¸ÅÂÊÂÛºÍÊýÀíͳ¼Æ - ¸´µ©´óѧ - ¿ÎºóÌâ´ð°¸º«ÐñÀï - дÓÀÇÕ ÏÂÔØ±¾ÎÄ

?P(X?,?1?X?1)?P(X?x,X??1)?P(X?x,X?1)?P(X?x,?1?X?1)?P(X?x,x??1) ?P(X?x|?1?X?1)P(?1?X?x?1515???(x28816?1)?1818?1)?P(X??1)

µ±x=?1ʱ£¬F(x)?P(X?x)?P(X??1)?¹ÊXµÄ·Ö²¼º¯Êý

?0,?1?5F(x)??(x?1)?,8?16??1,

x??1-1?x<1 x?154. ÉèËæ»ú±äÁ¿X·þ´ÓÕý̬·ÖN£¨¦Ì1,¦Ò12),Y·þ´ÓÕý̬·Ö²¼N(¦Ì2,¦Ò22)£¬ÇÒP{|X-¦Ì1|<1}>P{|Y-¦Ì2|<1}£¬ÊԱȽϦÒ1Óë¦Ò2µÄ´óС. (2006Ñп¼) ½â£º ÒÀÌâÒâ

X??1?N(0,1£¬)Y??2?N(0,1)£¬Ôò

?1?2P{X??1?1}?P{X??1?1Y??2?1?11}£¬

P{Y??2?1}?P{?2??2}.

ÒòΪP{X??1?1}?P{Y??2?1}£¬¼´

X??11Y??11P{?11?1??1}?P{?2??2}£¬

ËùÒÔÓÐ

?1?2£¬¼´?1??2.

41

ϰÌâÈý

1.½«Ò»Ó²±ÒÅ×ÖÀÈý´Î£¬ÒÔX±íʾÔÚÈý´ÎÖгöÏÖÕýÃæµÄ´ÎÊý£¬ÒÔY±íʾÈý´ÎÖгöÏÖÕýÃæ´ÎÊýÓë

³öÏÖ·´Ãæ´ÎÊýÖ®²îµÄ¾ø¶ÔÖµ.ÊÔд³öXºÍYµÄÁªºÏ·Ö²¼ÂÉ. ¡¾½â¡¿XºÍYµÄÁªºÏ·Ö²¼ÂÉÈç±í£º X Y 0 0 181 11311C3???? 22282 3 1 3 110 21C3????3/8 222 0 0 12?12?12?18

2.ºÐ×ÓÀï×°ÓÐ3Ö»ºÚÇò¡¢2Ö»ºìÇò¡¢2Ö»°×Çò£¬ÔÚÆäÖÐÈÎÈ¡4Ö»Çò£¬ÒÔX±íʾȡµ½ºÚÇòµÄÖ»Êý£¬ÒÔY±íʾȡµ½ºìÇòµÄÖ»Êý.ÇóXºÍYµÄÁªºÏ·Ö²¼ÂÉ. ¡¾½â¡¿XºÍYµÄÁªºÏ·Ö²¼ÂÉÈç±í£º X Y 0 0 1 0 2 C3?C2C74223 33510 ? C3?C2C73431?235235 1 0 C3?C2?C2C74112?635635 C3?C2?C2C72421?1235 C3?C2C741? 2 P(0ºÚ,2ºì,2°×)= C?C/C?222247135C3?C2?C2C47121 ? C3?C2C472?3350

3.Éè¶þÎ¬Ëæ»ú±äÁ¿£¨X£¬Y£©µÄÁªºÏ·Ö²¼º¯ÊýΪ

??sinxsiny,F£¨x£¬y£©=???0,0?x?¦Ð2,0?y?¦Ð2

ÆäËû.Çó¶þÎ¬Ëæ»ú±äÁ¿£¨X£¬Y£©ÔÚ³¤·½ÐÎÓò?0?x???¦Ð¦Ð¦Ð?,?y??ÄڵĸÅÂÊ. 463?¡¾½â¡¿ÈçͼP{0?X?¦Ð¦Ð¦Ð,?Y?}¹«Ê½(3.2) 463¦Ð¦Ð¦Ð¦Ð¦Ð¦ÐF(,)?F(,)?F(0,)?F(0,) 434636

42

?sin¦Ð¦Ð¦Ð4?sin3?sin4?sin¦Ð6?sin0?sin¦Ð3?sin0?sin¦Ð6

?24(3?1).

Ìâ3ͼ

˵Ã÷£ºÒ²¿ÉÏÈÇó³öÃܶȺ¯Êý£¬ÔÙÇó¸ÅÂÊ¡£ 4.ÉèËæ»ú±äÁ¿£¨X£¬Y£©µÄ·Ö²¼ÃܶÈ

?Ae?(3x?4y)f£¨x£¬y£©=?,x?0,y?0,?0,ÆäËû.

Ç󣺣¨1£© ³£ÊýA£»

£¨2£© Ëæ»ú±äÁ¿£¨X£¬Y£©µÄ·Ö²¼º¯Êý£»

£¨3£© P{0¡ÜX<1£¬0¡ÜY<2}.

¡¾½â¡¿£¨1£© ÓÉ??????f(x,y)dxdy???????????00Ae-(3x?4y)dxdy?A12?1

µÃ A=12ª±

£¨2£© Óɶ¨Ò壬ÓÐ

F(x,y)??yx?????fu(v,u)dv d?yy12e?(3u?v4 ????0?0d)udv??(1?e?3x)(1?e?4y?)y?0,x?0,??0,?0,ÆäËû(3) P{0?X?1,0?Y?2}

?P{0?X?1,0?Y?2}

??12?4y)0?012e?(3xdxdy?(1?e?3)(1?e?8)?0.9499.

5.ÉèËæ»ú±äÁ¿£¨X£¬Y£©µÄ¸ÅÂÊÃܶÈΪ

f£¨x£¬y£©=??k(6?x?y),0?x?2,2?y?4,?0,ÆäËû.

£¨1£© È·¶¨³£Êýk£» £¨2£© ÇóP{X£¼1£¬Y£¼3}£»

£¨3£© ÇóP{X<1.5}£» £¨4£© ÇóP{X+Y¡Ü4}. ¡¾½â¡¿£¨1£© ÓÉÐÔÖÊÓÐ

43

??????????f(x,y)dxdy???0242k(6?x?y)dydx?8k?1,

¹Ê R?18ª±

£¨2£© P{X?1,Y?3}? ?(3) P{X?1.5}? ?????132013??f(x,y)dydx

38??18k(6?x?y)dydx?

??x?1.5f(x,y)dxdyÈçͼa??f(x,y)dxdy

D11.5?0dx?4128(6?x?y)dy?2732D2.

(4) P{X?Y?4}? ???X?Y?4f(x,y)dxdyÈçͼb??f(x,y)dxdy

4?x2?20dx?18(6?x?y)dy?23.

Ìâ5ͼ

6.ÉèXºÍYÊÇÁ½¸öÏ໥¶ÀÁ¢µÄËæ»ú±äÁ¿£¬XÔÚ£¨0£¬0.2£©ÉÏ·þ´Ó¾ùÔÈ·Ö²¼£¬YµÄÃܶȺ¯ÊýΪ

?5e?5y,y?0,fY£¨y£©=?

ÆäËû.?0,Ç󣺣¨1£© XÓëYµÄÁªºÏ·Ö²¼Ãܶȣ»£¨2£© P{Y¡ÜX}.

Ìâ6ͼ

¡¾½â¡¿£¨1£© ÒòXÔÚ£¨0£¬0.2£©ÉÏ·þ´Ó¾ùÔÈ·Ö²¼£¬ËùÒÔXµÄÃܶȺ¯ÊýΪ

?1,?fX(x)??0.2?0,?0?x?0.2,ÆäËû.

¶ø

44