¬ÈôÊä³öÐòÁеĵÚÒ»¸öÔªËØÊÇn£¬Êä³öµÚi£¨1<=i<=n£©¸öÔªËØÊÇ£¨ £©¡£

A. ²»È·¶¨ B. n-i+1 C. i D. n-i

21£®ÈôÔÚÒ»¸ö´óСΪ6µÄÊý×éÉÏʵÏÖÑ­»·¶ÓÁУ¬ÇÒµ±Ç°rearºÍfrontµÄÖµ·Ö±ðΪ0ºÍ3£¬µ±´Ó¶ÓÁÐÖÐɾ³ýÒ»¸öÔªËØ£¬ÔÙ¼ÓÈëÁ½¸öÔªËØºó£¬rearºÍfrontµÄÖµ·Ö±ðΪ£¨ £©

A¡¢1£¬5 B¡¢2, 4 C¡¢4£¬2 D¡¢5£¬1

22£®Õ»µÄÌØµãÊÇ___ÏȽøºó³ö____£¬¶ÓÁеÄÌØµãÊÇ___ÏȽøÏȳö__________¡£ 23£®ÒýÆðÑ­»·¶ÓÁжÓβλÖ÷¢Éú±ä»¯µÄ²Ù×÷ÊÇ( )¡£

A.Èë¶ÓÁÐ B.³ö¶ÓÁÐ C.È¡¶ÓÎ²ÔªËØ D.È¡¶ÓÍ·ÔªËØ

24£®ÉèÑ­»·¶ÓÁÐQ²ÉÓÃ˳Ðò´æ´¢½á¹¹£¬Æä×î´ó´æ´¢ÈÝÁ¿ÎªMAX£¬ÆäÍ·Ö¸ÕëºÍβָÕë·Ö±ðΪQ.frontºÍQ.rear£¬Ôò¶ÓÁÐQΪ¿ÕµÄÌõ¼þΪ _ Q.front==Q.rear£¬¶ÓÁÐΪÂúµÄÌõ¼þΪ____ Q.front==(Q.rear+1)%MAX__________¡£ 25£®ÔÚÕ»ÖУ¬³öÕ»²Ù×÷µÄʱ¼ä¸´ÔÓ¶ÈΪ( )¡£ A.O(log2n) B.O(1) C.O(n) D.O(n2) 26£®ÒýÆðÑ­»·¶ÓÁжÓͷλÖ÷¢Éú±ä»¯µÄ²Ù×÷ÊÇ( )¡£

A.³ö¶ÓÁÐ B.Èë¶ÓÁÐ C.È¡¶ÓÍ·ÔªËØ D.È¡¶ÓÎ²ÔªËØ 27£®ÔÚÕ»ÖУ¬ÈëÕ»²Ù×÷µÄʱ¼ä¸´ÔÓ¶ÈΪ( )¡£

A.O(n) B.O(n) C.O(log2n) D.O(1) 28¡¢Õ»½á¹¹Í¨³£²ÉÓõÄÁ½ÖÖ´æ´¢½á¹¹ÊÇ£¨ £©¡£

A¡¢Ë³Ðò´æ´¢½á¹¹ºÍÁ´±í´æ´¢½á¹¹ B¡¢É¢ÁкÍË÷Òý·½Ê½ C¡¢Á´±í´æ´¢½á¹¹ºÍÊý×é D¡¢ÏßÐÔÁ´±í½á¹¹ºÍ·ÇÏßÐÔ´æ´¢½á¹¹

29¡¢ÉèÕ»STÓÃ˳Ðò´æ´¢½á¹¹±íʾ£¬ÔòÕ»STΪ¿ÕµÄÌõ¼þÊÇ£¨ £©

A¡¢ST.top-ST.base<>0 B¡¢ST.top-ST.base==0 C¡¢ST.top-ST.base<>n D¡¢ST.top-ST.base==n

30¡¢ÏòÒ»¸öÕ»¶¥Ö¸ÕëΪHSµÄÁ´Õ»ÖвåÈëÒ»¸ös½áµãʱ£¬ÔòÖ´ÐУ¨ £© A¡¢HS->next=s; B¡¢s->next=HS->next;HS->next=s; C¡¢s->next=HS;HS=s; D¡¢s->next=HS;HS=HS->next;

31¡¢´ÓÒ»¸öÕ»¶¥Ö¸ÕëΪHSµÄÁ´Õ»ÖÐɾ³ýÒ»¸ö½áµã£¬ÓÃx±£´æ±»É¾³ý½áµãµÄÖµ£¬ÔòÖ´ÐУ¨ £©

A¡¢x=HS;HS=HS->next; B¡¢HS=HS->next;x=HS->data; C¡¢x=HS->data;HS=HS->next; D¡¢s->next=Hs;Hs=HS->next; 32¡¢Ïû³ýµÝ¹é£¨ £©ÐèҪʹÓÃÕ»¡£ A¡¢Ò»¶¨ B¡¢²»Ò»¶¨

33¡¢Óõ¥Á´±í±íʾµÄÁ´Ê½¶ÓÁеĶÓÍ·ÔÚÁ´±íµÄ£¨ £©Î»Öà A¡¢Á´Í· B¡¢Á´Î² C¡¢Á´ÖÐ

34¡¢Åж¨Ò»¸öÁ´¶ÓÁÐQ£¨×î¶àÔªËØÎªn¸ö£©Îª¿ÕµÄÌõ¼þÊÇ£¨ £©

A¡¢Q.front==Q.rear B¡¢Q.front!=Q.rear C¡¢Q.front==(Q.rear+1)%n D¡¢Q.front!=(Q.rear+1)%n

35¡¢ÔÚÁ´¶ÓÁÐQÖУ¬²åÈësËùÖ¸½áµãÐè˳ÐòÖ´ÐеÄÖ¸ÁîÊÇ£¨ £© A¡¢Q.front->next=s;f=s; B¡¢Q.rear->next=s;Q.rear=s; C¡¢s->next=Q.rear;Q.rear=s; D¡¢s->next=Q.front;Q.front=s; 36¡¢ÔÚÒ»¸öÁ´¶ÓÁÐQÖУ¬É¾³ýÒ»¸ö½áµãÐèÒªÖ´ÐеÄÖ¸ÁîÊÇ£¨ £© A¡¢Q.rear=Q.front->next; B¡¢Q.rear->next=Q.rear->next->next; C¡¢Q.front->next=Q.front->next->next; D¡¢Q.front=Q.rear->next;

2