ʹÓÃMATLABÒÅ´«Ëã·¨¹¤¾ßʵÀý£¨Ïêϸ£© ÏÂÔØ±¾ÎÄ

×îз¢²¼µÄMATLAB 7.0 Release 14ÒѾ­°üº¬ÁËÒ»¸öרÃÅÉè¼ÆµÄÒÅ´«Ëã·¨ÓëÖ±½ÓËÑË÷¹¤¾ßÏ䣨Genetic Algorithm and Direct Search Toolbox£¬GADS£©¡£Ê¹ÓÃÒÅ´«Ëã·¨ÓëÖ±½ÓËÑË÷¹¤¾ßÏ䣬¿ÉÒÔÀ©Õ¹MATLAB¼°ÆäÓÅ»¯¹¤¾ßÏäÔÚ´¦ÀíÓÅ»¯ÎÊÌâ·½ÃæµÄÄÜÁ¦£¬¿ÉÒÔ´¦Àí´«Í³µÄÓÅ»¯¼¼ÊõÄÑÒÔ½â¾öµÄÎÊÌ⣬°üÀ¨ÄÇЩÄÑÒÔ¶¨Òå»ò²»±ãÓÚÊýѧ½¨Ä£µÄÎÊÌ⣬¿ÉÒÔ½â¾öÄ¿±êº¯Êý½Ï¸´ÔÓµÄÎÊÌ⣬±ÈÈçÄ¿±êº¯Êý²»Á¬Ðø¡¢»ò¾ßÓи߶ȷÇÏßÐÔ¡¢Ëæ»úÐÔÒÔ¼°Ä¿±êº¯ÊýûÓе¼ÊýµÄÇé¿ö¡£

±¾ÕÂ8.1½ÚÊ×ÏȽéÉÜÕâ¸öÒÅ´«Ëã·¨ÓëÖ±½ÓËÑË÷¹¤¾ßÏ䣬ÆäÓà¸÷½Ú·Ö±ð½éÉܸù¤¾ßÏäÖеÄÒÅ´«Ëã·¨¹¤¾ß¼°ÆäʹÓ÷½·¨¡£

8.1 ÒÅ´«Ëã·¨ÓëÖ±½ÓËÑË÷¹¤¾ßÏä¸ÅÊö

±¾½Ú½éÉÜMATLABµÄGADS£¨ÒÅ´«Ëã·¨ÓëÖ±½ÓËÑË÷£©¹¤¾ßÏäµÄÌØµã¡¢Í¼ÐÎÓû§½çÃæ¼°ÔËÐÐÒªÇ󣬽âÊÍÈçºÎ±àд´ýÓÅ»¯º¯ÊýµÄMÎļþ£¬ÇÒͨ¹ý¾ÙÀý¼ÓÒÔ²ûÃ÷¡£

8.1.1 ¹¤¾ßÏäµÄÌØµã

GADS¹¤¾ßÏäÊÇһϵÁк¯ÊýµÄ¼¯ºÏ£¬ËüÃÇÀ©Õ¹ÁËÓÅ»¯¹¤¾ßÏäºÍMATLABÊýÖµ¼ÆËã»·¾³µÄÐÔÄÜ¡£ÒÅ´«Ëã·¨ÓëÖ±½ÓËÑË÷¹¤¾ßÏä°üº¬ÁËҪʹÓÃÒÅ´«Ëã·¨ºÍÖ±½ÓËÑË÷Ëã·¨À´Çó½âÓÅ»¯ÎÊÌâµÄһЩÀý³Ì¡£ÕâЩË㷨ʹÎÒÃÇÄܹ»Çó½âÄÇЩ±ê×¼ÓÅ»¯¹¤¾ßÏ䷶Χ֮ÍâµÄ¸÷ÖÖÓÅ»¯ÎÊÌâ¡£ËùÓй¤¾ßÏ亯Êý¶¼ÊÇMATLABµÄMÎļþ£¬ÕâЩÎļþÓÉʵÏÖÌØ¶¨ÓÅ»¯Ëã·¨µÄMATLABÓï¾äËùд³É¡£

ʹÓÃÓï¾ä

type function_name

¾Í¿ÉÒÔ¿´µ½ÕâЩº¯ÊýµÄMATLAB´úÂë¡£ÎÒÃÇÒ²¿ÉÒÔͨ¹ý±àд×Ô¼ºµÄMÎļþÀ´ÊµÏÖÀ´À©Õ¹ÒÅ´«Ëã·¨ºÍÖ±½ÓËÑË÷¹¤¾ßÏäµÄÐÔÄÜ£¬Ò²¿ÉÒÔ½«¸Ã¹¤¾ßÏäÓëMATLABµÄÆäËû¹¤¾ßÏä»òSimulink½áºÏʹÓã¬À´Çó½âÓÅ»¯ÎÊÌâ¡£

¹¤¾ßÏ亯Êý¿ÉÒÔͨ¹ýͼÐνçÃæ»òMATLABÃüÁîÐÐÀ´·ÃÎÊ£¬ËüÃÇÊÇÓÃMATLABÓïÑÔ±àдµÄ£¬¶ÔÓû§¿ª·Å£¬Òò´Ë¿ÉÒԲ鿴Ëã·¨¡¢ÐÞ¸ÄÔ´´úÂë»òÉú³ÉÓû§º¯Êý¡£

ÒÅ´«Ëã·¨ÓëÖ±½ÓËÑË÷¹¤¾ßÏä¿ÉÒÔ°ïÖúÎÒÃÇÇó½âÄÇЩ²»Ò×Óô«Í³·½·¨½â¾öµÄÎÊÌ⣬ƩÈç±í²éÕÒÎÊÌâµÈ¡£

ÒÅ´«Ëã·¨ÓëÖ±½ÓËÑË÷¹¤¾ßÏäÓÐÒ»¸ö¾«ÐÄÉè¼ÆµÄͼÐÎÓû§½çÃæ£¬¿ÉÒÔ°ïÖúÎÒÃÇÖ±¹Û¡¢·½±ã¡¢¿ìËÙµØÇó½â×îÓÅ»¯ÎÊÌâ¡£ 8.1.1.1 ¹¦ÄÜÌØµã

ÒÅ´«Ëã·¨ÓëÖ±½ÓËÑË÷¹¤¾ßÏäµÄ¹¦ÄÜÌØµãÈçÏ£º

ͼÐÎÓû§½çÃæºÍÃüÁîÐк¯Êý¿ÉÓÃÀ´¿ìËÙµØÃèÊöÎÊÌâ¡¢ÉèÖÃË㷨ѡÏîÒÔ¼°¼à¿Ø½ø³Ì¡£ ¾ßÓжà¸öÑ¡ÏîµÄÒÅ´«Ëã·¨¹¤¾ß¿ÉÓÃÓÚÎÊÌâ´´½¨¡¢ÊÊÓ¦¶È¼ÆË㡢ѡÔñ¡¢½»²æºÍ±äÒì¡£

Ö±½ÓËÑË÷¹¤¾ßʵÏÖÁËÒ»ÖÖģʽËÑË÷·½·¨£¬ÆäÑ¡Ïî¿ÉÓÃÓÚ¶¨ÒåÍø¸ñ³ß´ç¡¢±í¾ö·½·¨ºÍËÑË÷·½·¨¡£

ÒÅ´«Ëã·¨ÓëÖ±½ÓËÑË÷¹¤¾ßÏ亯Êý¿ÉÓëMATLABµÄÓÅ»¯¹¤¾ßÏä»òÆäËûµÄMATLAB³ÌÐò½áºÏʹÓá£

Ö§³Ö×Ô¶¯µÄM´úÂëÉú³É¡£ 8.1.1.2 ͼÐÎÓû§½çÃæºÍÃüÁîÐк¯Êý

ÒÅ´«Ëã·¨¹¤¾ßº¯Êý¿ÉÒÔͨ¹ýÃüÁîÐкÍͼÐÎÓû§½çÃæÀ´Ê¹ÓÃÒÅ´«Ëã·¨¡£Ö±½ÓËÑË÷¹¤¾ßº¯ÊýÒ²¿ÉÒÔͨ¹ýÃüÁîÐкÍͼÐÎÓû§½çÃæÀ´½øÐзÃÎÊ¡£Í¼ÐÎÓû§½çÃæ¿ÉÓÃÀ´¿ìËٵض¨ÒåÎÊÌâ¡¢ÉèÖÃË㷨ѡÏî¡¢¶ÔÓÅ»¯ÎÊÌâ½øÐÐÏêϸ¶¨Òå¡£

133

ÒÅ´«Ëã·¨ÓëÖ±½ÓËÑË÷¹¤¾ßÏ仹ͬʱÌṩÁËÓÃÓÚÓÅ»¯¹ÜÀí¡¢ÐÔÄÜ¼à¿Ø¼°ÖÕÖ¹×¼Ôò¶¨ÒåµÄ¹¤¾ß£¬Í¬Ê±»¹Ìṩ´óÁ¿±ê×¼Ë㷨ѡÏî¡£

ÔÚÓÅ»¯ÔËÐеĹý³ÌÖУ¬¿ÉÒÔͨ¹ýÐÞ¸ÄÑ¡ÏîÀ´Ï¸»¯×îÓŽ⣬¸üÐÂÐÔÄܽá¹û¡£Óû§Ò²¿ÉÒÔÌṩ×Ô¼ºµÄË㷨ѡÏîÀ´¶¨Öƹ¤¾ßÏä¡£ 8.1.1.3 ʹÓÃÆäËûº¯ÊýºÍÇó½âÆ÷

ÒÅ´«Ëã·¨ÓëÖ±½ÓËÑË÷¹¤¾ßÏäÓëMATLAB¼°ÓÅ»¯¹¤¾ßÏäÊǽôÃܽáºÏÔÚÒ»ÆðµÄ¡£Óû§¿ÉÒÔÓÃÒÅ´«Ëã·¨»òÖ±½ÓËÑË÷Ëã·¨À´Ñ°ÕÒ×î¼ÑÆðʼµã£¬È»ºóÀûÓÃÓÅ»¯¹¤¾ßÏä»òÓÃMATLAB³ÌÐòÀ´½øÒ»²½Ñ°ÕÒ×îÓŽ⡣ͨ¹ý½áºÏ²»Í¬µÄËã·¨£¬¿ÉÒÔ³ä·ÖµØ·¢»Ó MATLAB ºÍ¹¤¾ßÏäµÄ¹¦ÄÜÒÔÌá¸ßÇó½âµÄÖÊÁ¿¡£¶ÔÓÚÄ³Ð©ÌØ¶¨ÎÊÌ⣬ʹÓÃÕâÖÖ·½·¨»¹¿ÉÒԵõ½È«¾Ö£¨×îÓÅ£©½â¡£ 8.1.1.4 ÏÔʾ¡¢¼à¿ØºÍÊä³ö½á¹û

ÒÅ´«Ëã·¨ÓëÖ±½ÓËÑË÷¹¤¾ßÏ仹°üÀ¨Ò»ÏµÁлæÍ¼º¯ÊýÓÃÀ´¿ÉÊÓ»¯ÓÅ»¯½á¹û¡£ÕâЩ¿ÉÊÓ»¯¹¦ÄÜÖ±¹ÛµØÏÔʾÁËÓÅ»¯µÄ¹ý³Ì£¬²¢ÇÒÔÊÐíÔÚÖ´Ðйý³ÌÖнøÐÐÐ޸ġ£

¹¤¾ßÏ仹°üÀ¨Ò»ÏµÁлæÍ¼º¯ÊýÓÃÀ´¿ÉÊÓ»¯ÓÅ»¯½á¹û¡£ÕâЩ¿ÉÊÓ»¯¹¦ÄÜÖ±¹ÛµØÏÔʾÁËÓÅ»¯µÄ¹ý³Ì£¬²¢ÇÒÔÊÐíÔÚÖ´Ðйý³ÌÖнøÐÐÐ޸ġ£¸Ã¹¤¾ßÏ仹ÌṩÁËÒ»Ð©ÌØÊâ»æÍ¼º¯Êý£¬ËüÃDz»½öÊÊÓÃÓÚÒÅ´«Ëã·¨£¬»¹ÊÊÓÃÓÚÖ±½ÓËÑË÷Ëã·¨¡£ÊÊÓÃÓÚÒÅ´«Ëã·¨µÄº¯Êý°üÀ¨º¯ÊýÖµ¡¢ÊÊÓ¦¶ÈÖµºÍº¯Êý¹À¼Æ¡£ÊÊÓÃÓÚÖ±½ÓËÑË÷Ëã·¨µÄº¯Êý°üÀ¨º¯ÊýÖµ¡¢·ÖÖµÖ±·½Í¼¡¢ÏµÆ×¡¢ÊÊÓ¦¶ÈÖµ¡¢Íø¸ñ³ß´çºÍº¯Êý¹À¼Æ¡£ÕâЩº¯Êý¿ÉÒÔ½«¶à¸ö»æÍ¼Ò»²¢ÏÔʾ£¬¿ÉÖ±¹Û·½±ãµØÑ¡È¡×îÓÅÇúÏß¡£ÁíÍ⣬Óû§Ò²¿ÉÒÔÌí¼Ó×Ô¼ºµÄ»æÍ¼º¯Êý¡£

ʹÓÃÊä³öº¯Êý¿ÉÒÔ½«½á¹ûдÈëÎļþ£¬²úÉúÓû§×Ô¼ºµÄÖÕÖ¹×¼Ôò£¬Ò²¿ÉÒÔдÈëÓû§×Ô¼ºµÄͼÐνçÃæÀ´ÔËÐй¤¾ßÏäÇó½âÆ÷¡£³ý´ËÖ®Í⣬»¹¿ÉÒÔ½«ÎÊÌâµÄË㷨ѡÏîµ¼³ö£¬ÒÔ±ãÈÕºóÔÙ½«ËüÃǵ¼È뵽ͼÐνçÃæÖÐÈ¥¡£ 8.1.1.5 ËùÐèµÄ²úÆ·Ö§³Ö

ÒÅ´«Ëã·¨ÓëÖ±½ÓËÑË÷¹¤¾ßÏä×÷ΪÆäËûÓÅ»¯·½·¨µÄ²¹³ä£¬¿ÉÒÔÓÃÀ´Ñ°ÕÒ×î¼ÑÆðʼµã£¬È»ºó¿ÉÒÔÔÙͨ¹ýʹÓô«Í³µÄÓÅ»¯¼¼ÊõÀ´½øÒ»²½Ñ°ÕÒ×îÓŽ⡣

¹¤¾ßÏäÐèÒªÈçϲúÆ·Ö§³Ö£º(1) MATLAB¡£(2) ÓÅ»¯¹¤¾ßÏä¡£ 8.1.1.6 Ïà¹Ø²úÆ·

ÓëÒÅ´«Ëã·¨ÓëÖ±½ÓËÑË÷¹¤¾ßÏäÏà¹ØµÄ²úÆ·ÓУº ͳ¼Æ¹¤¾ßÏ䡪¡ªÓ¦ÓÃͳ¼ÆËã·¨ºÍ¸ÅÂÊģʽ¡£ Éñ¾­ÍøÂ繤¾ßÏ䡪¡ªÉè¼ÆºÍ·ÂÕæÉñ¾­ÍøÂç¡£

Ä£ºýÂß¼­¹¤¾ßÏ䡪¡ªÉè¼ÆºÍ·ÂÕæ»ùÓÚÄ£ºýÂß¼­µÄϵͳ¡£ ½ðÈÚ¹¤¾ßÏ䡪¡ª·ÖÎö½ðÈÚÊý¾ÝºÍ¿ª·¢½ðÈÚËã·¨¡£

8.1.1.7 ËùÐèµÄϵͳ¼°Æ½Ì¨

ÒÅ´«Ëã·¨ºÍÖ±½ÓËÑË÷¹¤¾ßÏä¶ÔÓÚ¶ÔÓÚÔËÐл·¾³¡¢Ö§³Öƽ̨ºÍϵͳµÄÐèÇ󣬿ÉËæÊ±Í¨¹ý·ÃÎÊÍøÕ¾http://www.mathworks.com/products/gadsÁ˽â×îз¢²¼µÄÐÅÏ¢¡£

ÕâÀï½éÉܵÄMATLAB 7.0 Release 14ËùÐèµÄ×îµÍÅäÖÃÊÇ£ºWindowsϵÁвÙ×÷ϵͳ£¬Pentium III 500 CPU¡¢64MB RAM£¬¿ÕÏÐÓ²Å̿ռä600MBÒÔÉÏ¡£

8.1.2 ±àд´ýÓÅ»¯º¯ÊýµÄMÎļþ

ΪÁËʹÓÃÒÅ´«Ëã·¨ºÍÖ±½ÓËÑË÷¹¤¾ßÏ䣬Ê×ÏȱØÐë±àдһ¸öMÎļþ£¬À´È·¶¨ÏëÒªÓÅ»¯µÄº¯Êý¡£Õâ¸öMÎļþÓ¦¸Ã½ÓÊÜÒ»¸öÐÐÏòÁ¿£¬²¢ÇÒ·µ»ØÒ»¸ö±êÁ¿¡£ÐÐÏòÁ¿µÄ³¤¶È¾ÍÊÇÄ¿±êº¯ÊýÖжÀ

134

Á¢±äÁ¿µÄ¸öÊý¡£±¾½Ú½«Í¨¹ýʵÀý½âÊÍÈçºÎ±àдÕâÖÖMÎļþ¡£ 8.1.2.1 ±àдMÎļþ¾ÙÀý

ÏÂÃæµÄÀý×ÓչʾÁËÈçºÎΪһ¸öÏëÒªÓÅ»¯µÄº¯Êý±àдMÎļþ¡£¼Ù¶¨ÎÒÃÇÏëÒª¼ÆËãÏÂÃæº¯ÊýµÄ×îСֵ£º

2f(x1,x2)?x12?2x1x2?6x1?x2?6x2

MÎļþÈ·¶¨Õâ¸öº¯Êý±ØÐë½ÓÊÜÒ»¸ö³¤¶ÈΪ2µÄÐÐÏòÁ¿X£¬·Ö±ðÓë±äÁ¿x1ºÍx2Ïà¶ÔÓ¦£¬²¢ÇÒ

·µ»ØÒ»¸ö±êÁ¿X£¬ÆäÖµµÈÓڸú¯ÊýµÄÖµ¡£ÎªÁ˱àдÕâ¸öMÎļþ£¬Ö´ÐÐÈçϲ½Ö裺 ÔÚMATLABµÄFile²Ëµ¥ÖÐÑ¡ÔñNew²Ëµ¥Ïî¡£

Ñ¡ÔñM-File£¬½«Ôڱ༭Æ÷Öдò¿ªÒ»¸öеÄMÎļþ¡£ ÔÚ¸ÃMÎļþÖУ¬ÊäÈëÏÂÃæÁ½ÐдúÂ룺

function z = my_fun(x)

z = x(1)^2 - 2*x(1)*x(2) + 6*x(1) + x(2)^2 - 6*x(2);

ÔÚMATLAB·¾¶Ö¸¶¨µÄĿ¼Öб£´æ¸ÃMÎļþ¡£

ΪÁ˲鿴¸ÃMÎļþÊÇ·ñ·µ»ØÕýÈ·µÄÖµ£¬¿É¼üÈë

my_fun([2 3]) ans = -5 ×¢Ò⣺ÔÚÔËÐÐÒÅ´«Ëã·¨¹¤¾ß»òģʽËÑË÷¹¤¾ßʱ£¬²»ÒªÊ¹Óñ༭Æ÷»òµ÷ÊÔÆ÷À´µ÷ÊÔÄ¿±êº¯ÊýµÄMÎļþ£¬·ñÔò»áµ¼ÖÂÔÚÃüÁî´°¿Ú³öÏÖJavaÒì³£ÏûÏ¢£¬²¢ÇÒʹµ÷ÊÔ¸ü¼ÓÀ§ÄÑ¡£ 8.1.2.2 ×î´ó»¯Óë×îС»¯

ÒÅ´«Ëã·¨ºÍÖ±½ÓËÑË÷¹¤¾ßÏäÖеÄÓÅ»¯º¯Êý×ÜÊÇʹĿ±êº¯Êý»òÊÊÓ¦¶Èº¯Êý×îС»¯¡£Ò²¾ÍÊÇ˵£¬ËüÃÇÇó½âÈçÏÂÐÎʽµÄÎÊÌ⣺

minimizef(x)

xÈç¹ûÎÒÃÇÏëÒªÇó³öº¯Êýf(x)µÄ×î´óÖµ£¬¿ÉÒÔת¶øÇóÈ¡º¯Êýg(x)=£­f(x)µÄ×îСֵ£¬ÒòΪº¯Êýg(x)×îСֵ³öÏֵĵط½Ó뺯Êýf(x)×î´óÖµ³öÏֵĵط½Ïàͬ¡£

2ÀýÈ磬¼Ù¶¨ÏëÒªÇóÇ°ÃæËùÃèÊöµÄº¯Êýf(x1,x2)?x12?2x1x2?6x1?x2?6x2µÄ×î´óÖµ£¬Õâʱ£¬

ÎÒÃÇÓ¦µ±±àдһ¸öMÎļþÀ´¼ÆË㣬Çóº¯Êý

2g(x)??f(x1,x2)??(x12?2x1x2?6x1?x2?6x2)

µÄ×îСֵ¡£

8.1.2.3 ×Ô¶¯´úÂëÉú³É

ÒÅ´«Ëã·¨ÓëÖ±½ÓËÑË÷¹¤¾ßÏäÌṩÁË×Ô¶¯´úÂëÉú³ÉÌØÐÔ£¬¿ÉÒÔ×Ô¶¯Éú³ÉÇó½âÓÅ»¯ÎÊÌâËùÐè

ÒªµÄMÎļþ¡£ÀýÈ磬ͼ8.1ËùʾµÄ¾ÍÊÇʹÓÃÒÅ´«Ëã·¨¹¤¾ßµÄ×Ô¶¯´úÂëÉú³ÉÌØÐÔËù²úÉúµÄMÎļþ¡£

ÁíÍ⣬ͼÐÎÓû§½çÃæËùÊä³öµÄÓÅ»¯½á¹û¿ÉÒÔ×÷Ϊ¶ÔÀ´×ÔÃüÁîÐе÷ÓôúÂëµÄÒ»ÖÖ½âÊÍ£¬ÕâЩ´úÂ뻹ÓÃÓÚʹÀý³ÌºÍ±£»¤¹¤×÷×Ô¶¯»¯¡£

135

ͼ8.1 ÒÅ´«Ëã·¨MÎļþ´úÂëµÄ×Ô¶¯Éú³É

8.2 ʹÓÃÒÅ´«Ëã·¨¹¤¾ß³õ²½

ÒÅ´«Ëã·¨ÓëÖ±½ÓËÑË÷¹¤¾ßÏä°üº¬ÒÅ´«Ëã·¨¹¤¾ßºÍÖ±½ÓËÑË÷¹¤¾ß¡£´Ó±¾½ÚÖÁÕÂÄ©£¬½«Ö÷Òª½éÉÜÆäÖеÄÒÅ´«Ëã·¨¹¤¾ß¼°ÆäʹÓ÷½·¨¡£

±¾½ÚÖ÷Òª½éÉÜÒÅ´«Ëã·¨¹¤¾ßʹÓõijõ²½ÖªÊ¶£¬ÄÚÈݰüÀ¨£ºÒÅ´«Ë㷨ʹÓùæÔò£¬ÒÅ´«Ëã·¨¹¤¾ßµÄʹÓ÷½Ê½£¬¾ÙÀý˵Ã÷ÈçºÎʹÓÃÒÅ´«Ëã·¨À´Çó½âÒ»¸öÓÅ»¯ÎÊÌ⣬½âÊÍÒÅ´«Ëã·¨µÄһЩ»ù±¾ÊõÓ×îºó²ûÊöÒÅ´«Ëã·¨µÄ¹¤×÷Ô­ÀíÓ빤×÷¹ý³Ì¡£

8.2.1 ÒÅ´«Ë㷨ʹÓùæÔò

ÒÅ´«Ëã·¨ÊÇÒ»ÖÖ»ùÓÚ×ÔȻѡÔñ¡¢ÉúÎï½ø»¯¹ý³ÌÀ´Çó½âÎÊÌâµÄ·½·¨¡£ÒÅ´«Ëã·¨·´¸´Ð޸ĶÔÓÚ¸öÌå½â¾ö·½°¸µÄÖÖȺ¡£ÔÚÿһ²½£¬ÒÅ´«Ëã·¨Ëæ»úµØ´Óµ±Ç°ÖÖȺÖÐÑ¡ÔñÈô¸É¸öÌå×÷Ϊ¸¸±²£¬²¢ÇÒʹÓÃËüÃDzúÉúÏÂÒ»´úµÄ×ÓÖÖȺ¡£ÔÚÁ¬ÐøÈô¸É´úÖ®ºó£¬ÖÖȺ³¯×ÅÓÅ»¯½âµÄ·½Ïò½ø»¯¡£ÎÒÃÇ¿ÉÒÔÓÃÒÅ´«Ëã·¨À´Çó½â¸÷ÖÖ²»ÊÊÒËÓÚÓñê×¼ÓÅ»¯Ëã·¨Çó½âµÄÓÅ»¯ÎÊÌ⣬°üÀ¨Ä¿±êº¯Êý²»Á¬Ðø¡¢²»¿É΢¡¢Ëæ»ú»ò¸ß¶È·ÇÏßÐÔµÄÎÊÌâ¡£

ÒÅ´«Ëã·¨ÔÚÿһ²½Ê¹ÓÃÏÂÁÐÈýÀà¹æÔò´Óµ±Ç°ÖÖȺÀ´´´½¨ÏÂÒ»´ú£º Ñ¡Ôñ¹æÔò£¨Selection rules£©£¬Ñ¡Ôñ¶ÔÏÂÒ»´úÖÖȺÓй±Ï׵ĸöÌ壬³ÆÎª¸¸±²¡£ ½»²æ¹æÔò£¨Crossover rules£©£¬½«Á½¸ö¸¸±²½áºÏÆðÀ´¹¹³ÉÏÂÒ»´úµÄ×Ó±²ÖÖȺ¡£ ±äÒì¹æÔò£¨Mutation rules£©£¬Ê©¼ÓËæ»ú±ä»¯¸ø¸¸±²¸öÌåÀ´¹¹³É×Ó±²¡£

ÒÅ´«Ëã·¨Óë±ê×¼ÓÅ»¯Ëã·¨Ö÷ÒªÔÚÁ½¸ö·½ÃæÓÐËù²»Í¬£¬ËüÃǵıȽÏÇé¿ö¹éÄÉÓÚ±í8.1ÖС£

±í8.1 ÒÅ´«Ëã·¨Óë±ê×¼ÓÅ»¯Ëã·¨±È½Ï

±ê×¼Ëã·¨ ÿ´Îµü´ú²úÉúÒ»¸öµ¥µã£¬µãµÄÐòÁбƽüÒ»¸öÓÅ»¯½â ͨ¹ýÈ·¶¨ÐԵļÆËãÔÚ¸ÃÐòÁÐÖÐÑ¡ÔñÏÂÒ»¸öµã ÒÅ´«Ëã·¨ ÿ´Îµü´ú²úÉúÒ»¸öÖÖȺ£¬ÖÖȺ±Æ½üÒ»¸öÓÅ»¯½â ͨ¹ýËæ»ú½ø»¯Ñ¡Ôñ¼ÆËãÀ´Ñ¡ÔñÏÂÒ»´úÖÖȺ 136

8.2.2 ÒÅ´«Ë㷨ʹÓ÷½Ê½

ÒÅ´«Ëã·¨¹¤¾ßÓÐÁ½ÖÖʹÓ÷½Ê½£º ÒÔÃüÁîÐз½Ê½µ÷ÓÃÒÅ´«Ëã·¨º¯Êýga¡£

ʹÓÃÒÅ´«Ëã·¨¹¤¾ß£¬´ÓͼÐÎÓû§½çÃæµ½ÒÅ´«Ëã·¨¡£ ±¾½Ú¶ÔÕâЩ·½Ê½×öÒ»¸ö¼òÒªµÄ½éÉÜ¡£

8.2.2.1 ÔÚÃüÁîÐе÷Óú¯Êýga

¶ÔÓÚÔÚÃüÁîÐÐʹÓÃÒÅ´«Ëã·¨£¬¿ÉÒÔÓÃÏÂÁÐÓï·¨µ÷ÓÃÒÅ´«Ëã·¨º¯Êýga£º

[x fval] = ga(@fitnessfun, nvars, options)

ÆäÖУº@fitnessfun ÊÇÊÊÓ¦¶Èº¯Êý¾ä±ú£»nvars ÊÇÊÊÓ¦¶Èº¯ÊýµÄ¶ÀÁ¢±äÁ¿µÄ¸öÊý£»options ÊÇÒ»¸ö°üº¬ÒÅ´«Ë㷨ѡÏî²ÎÊýµÄ½á¹¹¡£Èç¹û²»´«µÝÑ¡Ïî²ÎÊý£¬ÔògaʹÓÃËü±¾ÉíµÄȱʡѡÏîÖµ¡£

º¯ÊýËù¸ø³öµÄ½á¹û£ºfval¡ª¡ªÊÊÓ¦¶Èº¯ÊýµÄ×îÖÕÖµ£»x¡ª¡ª×îÖÕÖµµ½´ïµÄµã¡£

ÎÒÃÇ¿ÉÒÔÊ®·Ö·½±ãµØ°ÑÒÅ´«Ëã·¨¹¤¾ßÊä³öµÄ½á¹ûÖ±½Ó·µ»Øµ½MATLABµÄworkspace£¨¹¤×÷¿Õ¼ä£©£¬»òÒÔ²»Í¬µÄÑ¡Ïî´ÓMÎļþ¶à´Îµ÷Óú¯ÊýgaÀ´ÔËÐÐÒÅ´«Ëã·¨¡£

µ÷Óú¯Êýgaʱ£¬ÐèÒªÌṩһ¸öÑ¡Ïî½á¹¹options¡£ºóÃæµÄÓйØÕ½ڶÔÓÚÔÚÃüÁîÐÐʹÓú¯ÊýgaºÍ´´½¨Ñ¡Ïî½á¹¹optionsÌṩÁËÏêϸµÄÃèÊö¡£ 8.2.2.2 ͨ¹ýGUIʹÓÃÒÅ´«Ëã·¨

ÒÅ´«Ëã·¨¹¤¾ßÓÐÒ»¸öͼÐÎÓû§½çÃæGUI£¬ËüʹÎÒÃÇ¿ÉÒÔʹÓÃÒÅ´«Ëã·¨¶ø²»Óù¤×÷ÔÚÃüÁîÐз½Ê½¡£ÎªÁË´ò¿ªÒÅ´«Ëã·¨¹¤¾ß£¬¿É¼üÈë

gatool

´ò¿ªµÄÒÅ´«Ëã·¨¹¤¾ßͼÐÎÓû§½çÃæÈçͼ8.2Ëùʾ¡£

137

ÏÔʾ²ÎÊýÃèÊö ÊäÈëÊÊÓ¦¶Èº¯Êý ÊäÈëÊÊÓ¦¶Èº¯Êý µÄ±äÁ¿ÊýÄ¿ ¿ªÊ¼ÒÅ´«Ëã·¨ ÏÔʾ½á¹û

ͼ8.2 ÒÅ´«Ëã·¨¹¤¾ß

ΪÁËʹÓÃÒÅ´«Ëã·¨¹¤¾ß£¬Ê×ÏȱØÐëÊäÈëÏÂÁÐÐÅÏ¢£º Fitness function£¨ÊÊÓ¦¶Èº¯Êý£©¡ª¡ªÓûÇó×îСֵµÄÄ¿±êº¯Êý¡£ÊäÈëÊÊÓ¦¶Èº¯ÊýµÄÐÎʽΪ@fitnessfun£¬ÆäÖÐfitnessfun.mÊǼÆËãÊÊÓ¦¶Èº¯ÊýµÄMÎļþ¡£ÔÚÇ°Ãæ¡°±àд´ýÓÅ»¯º¯ÊýµÄMÎļþ¡±Ò»½ÚÀïÒѾ­½âÊÍÁËÈçºÎ±àдÕâÖÖMÎļþ¡£·ûºÅ@²úÉúÒ»¸ö¶ÔÓÚº¯ÊýfitnessfunµÄº¯Êý¾ä±ú¡£

Number of variables£¨±äÁ¿¸öÊý£©¡ª¡ªÊÊÓ¦¶Èº¯ÊýÊäÈëÏòÁ¿µÄ³¤¶È¡£¶ÔÓÚ¡°±àд´ýÓÅ»¯º¯ÊýµÄMÎļþ¡±Ò»½ÚËùÃèÊöµÄº¯ÊýMy_fun£¬Õâ¸ö²ÎÊýÊÇ2¡£

µã»÷Start°´Å¥£¬ÔËÐÐÒÅ´«Ëã·¨£¬½«ÔÚStatus and Results£¨×´Ì¬Óë½á¹û£©´°¸ñÖÐÏÔʾ³öÏàÓ¦µÄÔËÐнá¹û¡£

ÔÚOptions´°¸ñÖпÉÒԸıäÒÅ´«Ëã·¨µÄÑ¡ÏΪÁ˲鿴´°¸ñÖÐËùÁгöµÄ¸÷ÀàÑ¡Ï¿Éµ¥»÷ÓëÖ®ÏàÁ¬µÄ·ûºÅ¡°+¡±¡£

8.2.3 ¾ÙÀý£ºRastriginº¯Êý

±¾½Ú½éÉÜÒ»¸öÀý×Ó£¬½²ÊöÈçºÎѰÕÒRastriginº¯ÊýµÄ×îСֵºÍÏÔʾ»æÖƵÄͼÐΡ£Rastriginº¯ÊýÊÇ×î³£ÓÃÀ´²âÊÔÒÅ´«Ëã·¨µÄÒ»¸öµäÐͺ¯Êý¡£Rastriginº¯ÊýµÄ¿ÉÊÓ»¯Í¼ÐÎÏÔʾ£¬Ëü¾ßÓжà¸ö¾Ö²¿×îСֵºÍÒ»¸öÈ«¾Ö×îСֵ£¬ÒÅ´«Ëã·¨¿ÉÒÔ°ïÖúÎÒÃÇÈ·¶¨ÕâÖÖ¾ßÓжà¸ö¾Ö²¿×îСֵº¯ÊýµÄ×îÓŽ⡣

8.2.3.1 Rastriginº¯Êý

138

¾ßÓÐÁ½¸ö¶ÀÁ¢±äÁ¿µÄRastriginº¯Êý¶¨ÒåΪ

2Ras(x)?20?x12?x2?10(cos2?x1?cos2?x2)

Rastriginº¯ÊýµÄͼÐÎÈçͼ8.3Ëùʾ¡£

¹¤¾ßÏä°üº¬Ò»¸öMÎļþ£¬¼´rastriginsfcn.m£¬ÊÇÓÃÀ´¼ÆËãRastriginº¯ÊýÖµµÄ¡£

È«¾Ö×îСµã[0£¬0]

ͼ8.3 Rastriginº¯ÊýͼÐÎ

Èçͼ8.3Ëùʾ£¬Rastriginº¯ÊýÓÐÐí¶à¾Ö²¿×îСֵ¡ª¡ªÔÚͼÉÏÏÔʾΪ¡°¹Èµ×£¨valleys£©¡±¡£È»¶ø£¬¸Ãº¯ÊýÖ»ÓÐÒ»¸öÈ«¾Ö×îСֵ£¬³öÏÖÔÚx-y Æ½ÃæÉϵĵã[0£¬0]´¦£¬ÕýÈçͼÖÐÊúÖ±ÏßָʾµÄÄÇÑù£¬º¯ÊýµÄÖµÔÚÄÇÀïÊÇ0¡£ÔÚÈκβ»Í¬ÓÚ[0£¬0]µÄ¾Ö²¿×îСµã´¦£¬Rastriginº¯ÊýµÄÖµ¾ù´óÓÚ0¡£¾Ö²¿×îС´¦¾àÔ­µãÔ½Ô¶£¬¸Ãµã´¦Rastriginº¯ÊýµÄÖµÔ½´ó¡£

Rastriginº¯ÊýÖ®ËùÒÔ×î³£ÓÃÀ´²âÊÔÒÅ´«Ëã·¨£¬ÊÇÒòΪËüÓÐÐí¶à¾Ö²¿×îСµã£¬Ê¹µÃÓñê×¼µÄ¡¢»ùÓÚÌݶȵIJéÕÒÈ«¾Ö×îСµÄ·½·¨Ê®·ÖÀ§ÄÑ¡£

ͼ8.4ËùʾÊÇRastriginº¯ÊýµÄÂÖÀªÏߣ¬ËüÏÔʾ³ö×î´ó×îС½»Ìæ±ä»¯µÄÇéÐΡ£

139

¾Ö²¿×îСµã ¾Ö²¿×îСµã È«¾Ö×îСµã[0£¬0] ͼ8.4 Rastriginº¯ÊýµÄÂÖÀªÏß

8.2.3.2 ѰÕÒRastriginº¯ÊýµÄ×îСֵ

±¾½Ú½âÊÍÈçºÎʹÓÃÒÅ´«Ëã·¨À´Ñ°ÕÒRastriginº¯ÊýµÄ×îСֵ¡£

×¢Ò⣺ÒòΪÒÅ´«Ë㷨ʹÓÃËæ»úÊý¾ÝÀ´½øÐÐËüµÄËÑË÷£¬ËùÒÔ¸ÃË㷨ÿһ´ÎÔËÐÐʱËù·µ»ØµÄ½á¹û»áÉÔ΢ÓÐЩ²»Í¬¡£

ΪÁ˲éÕÒ×îСֵ£¬½øÐÐÏÂÁв½Ö裺

ÔÚÃüÁîÐмüÈëgatool£¬´ò¿ªÒÅ´«Ëã·¨¹¤¾ß¡£

ÔÚÒÅ´«Ëã·¨¹¤¾ßµÄÏàÓ¦À¸Ä¿£¬ÊäÈëÊÊÓ¦¶Èº¯ÊýºÍ±äÁ¿¸öÊý¡£ÔÚ¡°Fitness function£¨ÊÊÓ¦¶Èº¯Êý£©¡±Îı¾¿òÖУ¬ÊäÈë@rastriginsfcn£»ÔÚ¡°Number of variables£¨±äÁ¿¸öÊý£©¡±Îı¾¿òÖУ¬ÊäÈë2£¬Õâ¾ÍÊÇRastriginº¯Êý¶ÀÁ¢±äÁ¿µÄ¸öÊý¡£ÕâÒ»²½²Ù×÷Èçͼ8.5Ëùʾ¡£

ͼ8.5 ÊäÈëÊÊÓ¦¶Èº¯ÊýÓë±äÁ¿¸öÊý

ÔÚ¡°Run solver£¨ÔËÐÐÇó½âÆ÷£©¡±´°¸ñÖУ¬µ¥»÷Start°´Å¥£¬Èçͼ8.6Ëùʾ¡£

ͼ8.6 µ¥»÷ÔËÐÐÇó½âÆ÷Start°´Å¥

ÔÚËã·¨ÔËÐеÄͬʱ£¬¡°Current generation£¨µ±Ç°´úÊý£©¡±Îı¾¿òÖÐÏÔʾ³öµ±Ç°µÄ´úÊý¡£Í¨¹ýµã»÷¡°ÔÝÍ££¨Pause£©¡±°´Å¥£¬¿ÉÒÔʹËã·¨ÁÙʱÔÝͣһϡ£µ±ÕâÑù×öµÄʱºò£¬¸Ã°´Å¥µÄÃû×Ö±äΪ

140

¡°Resume£¨»Ö¸´£©¡±¡£ÎªÁË´ÓÔÝÍ£´¦»Ö¸´Ëã·¨µÄÔËÐУ¬¿Éµ¥»÷Õâ¸ö¡°Resume¡±°´Å¥¡£

µ±Ëã·¨Íê³Éʱ£¬¡°Status and results¡±´°¸ñ³öÏÖÈçͼ8.7ËùʾµÄÇéÐΡ£

×îÖÕµãµÄÊÊÓ¦¶Èº¯ÊýÖµ ×îÖÕµã

ͼ8.7 ״̬Óë½á¹ûÏÔʾ

¡°Status and results¡±´°¸ñÏÔʾÏÂÁÐÐÅÏ¢£º Ëã·¨ÖÕֹʱÊÊÓ¦¶Èº¯ÊýµÄ×îÖÕÖµ£º

Fitness function value: 0.0067749206244585025

×¢Ò⣺ËùÏÔʾµÄÖµ·Ç³£½Ó½üÓÚRastriginº¯ÊýµÄʵ¼Ê×îСֵ0¡£¡°ÒÅ´«Ëã·¨¾ÙÀý¡±Ò»½ÚÃèÊöÁËһЩ·½·¨£¬¿ÉÒÔÓÃÀ´µÃµ½¸ü½Ó½üʵ¼Ê×îСֵµÄ½á¹û¡£ Ëã·¨ÖÕÖ¹µÄÔ­Òò£º

Optimization terminated:

maximum number of generations exceeded.

¼´Í˳öµÄÔ­ÒòÊÇ£º³¬¹ý×î´ó´úÊý¶øµ¼ÖÂÓÅ»¯ÖÕÖ¹¡£

ÔÚ±¾ÀýÖУ¬Ëã·¨ÔÚ100´úºó½áÊø£¬ÕâÊÇ ¡°Generations£¨´úÊý£©¡± Ñ¡ÏîµÄȱʡֵ£¬´ËÑ¡Ïî¹æ¶¨ÁËËã·¨¼ÆËãµÄ×î´ó´úÊý¡£

×îÖյ㣬ÔÚ±¾ÀýÖÐÊÇ[0.00274 -0.00516]¡£ 8.2.3.3 ´ÓÃüÁîÐвéÕÒ×îСֵ

ΪÁË´ÓÃüÁîÐвéÕÒRastriginº¯ÊýµÄ×îСֵ£¬¿É¼üÈë

[x fval reason] = ga(@rastriginsfcn, 2)

Õ⽫·µ»Ø

x =

0.0027 -0.0052 fval =

0.0068 reason =

Optimization terminated:

maximum number of generations exceeded.

ÆäÖУºxÊÇËã·¨·µ»ØµÄ×îÖյ㣻fvalÊǸÃ×îÖյ㴦ÊÊÓ¦¶Èº¯ÊýµÄÖµ£»reasonÊÇËã·¨½áÊøµÄÔ­Òò¡£ 8.2.3.4 ÏÔʾ»æÖÆÍ¼ÐÎ

¡°Plots£¨»æÍ¼£©¡±´°¸ñ¿ÉÒÔÏÔʾÒÅ´«Ëã·¨ÔËÐÐʱËùÌṩµÄÓйØÐÅÏ¢µÄ¸÷ÖÖͼÐΡ£ÕâЩÐÅÏ¢¿ÉÒÔ°ïÖúÎÒÃǸıäËã·¨µÄÑ¡Ï¸Ä½øËã·¨µÄÐÔÄÜ¡£ÀýÈ磬ΪÁË»æÖÆÃ¿Ò»´úÊÊÓ¦¶Èº¯ÊýµÄ×î¼ÑÖµºÍƽ¾ùÖµ£¬Ñ¡Öи´Ñ¡¿ò¡°Best fitness£¨×î¼ÑÊÊÓ¦¶È£©¡±£¬Èçͼ8.8Ëùʾ¡£

141

ͼ8.8 »æÍ¼¶Ô»°¿ò

µ±µã»÷Start°´Å¥Ê±£¬ÒÅ´«Ëã·¨¹¤¾ßÏÔʾÿһ´úÊÊÓ¦¶Èº¯ÊýµÄ×î¼ÑÖµºÍƽ¾ùÖµµÄ»æÖÆÍ¼ÐΡ£µ±Ë㷨ֹͣʱ£¬Ëù³öÏÖµÄͼÐÎÈçͼ8.9Ëùʾ¡£

×î¼ÑÖµ 0.0067796 ƽ¾ùÖµ 0.014788

ͼ8.9 ¸÷´úÊÊÓ¦¶Èº¯ÊýµÄ×î¼ÑÖµºÍƽ¾ùÖµ

ÔÚÿһ´úÖУ¬Í¼µÄµ×²¿µÄµã±íʾ×î¼ÑÊÊÓ¦¶ÈÖµ£¬¶øÆäÉϵĵã±íʾƽ¾ùÊÊÓ¦¶ÈÖµ¡£Í¼µÄ¶¥²¿»¹ÏÔʾ³öµ±Ç°Ò»´úµÄ×î¼ÑÖµ0.0067796ºÍƽ¾ùÖµ0.014788¡£

ΪÁ˵õ½×î¼ÑÊÊÓ¦¶ÈÖµ¼õÉÙµ½¶àÉÙΪ¸üºÃµÄÖ±¹ÛͼÐΣ¬ÎÒÃÇ¿ÉÒÔ½«Í¼ÖÐyÖáµÄ¿Ì¶È¸Ä±äΪ¶ÔÊý¿Ì¶È¡£Îª´Ë£¬Ðè½øÐÐÈçϲÙ×÷£º

(1) ´Ó»æÍ¼´°¸ñµÄEdit£¨±à¼­£©²Ëµ¥ÖÐÑ¡Ôñ¡°Axes Properties£¨×ø±êÖáÊôÐÔ£©¡±£¬´ò¿ªÊôÐԱ༭Æ÷£¬Èçͼ8.10Ëùʾ¡£

142

µ¥»÷Y±íÏî Ñ¡Ôñ¶ÔÊý¿Ì¶È

ͼ8.10 »æÍ¼ÊôÐԱ༭Æ÷

(2) µã»÷Y±íÏî¡£

(3) ÔÚ¡°Scale£¨¿Ì¶È£©¡±´°¸ñ£¬Ñ¡Ôñ¡°Log (¶ÔÊý)¡±¡£ »æÖƵÄͼÐÎÈçͼ8.11Ëùʾ¡£

×î¼ÑÖµ0.0067796 ƽ¾ùÖµ0.014788 143

ͼ8.11 ÿһ´úÊÊÓ¦¶Èº¯Êý×î¼ÑÖµºÍƽ¾ùÖµµÄ¶ÔÊýͼÐÎ

µäÐÍÇé¿öÏ£¬ÔÚÔçÆÚ¸÷´úÖУ¬µ±¸öÌåÀëÀíÏëÖµ½ÏԶʱ£¬×î¼ÑÖµ»áѸËٵõ½¸Ä½ø¡£ÔÚºóÀ´¸÷´úÖУ¬ÖÖȺԽ½Ó½ü×î¼Ñµã£¬×î¼ÑÖµ¸Ä½øµÃÔ½Âý¡£

8.2.4 ÒÅ´«Ëã·¨µÄһЩÊõÓï

±¾½Ú½âÊÍÒÅ´«Ëã·¨µÄһЩ»ù±¾ÊõÓÖ÷Òª°üÀ¨£º ? ÊÊÓ¦¶Èº¯Êý£¨Fitness Functions£©¡£ ? ¸öÌ壨Individuals£©¡£

? ÖÖȺ£¨Populations£©ºÍ´ú£¨Generations£©¡£

? ÊÊÓ¦¶ÈÖµ£¨Fitness Values£©ºÍ×î¼ÑÊÊÓ¦¶ÈÖµ£¨Best Fitness Values£©£» ? ¸¸±²ºÍ×Ó±²£¨Parents and Children£©¡£ 8.2.4.1 ÊÊÓ¦¶Èº¯Êý

ËùνÊÊÓ¦¶Èº¯Êý¾ÍÊÇÏëÒªÓÅ»¯µÄº¯Êý¡£¶ÔÓÚ±ê×¼ÓÅ»¯Ëã·¨¶øÑÔ£¬Õâ¸öº¯Êý³ÆÎªÄ¿±êº¯Êý¡£¸Ã¹¤¾ßÏä×ÜÊÇÊÔͼѰÕÒÊÊÓ¦¶Èº¯ÊýµÄ×îСֵ¡£

ÎÒÃÇ¿ÉÒÔ½«ÊÊÓ¦¶Èº¯Êý±àдΪһ¸öMÎļþ£¬×÷ΪÊäÈë²ÎÊý´«µÝ¸øÒÅ´«Ëã·¨º¯Êý¡£ 8.2.4.2 ¸öÌå

Ò»¸ö¸öÌåÊÇ¿ÉÒÔÊ©¼ÓÊÊÓ¦¶Èº¯ÊýµÄÈÎÒâÒ»µã¡£Ò»¸ö¸öÌåµÄÊÊÓ¦¶Èº¯ÊýÖµ¾ÍÊÇËüµÄµÃ·Ö»òÆÀ¼Û¡£ÀýÈ磬Èç¹ûÊÊÓ¦¶Èº¯ÊýÊÇ

f(x1,x2,x3)?(2x1?1)2?(3x2?4)2?(x3?2)2

ÔòÏòÁ¿£¨2, -3, 1£©¾ÍÊÇÒ»¸ö¸öÌ壬ÏòÁ¿µÄ³¤¶È¾ÍÊÇÎÊÌâÖбäÁ¿µÄ¸öÊý¡£¸öÌ壨2, -3, 1£©µÄµÃ·ÖÊÇf(2, -3, 1) = 51¡£

¸öÌåÓÐʱÓÖ³ÆÎª»ùÒò×é»òȾɫÌå×飨genome£©£¬¸öÌåµÄÏòÁ¿Ïî³ÆÎª»ùÒò£¨genes£©¡£ 8.2.4.3 ÖÖȺÓë´ú

ËùνÖÖȺÊÇÖ¸ÓɸöÌå×é³ÉµÄÒ»¸öÊý×é»ò¾ØÕó¡£ÀýÈ磬Èç¹û¸öÌåµÄ³¤¶ÈÊÇ100£¬ÊÊÓ¦¶Èº¯ÊýÖбäÁ¿µÄ¸öÊýΪ3£¬ÎÒÃǾͿÉÒÔ½«Õâ¸öÖÖȺ±íʾΪһ¸ö100¡Á3µÄ¾ØÕó¡£ÏàͬµÄ¸öÌåÔÚÖÖȺÖпÉÒÔ³öÏÖ²»Ö¹Ò»´Î¡£ÀýÈ磬¸öÌå(2, -3, 1)¾Í¿ÉÒÔÔÚÊý×éµÄÐÐÖгöÏÖ¶à´Î¡£

ÿһ´Îµü´ú£¬ÒÅ´«Ëã·¨¶¼¶Ôµ±Ç°ÖÖȺִÐÐһϵÁеļÆË㣬²úÉúÒ»¸öеÄÖÖȺ¡£Ã¿Ò»¸öºó¼ÌµÄÖÖȺ³ÆÎªÐµÄÒ»´ú¡£ 8.2.4.4 ¶àÑùÐÔ

¶àÑùÐÔ»ò²îÒ죨Diversity£©Éæ¼°Ò»¸öÖÖȺµÄ¸÷¸ö¸öÌåÖ®¼äµÄƽ¾ù¾àÀë¡£Èôƽ¾ù¾àÀë´ó£¬ÔòÖÖȺ¾ßÓиߵĶàÑùÐÔ£»·ñÔò£¬Æä¶àÑùÐԵ͡£ÔÚͼ8.12ÖУ¬×óÃæµÄÖÖȺ¾ßÓиߵĶàÑùÐÔ£¬Ò༴²îÒì´ó£»¶øÓÒÃæµÄÖÖȺ¶àÑùÐԵͣ¬Ò༴²îÒìС¡£

144

ͼ8.12 ÖÖȺ¶àÑùÐԱȽÏ

¶àÑùÐÔÊÇÒÅ´«Ëã·¨±Ø²»¿ÉÉٵı¾ÖÊÊôÐÔ£¬ÕâÊÇÒòΪËüÄÜʹÒÅ´«Ëã·¨ËÑË÷Ò»¸ö±È½Ï´óµÄ½âµÄ¿Õ¼äÇøÓò¡£

8.2.4.5 ÊÊÓ¦¶ÈÖµºÍ×î¼ÑÊÊÓ¦¶ÈÖµ

¸öÌåµÄÊÊÓ¦¶ÈÖµ¾ÍÊǸøöÌåµÄÊÊÓ¦¶Èº¯ÊýµÄÖµ¡£ÓÉÓڸù¤¾ßÏä×ÜÊDzéÕÒÊÊÓ¦¶Èº¯ÊýµÄ×îСֵ£¬ËùÒÔÒ»¸öÖÖȺµÄ×î¼ÑÊÊÓ¦¶ÈÖµ¾ÍÊǸÃÖÖȺÖÐÈκθöÌåµÄ×îСÊÊÓ¦¶ÈÖµ¡£ 8.2.4.6 ¸¸±²ºÍ×Ó±²

ΪÁËÉú³ÉÏÂÒ»´ú£¬ÒÅ´«Ëã·¨ÔÚµ±Ç°ÖÖȺÖÐÑ¡ÔñijЩ¸öÌ壬³ÆÎª¸¸±²£¬²¢ÇÒʹÓÃËüÃÇÀ´Éú³ÉÏÂÒ»´úÖеĸöÌ壬³ÆÎª×Ó±²¡£µäÐÍÇé¿öÏ£¬¸ÃËã·¨¸ü¿ÉÄÜÑ¡ÔñÄÇЩ¾ßÓнϼÑÊÊÓ¦¶ÈÖµµÄ¸¸±²¡£

8.2.5 ÒÅ´«Ëã·¨ÈçºÎ¹¤×÷

±¾½Ú¼òÒª½éÉÜÒÅ´«Ëã·¨µÄ¹¤×÷Ô­Àí»ò¹¤×÷¹ý³Ì£¬ÄÚÈݰüÀ¨£ºËã·¨Òªµã£»³õʼÖÖȺ£»Éú³ÉÏÂÒ»´ú£»ºóÒ»´úµÄ»æÍ¼£»Ëã·¨µÄÍ£Ö¹Ìõ¼þ¡£ 8.2.5.1 Ëã·¨Òªµã

ÏÂÃæµÄÒªµã×ܽáÁËÒÅ´«Ëã·¨ÊÇÈçºÎ¹¤×÷µÄ£º (1) Ê×ÏÈ£¬Ëã·¨´´½¨Ò»¸öËæ»úÖÖȺ¡£

(2) ½Ó×Å£¬Ëã·¨Éú³ÉÒ»¸öеÄÖÖȺÐòÁУ¬¼´ÐµÄÒ»´ú¡£ÔÚÿһ²½£¬¸ÃËã·¨¶¼Ê¹Óõ±Ç°Ò»´úÖеĸöÌåÀ´Éú³ÉÏÂÒ»´ú¡£ÎªÁËÉú³ÉÐÂÒ»´ú£¬Ëã·¨Ö´ÐÐÏÂÁв½Ö裺

(a) ͨ¹ý¼ÆËãÆäÊÊÓ¦¶ÈÖµ£¬¸øµ±Ç°ÖÖȺµÄÿһ¸ö³ÉÔ±´ò·Ö¡£

(b) È·¶¨Ô­À´µÄÊÊÓ¦¶ÈÖµµÄ±ÈÀý³ß¶È£¬½«Æäת»»Îª¸ü±ãÓÚʹÓõķ¶Î§ÄÚµÄÖµ¡£ (c) ¸ù¾ÝËüÃǵÄÊÊÓ¦¶ÈÑ¡Ôñ¸¸±²¡£

(d) Óɸ¸±²²úÉú×Ó±²¡£×Ó±²µÄ²úÉú¿ÉÒÔͨ¹ýËæ»ú¸Ä±äÒ»¸öµ¥¸ö¸¸±²£¬Ò༴±äÒ죨mutation£©À´½øÐУ¬Ò²¿ÉÒÔͨ¹ý×éºÏÒ»¶Ô¸¸±²µÄÏòÁ¿ÏÒ༴½»²æ£¨crossover£©À´½øÐС£

(e) ÓÃ×Ó±²Ìæ»»µ±Ç°ÖÖȺ£¬ÐγÉÏÂÒ»´ú¡£

(3) ×îºó£¬ÈôÍ£Ö¹×¼ÔòÖ®Ò»µÃµ½Âú×㣬Ôò¸ÃË㷨ֹͣ¡£¹ØÓÚÍ£Ö¹×¼Ôò£¬¿É²Î¼û¡°8.2.5.7 Ëã·¨µÄÍ£Ö¹Ìõ¼þ¡±Ò»½Ú¡£

145

8.2.5.2 ³õʼÖÖȺ

ÒÅ´«Ëã·¨×ÜÊÇÒÔ²úÉúÒ»¸öËæ»úµÄ³õʼÖÖȺ¿ªÊ¼£¬Èçͼ8.13Ëùʾ¡£

ͼ8.13 ³õʼÖÖȺ

ÔÚ±¾ÀýÖУ¬³õʼÖÖȺ°üº¬20¸ö¸öÌ壬ÕâÇ¡ºÃÊÇ¡°Population£¨ÖÖȺ£©¡±Ñ¡ÏîÖеġ°Population size£¨ÖÖȺ³ß¶È£©¡±µÄȱʡֵ¡£

×¢Ò⣺³õʼÖÖȺÖеÄËùÓиöÌå¾ù´¦ÓÚͼÉÏÓÒÉϽǵÄÄǸöÏóÏÞ£¬Ò²¾ÍÊÇ˵£¬ËüÃǵÄ×ø±ê´¦ÓÚ0ºÍ1Ö®¼ä£¬ÕâÊÇÒòΪ¡°Population¡±Ñ¡ÏîÖеġ°Initial range£¨³õʼ·¶Î§£©¡±µÄȱʡֵÊÇ[0; 1]¡£

Èç¹ûÒÑÖªº¯ÊýµÄ×îСµã´óԼλÓں䦣¬¾Í¿ÉÒÔÉèÖÃÒ»¸öÊʵ±µÄ¡°Initial range¡±£¬ÒÔ±ãʹ¸Ãµã´¦ÓÚÄǸö·¶Î§µÄÖм丽½ü¡£ÀýÈ磬Èç¹ûÈ·ÐÅRastriginº¯ÊýµÄ×îСֵÔÚµã[0£¬0]¸½½ü£¬ÄÇô¾Í¿ÉÒÔÖ±½ÓÉèÖá°Initial range¡±Îª[-1;1]¡£È»¶ø£¬ÕýÈç±¾ÀýËùÏÔʾµÄÄÇÑù£¬¼´Ê¹Ã»Óиø¡°Initial range¡±ÉèÖÃÒ»¸öÀíÏëµÄÖµ£¬ÒÅ´«Ëã·¨Ò²»¹ÊÇÄܹ»ÕÒµ½ÄǸö×îСֵ¡£ 8.2.5.3 ²úÉúÏÂÒ»´ú

ÔÚÿһ²½£¬ÒÅ´«Ë㷨ʹÓõ±Ç°ÖÖȺÀ´²úÉú×Ó±²£¬¼´»ñµÃÏÂÒ»´ú¡£Ëã·¨ÔÚµ±Ç°ÖÖȺÖÐÑ¡ÔñÒ»×é¸öÌ壬³ÆÎª¸¸±²£¬ÕâЩ¸ö¸¸±²½«Æägenes¡ª¡ªÒ༴ÆäÏòÁ¿ÖеÄÏ¡ª¹±Ï׸øËüÃǵÄ×Ó±²¡£ÒÅ´«Ë㷨ͨ³£Ñ¡ÔñÄÇЩ¾ßÓнϺÃÊÊÓ¦¶ÈÖµµÄ¸öÌå×÷Ϊ¸¸±²¡£ÎÒÃÇ¿ÉÒÔÔÚ¡°Selection£¨Ñ¡Ôñ£©¡±Ñ¡ÏîµÄ¡°Selection function£¨Ñ¡Ôñº¯Êý£©¡±Îı¾¿òÖÐÖ¸¶¨ÒÅ´«Ëã·¨ÓÃÀ´Ñ¡Ôñ¸¸±²µÄº¯Êý¡£

ÒÅ´«Ëã·¨¶ÔÓÚÏÂÒ»´ú²úÉúÈýÀà×Ó±²£º

? ÓÅÁ¼×Ó±²£¨Elite children£©£¬ÊÇÔÚµ±Ç°´úÖоßÓÐ×î¼ÑÊÊÓ¦¶ÈÖµµÄÄÇЩ¸öÌå¡£ÕâЩ¸öÌå×Ó±²´æ»îµ½ÏÂÒ»´ú¡£ ? ½»²æ×Ó±²£¨Crossover children£©£¬ÊÇÓÉÒ»¶Ô¸¸±²ÏòÁ¿×éºÏ²úÉúµÄ¡£ ? ±äÒì×Ó±²£¨Mutation children£©£¬ÊǶÔÒ»¸öµ¥¸ö¸¸±²ÒýÈëËæ»ú¸Ä±ä¼´±äÒì²úÉúµÄ¡£ ͼ8.14±íʾÁËÕâÈý¸öÀàÐ͵Ä×Ó±²¡£

146

ÓÅÁ¼×Ó±² ½»²æ×Ó±² ±äÒì×Ó±² ͼ8.14 ÈýÀà×Ó±²

ÔÚ¡°8.3.3.5±äÒìÓë½»²æ¡±Ò»½Ú½âÊÍÈçºÎÖ¸¶¨ÒÅ´«Ëã·¨²úÉúµÄÿһÀà×Ó±²µÄÊýÄ¿£¬ÒÔ¼°ÓÃÀ´Ö´ÐÐÍê³É½»²æºÍ±äÒìµÄº¯Êý¡£ 8.2.5.4 ½»²æ×Ó±²

Ë㷨ͨ¹ý×éºÏµ±Ç°ÖÖȺÖеĸ¸±²¶Ô£¨Pair£©À´²úÉú½»²æ×Ó±²¡£ÔÚ×Ó±²ÏòÁ¿µÄÿһ¸öÏàͬλÖô¦£¬È±Ê¡µÄ½»²æº¯ÊýÔÚÁ½¸ö¸¸±²Ö®Ò»µÄÏàͬλÖô¦Ëæ»úÑ¡ÔñÒ»Ï¼´»ùÒò£¬²¢½«ËüÖ¸ÅɸøÆä×Ó±²¡£ 8.2.5.5 ±äÒì×Ó±²

Ë㷨ͨ¹ýËæ»ú¸Ä±ä¸öÌ常±²ÖеĻùÒò¶ø²úÉú±äÒì×Ó±²¡£°´ÕÕȱʡ£¬Ëã·¨¸ø¸¸±²Ôö¼ÓÒ»¸ö¸ß˹·Ö²¼µÄËæ»úÏòÁ¿¡£

ͼ8.15±íʾ³ö³õʼÖÖȺµÄ×Ó±²£¬Ò²¼´µÚ¶þ´úÖÖȺ£¬²¢ÇÒÖ¸³öËüÃÇÊÇ·ñΪÓÅÁ¼×Ó±²¡¢½»²æ×Ó±²»ò±äÒì×Ó±²¡£

147

ͼ8.15 ³õʼÖÖȺµÄ×Ó±²

ºó´úͼÐλæÖÆ

ͼ8.16չʾ³öÔÚµü´ú60´Î, 80´Î, 95´Î, 100´ÎʱµÄÖÖȺµÄͼÐΡ£ 148

8.2.5.6

ͼ8.16 ÔÚµü´ú60, 80, 95, 100´ÎʱµÄÖÖȺ

Ëæ×Å´úÊýµÄÔö¼Ó£¬ÖÖȺÖеĸöÌå¿¿½üÔÚÒ»Æð£¬Çұƽü×îСֵµã[0£¬0]¡£ 8.2.5.7 Ëã·¨µÄÍ£Ö¹Ìõ¼þ

ÒÅ´«Ë㷨ʹÓÃÏÂÁÐ5¸öÌõ¼þÀ´È·¶¨ºÎʱֹͣ£º

? Generations£¨´úÊý£©¡ª¡ªµ±²úÉúµÄ´úµÄÊýÄ¿´ïµ½¹æ¶¨µÄ´úÊýµÄֵʱ£¬Ë㷨ֹͣ¡£

? Time limit£¨Ê±ÏÞ£©¡ª¡ªÔÚÔËÐÐʱ¼äµÄÃëÊýµÈÓÚʱÏÞʱ£¬Ë㷨ֹͣ¡£

149

? Fitness limit£¨ÊÊÓ¦¶ÈÏÞ£©¡ª¡ªµ±ÊÊÓ¦¶Èº¯ÊýµÄÖµ¶ÔÓÚµ±Ç°ÖÖȺµÄ×î¼ÑµãСÓÚ»òµÈÓÚÊÊÓ¦¶ÈÏÞʱ£¬Ë㷨ֹͣ¡£

? Stall generations£¨Í£ÖÍ´úÊý£©¡ª¡ªÔÚÁ¬Ðø·±Ö³µÄʱ¼äÐòÁÐÖУ¬Èô³¤Ê±¼ä²»·±Ö³Ð´ú£¬Ò༴Ŀ±êº¯ÊýÎ޸Ľø£¬µ½´ïÍ£ÖÍ´úÊý¹æ¶¨µÄ´úÊýʱ£¬ÔòË㷨ֹͣ¡£

? Stall time limit£¨Í£ÖÍʱÏÞ£©¡ª¡ªÔÚÃëÊýµÈÓÚÍ£ÖÍʱÏÞµÄʱ¼ä¼ä¸ôÆÚ¼ä£¬ÈôÄ¿±êº¯ÊýÎ޸Ľø£¬ÔòË㷨ֹͣ¡£

ÈôÕâ5¸öÌõ¼þÖÐÈκÎÒ»¸öÌõ¼þÒ»µ©Âú×㣬Ôò¸ÃË㷨ֹͣ¡£ÎÒÃÇ¿ÉÒÔÔÚÒÅ´«Ëã·¨¹¤¾ßµÄ¡°Stopping criteria£¨Í£Ö¹±ê×¼£©¡±Ñ¡ÏîÖÐÖ¸¶¨ÕâЩ±ê×¼µÄÖµ¡£ËüÃǵÄȱʡֵÈçͼ8.17Ëùʾ¡£

ͼ8.17 Í£Ö¹±ê×¼µÄȱʡֵ

µ±ÔËÐÐÒÅ´«Ë㷨ʱ£¬¡°Status£¨×´Ì¬£©¡±Ãæ°åÏÔʾÕâЩµ¼ÖÂË㷨ֹͣµÄ±ê×¼¡£

¡°Time limit£¨Ê±ÏÞ£©¡±Ñ¡ÏîÓë¡°Stall time limit¡±Ñ¡Ïî¿ÉÒÔÓÃÀ´·ÀÖ¹Ëã·¨ÔËÐйý³¤µÄʱ¼ä¡£Èç¹ûËã·¨ÓÉÓÚÕâÁ½¸öÌõ¼þÖ®Ò»¶øÍ£Ö¹£¬Ôò¿ÉÒÔͨ¹ýÏàÓ¦Ôö¼Ó¡°Time limit¡±»ò¡°Stall time limit¡±µÄÖµÀ´¸ÄÉÆÔËÐеĽá¹û¡£

8.3 ʹÓÃÒÅ´«Ëã·¨¹¤¾ßÇó½âÎÊÌâ

±¾½ÚÊ×ÏȸÅÀ¨Ê¹ÓÃÒÅ´«Ëã·¨¹¤¾ßGUIµÄÒ»°ã²½Ö裬Ȼºó½éÉÜÈçºÎ´ÓÃüÁîÐÐʹÓÃÒÅ´«Ëã·¨¹¤¾ß£¬×îºóͨ¹ýÀý×Ó£¬Ïêϸ˵Ã÷ÈçºÎʹÓÃÒÅ´«Ëã·¨¹¤¾ßÀ´Çó½âÓÅ»¯ÎÊÌâ¡£

8.3.1 ʹÓÃÒÅ´«Ëã·¨GUI

ÔÚÇ°ÃæÒ»Õ£¬ÒѾ­½éÉÜÁËʹÓÃÒÅ´«Ëã·¨¹¤¾ßµÄ³õ²½ÖªÊ¶¡£±¾½Ú½«¼òÒª¹éÄÉʹÓÃÒÅ´«Ëã·¨¹¤¾ßGUIÀ´Çó½âÓÅ»¯ÎÊÌâµÄÒ»°ã²½Ö裬ÄÚÈݰüÀ¨£º´ò¿ªÒÅ´«Ëã·¨¹¤¾ß£»ÔÚÒÅ´«Ëã·¨¹¤¾ßÖж¨ÒåÎÊÌ⣻ÔËÐÐÒÅ´«Ëã·¨£»ÔÝÍ£ºÍÍ£Ö¹ÔËË㣻ͼÐÎÏÔʾ£»´´½¨Óû§Í¼Ðκ¯Êý£»¸´ÏÖÔËÐнá¹û£»ÉèÖÃÑ¡Ïî²ÎÊý£»ÊäÈëÊä³ö²ÎÊý¼°ÎÊÌ⣻´Ó×îºóÖÖȺ¼ÌÐøÔËÐÐÒÅ´«Ëã·¨¡£ 8.3.1.1 ´ò¿ªÒÅ´«Ëã·¨¹¤¾ß

ÔÚMATLAB´°¿ÚÖÐÊäÈëgatool£¬´ò¿ª¡¢½øÈëÒÅ´«Ëã·¨¹¤¾ß£¬³õÆôʱµÄ½çÃæÏÔʾÈçͼ8.18Ëùʾ¡£

150

ͼ8.18 ÒÅ´«Ëã·¨¹¤¾ß³õÆôʱµÄ½çÃæ

8.3.1.2 ÔÚÒÅ´«Ëã·¨¹¤¾ßÖж¨ÒåÎÊÌâ

ÔÚÏÂÁÐÁ½¸öÎı¾¿òÖж¨ÒåËùÒª½â¾öµÄÎÊÌ⣺

(1) ÊÊÓ¦¶Èº¯Êý¡ª¡ªÇó½âµÄÎÊÌâÊÇÇóÄ¿±êº¯ÊýµÄ×îСֵ¡£ÊäÈëÒ»¸ö¼ÆËãÊÊÓ¦¶Èº¯ÊýµÄMÎļþº¯ÊýµÄ¾ä±ú¡£

(2) ±äÁ¿¸öÊý¡ª¡ªÊÊÓ¦¶Èº¯ÊýµÄ¶ÀÁ¢±äÁ¿¸öÊý¡£

×¢Ò⣺µ±ÔËÐÐÒÅ´«Ëã·¨¹¤¾ßʱ²»ÒªÓá°Editor/Debugger£¨±à¼­/µ÷ÊÔ£©¡±¹¦ÄÜÀ´µ÷ÊÔÄ¿±êº¯ÊýµÄMÎļþ£¬¶øÒª´ÓÃüÁîÐÐÖ±½Óµ÷ÓÃÄ¿±êº¯Êý»ò°ÑMÎļþÊäÈëµ½ÒÅ´«Ëã·¨º¯Êýga¡£ÎªÁË·½±ãµ÷ÊÔ£¬¿ÉÒÔÔÚÒÅ´«Ëã·¨¹¤¾ßÖаÑÎÊÌâÊä³öµ½MATLAB¹¤×÷´°ÖС£

Èçͼ8.19Ëùʾ£¬ÊäÈëÇ°ÃæÕ½ÚËù½éÉܵÄRastriginº¯Êý»òmy_funº¯Êý×÷ΪÊÊÅä¶Èº¯Êý£¬ËüÃǵıäÁ¿¸öÊýΪ2¡£

ͼ8.19 ÊäÈëÊÊÓ¦¶Èº¯ÊýÓë±äÁ¿¸öÊý

8.3.1.3 ÔËÐÐÒÅ´«Ëã·¨

151

ÒªÔËÐÐÒÅ´«Ëã·¨£¬ÔÚ¡° Run solver£¨ÔËÐÐÇó½âÆ÷£©¡±Öе¥»÷Start°´Å¦£¬Èçͼ8.20Ëùʾ¡£

ͼ8.20 µ¥»÷Start°´Å¥

Õâʱ£¬ÔÚ¡°Current generation£¨µ±Ç°´ú£©¡±Îı¾¿òÖÐÏÔʾµ±Ç°´úµÄÊýÄ¿£¬ÔÚStatus and results¡±´°¸ñÏÔʾ¡°GA running¡±µÈÐÅÏ¢£¬Èçͼ8.23Ëùʾ¡£

ͼ8.21 µ±Ç°´úÊýºÍ״̬Óë½á¹û´°¸ñ

µ±ÒÅ´«Ë㷨ֹͣʱ£¬¡°Status and results¡±´°¸ñÏÔʾ£º ? ¡°GA terminated£¨GAÖÕÖ¹£©¡±ÐÅÏ¢¡£ ? ×îºóÒ»´ú×î¼Ñ¸öÌåµÄÊÊÓ¦¶Èº¯ÊýÖµ¡£ ? Ë㷨ֹͣµÄÔ­Òò¡£ ? ×îÖÕµãµÄ×ø±ê¡£

ͼ8.22ÏÔʾµ±ÔËÐÐÀý×Ó¡°Rastrigin º¯Êý¡±ÒÅ´«Ë㷨ֹͣʱµÄÐÅÏ¢¡£

ͼ8.22 Rastriginº¯ÊýµÄÒÅ´«Ëã·¨ÔËÐнá¹û

ÔÚÒÅ´«Ëã·¨¹¤¾ßÖУ¬µ±ÒÅ´«Ëã·¨ÔËÐÐʱ¿ÉÒÔ¸ü¸Ä¶à¸ö²ÎÊýÉèÖá£Ëù×öµÄ¸Ä±ä½«±»Ó¦Óõ½ÏÂÒ»´ú£¬¼´ÔÚÏÂÒ»´ú½«°´ÕÕÐÂÉèÖõIJÎÊýÔËÐС£ÔÚÏÂÒ»´ú¿ªÊ¼µ«ÉÐδӦÓøıäµÄ²ÎÊý֮ǰ£¬ÔÚ¡°Status and results¡±´°¸ñÏÔʾÐÅÏ¢¡°Changes pending¡±¡£¶øÔÚÏÂÒ»´ú¿ªÊ¼ÇÒÓ¦ÓÃÁ˸ıäµÄ²ÎÊýʱ£¬ÔÚ¡°Status and results¡±´°¸ñÏÔʾÐÅÏ¢¡°Changes applied¡±¡£ÕâÑùÔÚÒÅ´«Ëã·¨ÔËÐÐʱ¸ü¸ÄÁ˲ÎÊý

152

ÉèÖòúÉúµÄÊä³öÐÅÏ¢Èçͼ8.23Ëùʾ¡£

ͼ8.23 ÒÅ´«Ëã·¨ÔËÐÐʱ¸ü¸ÄÁ˲ÎÊýÉèÖÃ

8.3.1.4 ÔÝÍ£ºÍÍ£Ö¹ÔËËã

ÒÅ´«Ëã·¨µÄÔÝÍ£ºÍÍ£Ö¹ÔËÐУ¬¿ÉÒÔͨ¹ýÏÂÃæ²Ù×÷¼ÌÐøÔËÐУº

? µ¥»÷°´Å¥¡°Pause£¨ÔÝÍ££©¡±£¬Ëã·¨ÔÝÍ£ÔËÐС£¸Ã°´Å¥ÉϵÄÎÄ×Ö±äΪ¡°Resume£¨»Ö¸´£©¡±¡£µ¥»÷Õâ¸ö¡°Resume¡± °´Å¥£¬¼´»Ö¸´ÒÅ´«Ëã·¨¼ÌÐøÔËÐС£

? µ¥»÷°´Å¥¡°Stop¡±£¬Ë㷨ֹͣÔËÐС£¡°Status and results¡±´°¿ÚÏÔʾֹͣÔËÐÐʱµ±Ç°´ú×î¼ÑµãµÄÊÊÓ¦¶Èº¯ÊýÖµ¡£

×¢Ò⣺Èç¹ûµ¥»÷°´Å¥¡°Stop¡±£¬È»ºóͨ¹ýµ¥»÷°´Å¥¡°Start¡±ÔÙ´ÎÔËÐÐʱ£¬ÒÅ´«Ëã·¨½«ÒÔеÄËæ»ú³õʼÖÖȺ»òÔÚ¡°Initial population£¨³õʼÖÖȺ£©¡±Îı¾¿òÖÐרÃÅÖ¸¶¨µÄÖÖȺÔËÐС£Èç¹ûÐèÒªÔÚË㷨ֹͣºóÄÜÔٴλָ´ÔËÐУ¬Ôò¿ÉÒÔͨ¹ý½»ÌæµØµ¥»÷°´Å¥¡°Pause¡±ºÍ¡°Resume¡±À´¿ØÖÆËã·¨ÔÝÍ£»ò¼ÌÐøÔËÐС£

ÒÅ´«Ëã·¨µÄÍ£Ö¹ÔËÐг£³£ÊÇͨ¹ýÉèÖÃË㷨ֹͣ׼ÔòÀ´½øÐпØÖƵġ£Ê¹ÓÃÍ£Ö¹×¼Ôò£¬ÉèÖÃÍ£Ö¹×¼Ôò²ÎÊý£¬¿ÉÒÔ½â¾öÒÅ´«Ëã·¨ÔÚºÎʱֹͣÔËÐеĿØÖÆÎÊÌâ¡£ÕâÑù£¬Ò²¾Í²»ÓÃͨ¹ýµ¥»÷¡°Stop¡± °´Å¥À´ÈËΪµØ¿ØÖÆËã·¨ÔËÐеÄÍ£Ö¹¡£ÒÅ´«Ëã·¨ÓÐÎå¸öÍ£Ö¹×¼Ôò»òÌõ¼þ£¬ÆäÖÐÈκÎÒ»¸öÌõ¼þÂú×㣬Ëã·¨¼´Í£Ö¹ÔËÐС£ÕâЩֹͣ׼ÔòÊÇ£º

? ´úÊý¡ª¡ªËã·¨ÔËÐе½¹æ¶¨µÄ´úÊý¡£ ? ʱÏÞ¡ª¡ªËã·¨ÔËÐе½¹æ¶¨µÄʱ¼ä¡£

? ÊÊÓ¦¶ÈÏÞ¡ª¡ªµ±Ç°´úµÄ×î¼ÑÊÊÓ¦¶ÈֵСÓÚ»òµÈÓڹ涨µÄÖµ¡£ ? Í£ÖÍ´úÊý¡ª¡ªÊÊÓ¦¶Èº¯ÊýÖµÔÚÔËÐй涨µÄ´úÊýºóûÓиĽø¡£ ? Í£ÖÍʱÏÞ¡ª¡ªÊÊÓ¦¶Èº¯ÊýÖµÔÚÔËÐй涨ʱ¼äºóûÓиĽø¡£

Èç¹ûÏëʹËã·¨Ò»Ö±ÔËÐе½°´Ï°´Å¥¡°Pause¡±»ò¡°Stop¡±Ê±²ÅÍ£ÏÂÀ´£¬¿ÉÒԸıäÕâЩֹͣ׼ÔòµÄ²ÎÊýÖµ£º

? ÉèÖá°Generations£¨´úÊý£©¡±Îª Inf¡£ ? ÉèÖá°Time¡±Îª Inf¡£

? ÉèÖá°Fitness limit¡±Îª ¨CInf¡£ ? ÉèÖá°Stall generations¡±Îª Inf¡£ ? ÉèÖá°Stall time limit¡±Îª Inf¡£ ͼ8.24ÏÔʾÁËÕâЩ¸ü¸ÄºóµÄÉèÖá£

153

ͼ8.24 ¸Ä±äÍ£Ö¹×¼Ôò²ÎÊý

×¢Ò⣺ÔÚÃüÁîÐÐÖе÷ÓÃÒÅ´«Ëã·¨º¯Êýgaʱ£¬²¢²»Ê¹ÓÃÕâЩ²ÎÊýÉèÖ㬾ͺÃÏñÊDz»°´Ï ¡°Ctrl + C¡±¼ü£¬º¯Êý¾Í»áÓÀÔ¶ÔËÐжø²»»áÍ£Ö¹¡£ÆäʵÏà·´£¬¿ÉÒÔÉèÖá°Generations¡±»òÕß¡°Time¡±×öΪÏÞÖµÀ´¿ØÖÆË㷨ֹͣÔËÐС£ 8.3.1.5 ͼÐÎÏÔʾ

ͼ8.25Ϊ¡°Plots£¨»æÍ¼£©¡±´°¸ñ£¬¿ÉÒÔÓÃÀ´¿ØÖÆÏÔʾÒÅ´«Ëã·¨ÔËÐнá¹û±ä»¯µÄͼÐΡ£

ͼ8.25 ÔÚ»æÍ¼´°¸ñÑ¡ÔñÊä³öÏî

Ñ¡ÔñËùÒªÏÔʾµÄͼÐβÎÊýµÄ¸´Ñ¡¿ò¡£ÀýÈ磬Èç¹ûÑ¡Ôñ¡°Best Fitness£¨×î¼ÑÊÊÓ¦¶È£©¡±ºÍ¡°Best individual£¨×î¼Ñ¸öÌ壩¡±£¬ÔËÐÐÀý×Ó¡°Rastrigin º¯Êý¡±£¬ÆäÏÔʾÊä³öÈçͼ8.26Ëùʾ¡£

154

ͼ8.26 Rastriginº¯Êý×î¼ÑÊÊÓ¦¶ÈÓë×î¼Ñ¸öÌå

ͼ8.28Éϲ¿ÀëÉ¢µãΪÿһ´úµÄ×î¼ÑÊÊÓ¦¶ÈÖµºÍƽ¾ùÊÊÓ¦¶ÈÖµ£¬Ï²¿ÖùÐÍͼ±íʾµ±Ç°´ú×î¼ÑÊÊÓ¦¶ÈÖµ¶ÔÓ¦µÄµãµÄ×ø±ê¡£

×¢Ò⣺µ±ÒªÏëÏÔʾÁ½¸öÒÔÉϲÎÊýÏîµÄͼÐÎʱ£¬¿ÉÑ¡ÔñÏàÓ¦²ÎÊýÏîµÄ¸´Ñ¡¿ò£¬µ¥¶À´ò¿ªÒ»¸ö½Ï´óµÄͼÐδ°¿Ú¼´¿É¡£

8.3.1.6 ¾ÙÀý¡ª¡ª´´½¨Óû§»æÍ¼º¯Êý

Èç¹û¹¤¾ßÏäÖÐûÓзûºÏÏëÒªÊä³öͼÐεĻæÍ¼º¯Êý£¬Óû§¿ÉÒÔ±àд×Ô¼ºµÄ»æÍ¼º¯Êý¡£ÒÅ´«Ëã·¨ÔÚÿ´ÎÔËÐÐʱµ÷ÓÃÕâ¸öº¯Êý£¬»­³öͼÐΡ£ÕâÀï¾ÙÀý˵Ã÷ÔõÑù´´½¨Ò»¸öÓû§»æÍ¼º¯ÊýÀ´ÏÔʾ´Óǰһ´úµ½µ±Ç°´ú×î¼ÑÊÊÓ¦¶ÈÖµµÄ±ä»¯ÇéÐΣ¬ÄÚÈݰüÀ¨£º´´½¨»æÍ¼º¯Êý£¬Ê¹ÓûæÍ¼º¯Êý£¬»æÍ¼º¯ÊýÈçºÎ×÷Óá£

£¨1£©´´½¨»æÍ¼º¯Êý

ΪÁË´´½¨»æÍ¼º¯Êý£¬ÔÚMATLAB±à¼­Æ÷Öи´ÖÆ¡¢Õ³ÌùÏÂÁдúÂëµ½Ò»¸öеÄMÎļþ¡£

Function state = gaplotchange(options, state, flag)

% GAPLOTCHANGE Plots the change in the best score from the % previous generation.

persistent last_best % Best score in the previous generation if (strcmp(flag,'init')) % Set up the plot

set(gca,'xlim',[1, options.Generations],'Yscale'£¬'log'); hold on;

xlabel Generation

title('Change in Best Fitness Value') end

best = min(state.Score)£» % Best score in the current generation if state.Generation == 0 % Set last_best to best¡£

155

last_best = best£» else

change = last_best - best£»% Change in best score last_best = best£»

plot(state.Generation,change,'.r')£» title(['Change in Best Fitness Value'])

end

È»ºóÔÚMATLAB ·¾¶Ï½«Æä´æÎªMÎļþgaplotchange.m¡£ £¨2£©Ê¹ÓûæÍ¼º¯Êý

ΪÁËʹÓÃÓû§»æÍ¼º¯Êý£¬ÔÚ¡±»æÍ¼£¨Plots£©¡±´°¸ñÖÐÑ¡Ôñ¡°Custom function£¨¶¨Öƺ¯Êý£©¡±£¬²¢ÇÒÔÚÆäÓұߵÄÎı¾¿òÖÐÊäÈ뺯ÊýÃû@gaplotchange¡£ÎªÁ˶ÔÓû§»æÍ¼º¯ÊýÊä³öµÄ×î¼ÑÊÊÓ¦¶ÈֵͼÐνøÐбȽϣ¬ÔÚÕâÀïҲѡÔñ¡°Best Fitness¡±¡£ÏÖÔÚ£¬Èç¹ûÔËÐÐÀý×Óº¯ÊýRastrigin£¬ÏÔʾ³öÀ´µÄͼÐÎÈçͼ8.27Ëùʾ¡£

×î¼ÑÖµ 0.0021904 ƽ¾ùÖµ 0.49832 ×î¼ÑÊÊÓ¦¶ÈÖµµÄ±ä»¯

ͼ8.27 Óû§»æÍ¼º¯ÊýÊä³öµÄRastriginº¯ÊýÔËÐнá¹û

×¢Ò⣺ÒòΪͼÖÐϰ벿µÄy-ÖáΪ¶ÔÊý¿Ì¶È£¬ËùÒÔͼÐÎÖеÄÀëÉ¢µã½ö½öÏÔʾ´óÓÚÁãµÄµã¡£¶ÔÊý¿Ì¶ÈÄÜÏÔʾÊÊÓ¦¶Èº¯ÊýµÄ΢С±ä»¯£¬¶øÉÏÃæµÄͼÐÎÔò²»ÄÜÏÔʾ³ö΢С±ä»¯¡£

£¨3£©»æÍ¼º¯ÊýÈçºÎ×÷ÓÃ

»æÍ¼º¯ÊýʹÓðüº¬ÔÚÏÂÃæ½á¹¹ÌåÖеÄÐÅÏ¢£¬ËüÃÇÓÉÒÅ´«Ëã·¨´«µÝ¸ø»æÍ¼º¯Êý×÷ΪÊäÈë²ÎÊý£º

? options£¨²ÎÊý£©¡ª µ±Ç°²ÎÊýÉèÖᣠ? state£¨×´Ì¬£©¡ª ¹ØÓÚµ±Ç°´úµÄÐÅÏ¢¡£

? flag£¨ÇúÏß±êÖ¾£©¡ª ÇúÏß±íʾΪ¶ÔÊýµÈµÄµ±Ç°×´Ì¬¡£ »æÍ¼º¯ÊýµÄÖ÷Òª×÷ÓÿÉÒÔÃèÊöÈçÏ£º

persistent last_best

Éú³ÉÓÀ¾Ã±äÁ¿last_best ¡ª¡ª¼´Ç°Ò»´úµÄ×î¼ÑÖµ¡£ÓÀ¾Ã±äÁ¿±£´æ×ŶàÖÖͼÐκ¯Êýµ÷ÓÃÀàÐÍ¡£

156

set(gca, 'xlim'£¬[1£¬options.Generations], 'Yscale', 'log')£»

ÔÚÒÅ´«Ëã·¨ÔËÐÐǰ½¨Á¢Í¼ÐΡ£options.GenerationΪ´úÊýµÄ×î´óÖµ¡£

best = min(state.Score)

state.Score°üº¬µ±Ç°´úÖÐËùÓиöÌåµÄµÃ·ÖÖµ£¬±äÁ¿bestÊÇÆäÖÐ×îСµÄµÃ·ÖÖµ¡£½á¹¹Ìå״̬Îı¾¿òµÄÍêÕûÃèÊö¿É²Î¼û¡°8.4.1.1 ͼÐβÎÊý¡±Ò»½Ú¡£

change = last_best - best

±äÁ¿changeÊÇǰһ´úµÄ×î¼ÑÖµ¼õÈ¥µ±Ç°´úµÄ×î¼ÑÖµ¡£

plot(state.Generation£¬change£¬'.r')

»­³öµ±Ç°´úµÄ±ä»¯ÇúÏߣ¬±äÁ¿Î¬Êý°üº¬ÔÚstate.GenerationÖС£

º¯ÊýgaplotchangeµÄ´úÂë°üº¬Á˺¯Êýgaplotbestf´úÂëÖÐÐí¶àÏàͬ³É·Ö£¬º¯ÊýgaplotbestfÉú³É×î¼ÑÊÊÓ¦¶ÈͼÐΡ£ 8.3.1.7 ¸´ÏÖÔËÐнá¹û

ΪÁ˸´ÏÖÒÅ´«Ë㷨ǰһ´ÎµÄÔËÐнá¹û£¬Ñ¡Ôñ¡°Use random states from previous run£¨Ê¹ÓÃǰһ´ÎÔËÐеÄËæ»ú״̬£©¡±¸´Ñ¡¿ò¡£ÕâÑù¾Í°ÑÒÅ´«Ëã·¨ËùÓõÄËæ»úÊý·¢ÉúÆ÷µÄ×´Ì¬ÖØÐÂÉèÖÃΪǰһ´ÎµÄÖµ¡£Èç¹ûûÓиıäÒÅ´«Ëã·¨¹¤¾ßÖеÄËùÓÐÉèÖã¬ÄÇôÒÅ´«Ëã·¨ÏÂÒ»´ÎÔËÐÐʱ·µ»ØµÄ½á¹ûÓëǰһ´ÎÔËÐеĽá¹ûÒ»Ö¡£

Õý³£Çé¿öÏ£¬²»ÒªÑ¡Ôñ¡°Use random states from previous run¡±Õâ¸ö¸´Ñ¡¿ò£¬¿ÉÒÔ³ä·ÖÀûÓÃÒÅ´«Ëã·¨Ëæ»úËÑË÷µÄÓŵ㡣Èç¹ûÏëÒª·ÖÎöÌØ¶¨µÄÔËÐнá¹û»òÕßÏÔʾÏà¶Ô¸öÌåµÄ¾«È·½á¹û£¬¿ÉÒÔÑ¡Ôñ¡°Use random states from previous run¡±¸´Ñ¡¿ò¡£ 8.3.1.8 ÉèÖÃÑ¡Ïî²ÎÊý

ÉèÖÃÒÅ´«Ëã·¨¹¤¾ßʹÓÃʱµÄÑ¡Ïî²ÎÊýÓÐÁ½ÖÖ·½·¨£ºÒ»ÖÖÊÇÔÚÒÅ´«Ëã·¨¹¤¾ßGUIµÄ¡°Options¡±´°¸ñÖÐÖ±½Ó½øÐÐÉèÖã¬ÁíÒ»ÖÖÊÇÔÚMATLAB¹¤×÷´°¿ÚÖÐͨ¹ýÃüÁîÐз½Ê½½øÐÐÉèÖá£

ÔÚ²ÎÊý¡°Options¡±´°¸ñÖÐÉèÖÃÒÅ´«Ëã·¨µÄ¸÷ÖÖÔËÐвÎÊý£¬Èçͼ8.28Ëùʾ¡£Ã¿Ò»Àà²ÎÊý¶ÔÓ¦ÓÐÒ»¸ö´°¸ñ£¬µ¥»÷¸ÃÀà²ÎÊýʱ£¬¶ÔÓ¦´°¸ñÕ¹¿ª¡£ÀýÈ磬µã»÷¡°Population¡±²ÎÊýÑ¡ÏÖÖȺ´°¸ñÕ¹¿ªÀ´£¬¿ÉÒÔÖðÒ»ÉèÖÃÆäÖеIJÎÊýÏÈçPopulation type£¨ÖÖȺÀàÐÍ£©¡¢Population size£¨ÖÖȺ³ß¶È£©¡¢Creation function£¨´´½¨º¯Êý£©¡¢Initial population¡¢Initial score£¨³õʼµÃ·Ö£©¡¢Initial range£¨³õʼ·¶Î§£©µÈ¡£

´ËÍ⣬ÆäËûÑ¡Ïî²ÎÊýÀ໹ÓУºFitness scaling£¨ÊÊÓ¦¶È²âÁ¿£©¡¢selection¡¢Reproduction¡¢Mutation¡¢Crossover¡¢Migration£¨Ç¨ÒÆ£©¡¢Hybrid function£¨»ìºÏº¯Êý£©¡¢Stopping criteria¡¢Output function£¨Êä³öº¯Êý£©¡¢Display to command window£¨ÏÔʾµ½ÃüÁî´°¿Ú£©¡¢Vectorize£¨ÏòÁ¿»¯£©µÈ¡£ÕâЩ²ÎÊýÀà¸÷×Ô¶ÔÓ¦Ò»¸ö²ÎÊý´°¸ñ£¬µã»÷ºóÏàÓ¦´°¸ñËæ¼´Õ¹¿ª£¬¿ÉÒÔ½øÐвÎÊýÏîµÄÉèÖá£

ËùÓбäÁ¿²ÎÊýµÄº¬Òå¼°ÏêϸÃèÊö¿É²Î¼û¡°8.4.1 ÒÅ´«Ëã·¨²ÎÊý¡±Ò»½Ú¡£

157

ͼ8.28 Ñ¡Ïî²ÎÊý´°¿Ú

ÔÚMATLAB¹¤×÷´°¿ÚÖУ¬¿ÉÒÔ½«ÒÅ´«Ëã·¨µÄÔËÐвÎÊýÉèÖÃΪ±äÁ¿¡£

¶ÔÓÚÊýÖµ²ÎÊýµÄÉèÖ㬿ÉÒÔÖ±½ÓÔÚÏàÓ¦±à¼­¿òÖÐÊäÈë¸Ã²ÎÊýµÄÖµ£¬»òÕßÔÚ°üº¬¸Ã²ÎÊýÖµµÄMATLAB¹¤×÷´°¿ÚÖÐÊäÈëÏàÓ¦±äÁ¿µÄÃû×Ö£¬¾Í¿ÉÒÔÍê³ÉÉèÖá£ÀýÈ磬¿ÉÒÔÀûÓÃÏÂÃæÁ½ÖÖ·½·¨Ö®Ò»ÉèÖá°Initial point£¨³õʼµã£©¡±Îª[2.1 1.7]£º

? ÔÚ¡°Initial point¡±Îı¾¿òÊäÈë[2.1 1.7]¡£

? ÔÚMATLAB¹¤×÷ÇøÊäÈë±äÁ¿x0 = [2.1 1.7]£¬È»ºóÔÚ¡°Initial point¡± Îı¾¿òÊäÈë±äÁ¿

µÄÃû×Öx0¡£

ÒòΪѡÏî²ÎÊýÊDZȽϴóµÄ¾ØÕó»òÏòÁ¿£¬ËùÒÔÔÚMATLAB¹¤×÷´°¿ÚÖаѲÎÊýµÄÖµ¶¨ÒåΪ±äÁ¿Ò»°ãÊDZȽϷ½±ãµÄ£¬Ò²¾ÍÊÇ˵£¬Èç¹ûÐèÒª£¬ºÜÈÝÒ׏ı侨Õó»òÏòÁ¿µÄÏî¡£ 8.3.1.9 ÊäÈëÊä³ö²ÎÊý¼°ÎÊÌâ

²ÎÊýºÍÎÊÌâ½á¹¹¿ÉÒÔ´ÓÒÅ´«Ëã·¨¹¤¾ß±»Êä³öµ½MATLABµÄ¹¤×÷´°¿Ú£¬Ò²¿ÉÒÔÔÚÒÔºóµÄij¸öʱ¼äÔÙ·´¹ýÀ´°ÑËüÃÇ´ÓMATLABµÄ¹¤×÷´°¿ÚÊäÈë¸øÒÅ´«Ëã·¨¹¤¾ß¡£ÕâÑù¾Í¿ÉÒÔ±£´æ¶ÔÎÊÌâµÄµ±Ç°ÉèÖ㬲¢¿ÉÒÔÔÚÒÔºó»Ö¸´ÕâЩÉèÖᣲÎÊý½á¹¹Ò²¿ÉÒÔ±»Êä³öµ½MATLAB¹¤×÷´°¿Ú£¬²¢

158

ÇÒ¿ÉÒÔÔÙ°ÑËüÃÇÓÃÓÚÃüÁîÐз½Ê½µÄÒÅ´«Ëã·¨º¯Êýga¡£

ÊäÈëºÍÊä³öÐÅϢͨ³£°üº¬ÏÂÁи÷Ï

? ÎÊÌⶨÒ壬°üÀ¨¡°Fitness function¡±ºÍ¡°Number of variables£¨±äÁ¿¸öÊý£©¡±¡£ ? µ±Ç°Ö¸¶¨µÄÑ¡Ïî²ÎÊý¡£ ? Ëã·¨ÔËÐеĽá¹û¡£

ÏÂÃæ½âÊÍÈçºÎÊäÈëºÍÊä³öÕâЩÐÅÏ¢¡£ £¨1£©Êä³ö²ÎÊýºÍÎÊÌâ

²ÎÊýºÍÎÊÌâ¿ÉÒÔ±»Êä³öµ½MATLAB¹¤×÷¿Õ¼ä£¬ÒÔ±ãÒÔºóÔÚÒÅ´«Ëã·¨¹¤¾ßÖÐÓ¦ÓÃËüÃÇ¡£Ò²¿ÉÒÔÒÔÃüÁîÐз½Ê½£¬ÔÚº¯ÊýgaÖÐÓ¦ÓÃÕâЩ²ÎÊýºÍÎÊÌâ¡£

ΪÁËÊä³ö²ÎÊýºÍÎÊÌ⣬µ¥»÷¡°Export to Workspace£¨Êä³öµ½¹¤×÷¿Õ¼ä£©¡±°´Å¥»ò´ÓFile²Ëµ¥ÖÐÑ¡Ôñ¡°Export to Workspace¡±²Ëµ¥ÏÕ⽫´ò¿ªÈçͼ8.29ËùʾµÄ¶Ô»°¿ò¡£

ͼ8.29 Êä³ö¶Ô»°¿ò

¶Ô»°¿òÌṩÏÂÁвÎÊý£º

¢Ù ΪÁ˱£´æÎÊÌâµÄ¶¨ÒåºÍµ±Ç°²ÎÊýµÄÉèÖã¬Ñ¡Ôñ¡°Export problem and options to a MATLAB structure named£¨Êä³öÎÊÌâÓë²ÎÊýµ½ÒÑÃüÃûµÄMATLAB½á¹¹£©¡±£¬²¢ÎªÕâ¸ö½á¹¹ÌåÊäÈëÒ»¸öÃû×Ö¡£µ¥»÷OK°´Å¥£¬¼´°ÑÕâ¸öÐÅÏ¢±£´æµ½MATLAB¹¤×÷¿Õ¼äµÄÒ»¸ö½á¹¹Ìå¡£Èç¹ûÒÔºóÒª°ÑÕâ¸ö½á¹¹ÌåÊäÈëµ½ÒÅ´«Ëã·¨¹¤¾ß£¬ÄÇôµ±Êä³öÕâ¸ö½á¹¹Ê±£¬ËùÉèÖõġ°Fitness function¡±ºÍ¡°Number of variables¡±£¬ÒÔ¼°ËùÓеIJÎÊýÉèÖö¼±»»Ö¸´µ½Ô­À´Öµ¡£

×¢Ò⣺Êä³öÎÊÌâ֮ǰ£¬Èç¹ûÔÚ¡°Run solver£¨ÔËÐÐÇó½âÆ÷£©¡± ´°¸ñÑ¡ÖС°Use random states from previous run£¨Ê¹ÓÃǰһ´ÎÔËÐеÄËæ»ú״̬£©¡±Ñ¡ÏÔòÒÅ´«Ëã·¨¹¤¾ß½«±£´æÉÏÒ»´ÎÔËÐпªÊ¼Ê±Ëæ»úÊý²úÉúº¯ÊýrandºÍrandnµÄ״̬¡£È»ºó£¬ÔÚÑ¡ÔñÁË¡°Use random states from previous run¡±Ñ¡ÏîµÄÇé¿öÏ£¬ÊäÈëÎÊÌâÇÒÔËÐÐÒÅ´«Ëã·¨£¬ÄÇôÊä³öÎÊÌâ֮ǰµÄÔËÐнá¹û¾Í±»×¼È·µØ¸´ÏÖÁË¡£

¢Ú Èç¹ûÏëÒªÒÅ´«Ëã·¨ÔÚÊä³öÎÊÌâ֮ǰ´ÓÉÏÒ»´ÎÔËÐеÄ×îºóÖÖȺ»Ö¸´ÔËÐУ¬¿ÉÑ¡Ôñ¡°Include information needed to resume this run£¨°üÀ¨ËùÐèÐÅÏ¢ÒÔ»Ö¸´±¾´ÎÔËÐУ©¡±¡£È»ºó£¬µ±ÊäÈëÎÊÌâ½á¹¹Ìå²¢µ¥»÷Start°´Å¥£¬Ëã·¨¾Í´Óǰ´ÎÔËÐеÄ×îºóÖÖȺ¼ÌÐøÔËÐС£ÎªÁ˻ָ´ÒÅ´«Ëã·¨²úÉúËæ»ú³õʼÖÖȺµÄȱʡÐÐΪ£¬¿Éɾ³ýÔÚ¡°Initial population¡±×Ö¶ÎËùÉèÖõÄÖÖȺ£¬²¢ÓôúÖ®ÒÔ¿ÕµÄÖÐÀ¨ºÅ¡®[ ]¡¯¡£

×¢Ò⣺µ±Ñ¡ÔñÁË¡°Include information needed to resume this run¡±Ñ¡ÏÔòÑ¡Ôñ¡°Use random states from previous run¡±Ñ¡Ïî¶ÔÓÚÊäÈëÎÊÌâºÍÔËÐÐÒÅ´«Ë㷨ʱ´´½¨µÄ³õʼÖÖȺ½«²»ÔÙÓÐÈκÎ×÷Ó᣺óÕßµÄÑ¡ÏîÖ»ÊÇÖ¸¶¨´ÓеÄÒ»´ÎÔËÐпªÊ¼Ê±ÔÙÒ»´Î¸´ÏÖ½á¹û£¬¶ø²»ÊÇΪÁ˻ָ´Ëã·¨µÄ¼ÌÐøÔËÐС£

¢Û Èç¹ûÖ»ÊÇΪÁ˱£´æ²ÎÊýÉèÖ㬿ÉÑ¡Ôñ¡°Export options to a MATLAB structure named£¨Êä³ö²ÎÊýµ½ÒÑÃüÃûµÄMATLAB½á¹¹£©¡±£¬²¢ÎªÕâ¸ö²ÎÊý½á¹¹ÌåÊäÈëÒ»¸öÃû×Ö¡£

¢Ü ΪÁ˱£´æÒÅ´«Ëã·¨×î½üÒ»´ÎÔËÐеĽá¹û£¬¿ÉÑ¡Ôñ¡°Export results to a MATLAB structure named¡±£¬²¢ÎªÕâ¸ö½á¹û½á¹¹ÌåÊäÈëÒ»¸öÃû×Ö¡£

159

£¨2£©¾ÙÀý¡ª¡ªÓÃÊä³öÎÊÌâÔËÐк¯Êýga

Êä³öÒ»¸öÎÊÌâ¿É²Î¼û¡°8.2.3 ¾ÙÀý£ºRastriginº¯Êý¡±Ò»½Ú£¬ÔÚÃüÁîÐÐÔËÐÐÒÅ´«Ëã·¨º¯Êýga£¬Æä²½ÖèÈçÏ£º

¢Ù µ¥»÷¡°Export to Workspace¡±°´Å¥£¬´ò¿ªÏàÓ¦¶Ô»°¿ò¡£

¢Ú ÔÚ¡°Export To Workspace¡±¶Ô»°¿òÖеġ°Export problem and options to a MATLAB structure named¡±ÓÒÃæµÄÎı¾¿ò£¬ÊäÈëÎÊÌâ½á¹¹ÌåµÄÃû³Æ£¬¼ÙÉèΪmy_gaproblem¡£

¢Û ÔÚMATLAB´°¿Ú£¬ÒÔmy_gaproblemΪ²ÎÊýµ÷Óú¯Êýga£º

[x fval] = ga(my_gaproblem)

Ôò·µ»Ø½á¹û£º

x =

0.0027 -0.0052 fval =

0.0068

µ÷Óú¯Êýga¿É²Î¼û ¡°8.3.2 ´ÓÃüÁîÐÐʹÓÃÒÅ´«Ëã·¨¡± Ò»½Ú¡£ £¨3£©ÊäÈë²ÎÊý

ΪÁË´ÓMATLAB¹¤×÷´°ÖÐÊäÈëÒ»¸ö²ÎÊý½á¹¹Ì壬¿É´Ó¡°File¡±²Ëµ¥Ñ¡Ôñ¡°Import Options£¨ÊäÈë²ÎÊý£©¡±²Ëµ¥Ïî¡£ÔÚMATLAB¹¤×÷´°Öдò¿ªÒ»¸ö¶Ô»°¿ò£¬ÁгöÒÅ´«Ëã·¨²ÎÊý½á¹¹ÌåµÄһϵÁÐÑ¡Ïî¡£µ±Ñ¡Ôñ²ÎÊý½á¹¹Ìå²¢µ¥»÷¡°Import£¨ÊäÈ룩¡±°´Å¥£¬ÔÚÒÅ´«Ëã·¨¹¤¾ßÖеIJÎÊýÓò¾Í±»¸üУ¬ÇÒÏÔʾËùÊäÈë²ÎÊýµÄÖµ¡£

´´½¨²ÎÊý½á¹¹ÌåÓÐÁ½ÖÖ·½·¨£º

? µ÷Óú¯Êýgaoptimset£¬ÒÔ²ÎÊý½á¹¹options×÷ΪÊä³ö¡£

? ÔÚÒÅ´«Ëã·¨¹¤¾ßÖУ¬´Ó¡°Export to Workspace£¨Êä³öµ½¹¤×÷¿Õ¼ä£©¡±¶Ô»°¿ò±£´æµ±Ç°²ÎÊý¡£ £¨4£©ÊäÈëÎÊÌâ

ΪÁË´ÓÒÅ´«Ëã·¨¹¤¾ßÊäÈëÒ»¸öÒÔǰÊä³öµÄÎÊÌ⣬¿É´Ó¡°File¡±²Ëµ¥Ñ¡Ôñ¡°Import Problem£¨ÊäÈëÎÊÌ⣩¡±²Ëµ¥Ïî¡£ÔÚMATLAB¹¤×÷´°ÖУ¬´ò¿ªÒ»¸ö¶Ô»°¿ò£¬ÏÔʾÒÅ´«Ëã·¨ÎÊÌâ½á¹¹ÌåµÄÒ»¸öÁÐ±í¡£µ±Ñ¡ÔñÁËÎÊÌâ½á¹¹Ìå²¢µ¥»÷OK°´Å¥£¬ÒÅ´«Ëã·¨¹¤¾ßÖеÄÏÂÁÐÎı¾¿ò±»¸üУº

? ÊÊÓ¦¶Èº¯Êý¡£ ? ±äÁ¿¸öÊý¡£ ? ²ÎÊýÓò¡£ 8.3.1.10 ¾ÙÀý¡ª¡ª´Ó×îºóÖÖȺÖмÌÐøÒÅ´«Ëã·¨

ÏÂÃæµÄÀý×ÓÏÔʾÈçºÎÊä³öÒ»¸öÎÊÌ⣬ÒԱ㵱ÊäÈëÎÊÌâ²¢°´ÏÂStart°´Å¥Ê±£¬ÒÅ´«Ëã·¨ÄÜ´Ó¸ÃÊä³öÎÊÌâËù±£´æµÄ×îºóÖÖȺ¼ÌÐøÔËÐС£ÏÖÔÚÔËÐÐÒ»¸öÀý×Ó£¬ÔÚÒÅ´«Ëã·¨¹¤¾ßÖÐÊäÈëÏÂÃæµÄÐÅÏ¢£º

? ÉèÖÃÊÊÓ¦¶Èº¯ÊýΪ@ackleyfcn£¬ËüÊǼÆË㺯ÊýAckley£¬Êǹ¤¾ßÏäÌṩµÄÒ»¸ö²âÊÔº¯Êý¡£ ? ÉèÖá°Number of variables¡±Îª 10¡£ ? ÔÚ¡°Plots¡±´°¸ñÑ¡Ôñ¡°Best fitness¡±¡£ ? µ¥»÷°´Å¥¡°Start¡±¡£ ÏÔʾµÄ½á¹ûÈçͼ8.30Ëùʾ¡£

160

ͼ8.30 º¯ÊýackleyfcnµÄ×î¼ÑÊÊÓ¦¶È

¼Ù¶¨ÏëҪʵÑéÀûÓÃÆäËüµÄ²ÎÊýÔËÐÐÒÅ´«Ëã·¨£¬½Ó×ÅÀûÓõ±Ç°²ÎÊýÉèÖ㬴˺óÔÙ´Ó×îºóÖÖÈºÖØÐÂÔËÐÐËã·¨¡£Îª´Ë£¬½øÐÐÒÔϲ½Ö裺

¢Ù µ¥»÷¡°Export to Workspace¡±°´Å¥¡£ ¢Ú ÔÚ³öÏֵĶԻ°¿òÖУº

- Ñ¡Ôñ¡°Export problem and options to a MATLAB structure named¡±¡£ - ÔÚÎı¾¿òÖÐÊäÈëÎÊÌâºÍ²ÎÊýµÄÃû³Æ£¬ÀýÈçackley_uniform¡£

- Ñ¡Ôñ¡°Include information needed to resume this run£¨°üÀ¨ËùÐèÐÅÏ¢ÒÔ»Ö¸´±¾´ÎÔËÐУ©¡±¡£

×öÁËÕâЩѡÔñºóµÄ¶Ô»°¿òÈçͼ8.31Ëùʾ¡£

ͼ8.31 ÔÚÊä³ö´°¿Ú¶Ô»°¿òÖÐ×öÊʵ±Ñ¡Ôñ

¢Û µ¥»÷OK°´Å¥¡£

ÎÊÌâºÍ²ÎÊý±»Êä³öµ½MATLAB¹¤×÷¿Õ¼äµÄÒ»¸ö½á¹¹ÌåÖС£ÔÚMATLABÃüÁî´°¿ÚÊäÈëÏÂÃæµÄÐÅÏ¢¾Í¿ÉÒÔ¹Û²ìÕâ¸ö½á¹¹Ì壺

161

ackley_uniform ackley_uniform =

fitnessfcn£º @ackleyfcn genomelength£º 10 options£º [1x1 struct]

ÀûÓò»Í¬µÄ²ÎÊýÉèÖã¬ÉõÖÁÊDz»Í¬µÄÊÊÓ¦¶Èº¯Êý£¬ÔÚÔËÐÐÒÅ´«Ëã·¨Ö®ºó£¬¶¼Äܹ»°´ÕÕÈçϲ½ÖèÀ´»Ö¸´ÎÊÌ⣺

¢Ù ´Ó¡°File¡±²Ëµ¥£¬Ñ¡Ôñ¡°Import Problem ¡±²Ëµ¥Ïî¡£´ò¿ªµÄ¶Ô»°¿òÈçͼ8.32Ëùʾ¡£

ͼ8.32 GAÎÊÌâÊäÈë´°¿Ú

¢Ú Ñ¡Ôñackley_uniform¡£ ¢Û µ¥»÷°´Å¥¡°Import¡±¡£

ÕâÑù¾Í°Ñ¡°Population¡±Ñ¡ÏîÖеġ°Initial population¡±×Ö¶ÎÉèÖóÉÊä³öÎÊÌâ֮ǰÔËÐеÄ×îºóÖÖȺ¡£ÔÚÔËÐÐÆÚ¼ä£¬ËùÓÐÆäËü²ÎÊý»Ö¸´ËüÃǵÄÉèÖᣵ±µ¥»÷Start°´Å¥Ê±£¬ÒÅ´«Ëã·¨´Ó±»±£´æµÄ×îºóÖÖÈºÖØÐÂÔËÐС£Í¼8.33ËùʾΪ³õʼÔËÐкÍÖØÐÂÔËÐеÄ×î¼ÑÊÊÓ¦¶ÈͼÐΡ£

µÚÒ»´ÎÔËÐÐ ´ÓÕâÀï¼ÌÐøÔËÐÐ

ͼ8.33 ³õʼÔËÐкÍÖØÐÂÔËÐеÄ×î¼ÑÊÊÓ¦¶È

162

×¢Ò⣺Èç¹ûÔÚÀûÓÃËùµ¼ÈëÎÊÌâÔËÐÐÒÅ´«Ëã·¨Ö®ºó£¬ÏëÒª»Ö¸´ÒÅ´«Ëã·¨Éú³ÉÒ»¸öËæ»ú³õʼÖÖȺµÄȱʡÐÐΪ£¬¿Éɾ³ý¡°Initial population¡±×Ö¶ÎÖÐÉèÖõÄÖÖȺ£¬¶ø´úÖ®ÒÔ¿ÕµÄÖÐÀ¨ºÅ¡®[ ]¡¯¡£ 8.3.1.11 Éú³ÉMÎļþ

ÔÚÒÅ´«Ëã·¨¹¤¾ßÖУ¬ÒªÀûÓÃÌØ¶¨µÄÊÊÓ¦¶Èº¯ÊýºÍ²ÎÊýÉú³ÉÔËÐÐÒÅ´«Ëã·¨µÄMÎļþ£¬¿É´Ó¡°File¡±²Ëµ¥Ñ¡Ôñ¡°Generate M-File£¨Éú³ÉMÎļþ£©¡±²Ëµ¥Ï²¢°ÑÉú³ÉµÄMÎļþ±£´æµ½MATLAB·¾¶µÄÒ»¸öĿ¼¡£

ÔÚÃüÁîÐе÷ÓÃÕâ¸öMÎļþʱ£¬·µ»ØµÄ½á¹ûÓëÀûÓÃÔÚÒÅ´«Ëã·¨¹¤¾ßÖÐÉú³ÉMÎļþʱµÄÊÊÓ¦¶Èº¯ÊýºÍ²ÎÊýËùµÃµ½µÄ½á¹ûÒ»Ö¡£

8.3.2 ´ÓÃüÁîÐÐʹÓÃÒÅ´«Ëã·¨

ʹÓÃÒÅ´«Ëã·¨£¬Ò²¿ÉÒÔ´ÓÃüÁîÐÐÔËÐÐÒÅ´«Ëã·¨º¯Êýga¡£Õâ·½ÃæµÄÄÚÈÝÖ÷Òª°üÀ¨£ºÀûÓÃȱʡ²ÎÊýÔËÐÐga£»ÔÚÃüÁîÐÐÉèÖÃgaµÄ²ÎÊý£»Ê¹ÓÃÒÅ´«Ëã·¨¹¤¾ßµÄ²ÎÊýºÍÎÊÌâ½á¹¹£»¸´ÏÖÔËÐнá¹û£»ÒÔǰһ´ÎÔËÐеÄ×îºóÖÖÈºÖØÐµ÷Óú¯Êýga£»´ÓMÎļþÔËÐÐga¡£ 8.3.2.1 ÀûÓÃȱʡ²ÎÊýÔËÐÐga

ÀûÓÃȱʡ²ÎÊýÔËÐÐÒÅ´«Ëã·¨£¬ÒÔÏÂÃæÓï¾äµ÷ÓÃga

[x fval] = ga(@fitnessfun,nvars)

ÆäÖУº

? @fitnessfun ¡ª ¼ÆËãÊÊÓ¦¶Èº¯ÊýÖµµÄMÎļþµÄº¯Êý¾ä±ú¡£ ? nvars ¡ªÊÊÓ¦¶Èº¯ÊýÖжÀÁ¢±äÁ¿µÄ¸öÊý¡£ ? x ¡ª ·µ»ØµÄ×îÖյ㡣

? fval ¡ª ·µ»ØµÄÊÊÓ¦¶Èº¯ÊýÔÚxµãµÄÖµ¡£ ÀýÈ磬ÔËÐÐÀý×ÓRastriginº¯Êý£¬´ÓÃüÁîÐÐÊäÈë

[x fval] = ga(@rastriginsfcn,2)

Õ⽫·µ»Ø

x =

0.0027 -0.0052 fval =

0.0068

ΪÁ˵õ½ÒÅ´«Ëã·¨¸ü¶àµÄÊä³ö½á¹û£¬¿ÉÒÔÓÃÏÂÃæÓï¾äµ÷ÓÃga

[x fval reason output population scores] = ga(@fitnessfcn, nvars) ³ýÁËÊä³ö±äÁ¿xºÍfvalÖ®Í⣬Ôö¼ÓÁËÒÔÏÂÊä³ö±äÁ¿ ? ¡°reason£¨Ô­Òò£©¡±¡ª Ë㷨ֹͣµÄÔ­Òò¡£

? ¡°output£¨Êä³ö£©¡±¡ª °üº¬¹ØÓÚËã·¨ÔÚÿһ´úÐÔÄܵĽṹÌå¡£ ? ¡°population£¨ÖÖȺ£©¡±¡ª ×îºóÖÖȺ¡£ ? ¡°scores£¨µÃ·Ö£©¡±¡ª ×îÖյ÷ÖÖµ¡£ 8.3.2.2 ÔÚÃüÁîÐÐÉèÖÃgaµÄ²ÎÊý

ÒÅ´«Ëã·¨¹¤¾ßÖеIJÎÊý¿ÉÒÔÖ¸¶¨ÎªÈκÎÓÐЧµÄ²ÎÊýÖµ£¬ÉèÖòÎÊýʹÓÃÏÂÃæÓï¾ä£º

[x fval] = ga(@fitnessfun,nvars,options) ʹÓú¯ÊýgaoptimsetÉú³ÉÒ»¸ö²ÎÊý½á¹¹Ìå¡£

options = gaoptimset

·µ»Ø´øÓÐȱʡֵµÄ²ÎÊý½á¹¹Ì壺

options =

163

PopulationType£º 'doubleVector' PopInitRange£º [2x1 double] PopulationSize£º 20 EliteCount£º 2

CrossoverFraction£º 0.8000 MigrationDirection£º 'forward' MigrationInterval£º 20 MigrationFraction£º 0.2000

Generations£º 100 TimeLimit£º Inf fitnessLimit£º -Inf StallLimitG£º 50 StallLimitS£º 20 InitialPopulation£º [ ] InitialScores£º [ ] PlotInterval£º 1

CreationFcn£º @gacreationuniform fitnessScalingFcn£º @fitscalingrank

SelectionFcn£º @selectionstochunif CrossoverFcn£º @crossoverscattered MutationFcn£º @mutationgaussian HybridFcn£º [ ] Display£º 'final' PlotFcns£º [ ] OutputFcns£º [ ] Vectorized£º 'off'

Èç¹ûûÓиøÄ³Ò»²ÎÊýÏîÊäÈëеÄÖµ£¬Ôòº¯ÊýgaʹÓÃÆäȱʡֵ¡£

ÿһ¸ö²ÎÊýµÄÖµ¶¼´æ·ÅÔÚ²ÎÊý½á¹¹ÌåÖУ¬ÀýÈçoptions.PopulationSize¡£¿ÉÒÔͨ¹ýÊäÈë²ÎÊýµÄÃû³ÆÏÔʾ²ÎÊýµÄÖµ¡£ÀýÈ磬ÏÔʾÒÅ´«Ëã·¨ÖÖȺµÄ´óС£¬¿ÉÊäÈë

options.PopulationSize ans =

20

¸Ä±ä²ÎÊý½á¹¹ÌåÖгÉÔ±Öµ£¬ÀýÈ磬ÉèÖÃPopulationSizeÖµµÈÓÚ100£¬´úÌæËüµÄȱʡֵ20£¬¿ÉÊäÈë

options = gaoptimset('PopulationSize',100)

²ÎÊý½á¹¹ÌåÖУ¬PopulationSizeΪ100£¬ÆäËüÖµ¶¼ÎªÈ±Ê¡Öµ»òµ±Ç°Öµ¡£

Õâʱ£¬ÔÙÊäÈë

ga(@fitnessfun,nvars,options)

º¯Êýga½«ÒÔÖÖȺÖиöÌåΪ100ÔËÐÐÒÅ´«Ëã·¨¡£

Èç¹ûÏë½Óןıä²ÎÊý½á¹¹ÌåÆäËü³ÉÔ±µÄÖµ£¬ÀýÈçÉèÖÃPlotFcnsΪ@gaplotbestf£¬»­³öÿһ´ú×î¼ÑÊÊÓ¦¶Èº¯ÊýֵͼÐΣ¬Ôò¿ÉÓÃÏÂÃæÓï¾äµ÷Óú¯Êýgaoptimset

options = gaoptimset(options,'PlotFcns',@plotbestf)

ÕâÀï±£³ÖÁ˲ÎÊýµÄËùÓе±Ç°Öµ£¬³ýPlotFcnsÖ®Í⣬Ëü¸Ä±äΪ@plotbestf¡£×¢Ò⣬Èç¹ûÊ¡ÂÔÊäÈë×Ô±äÁ¿²ÎÊýoptions£¬ÄÇôº¯ÊýgaoptimsetÖØÐÂÖÃPopulationSizeΪËüµÄȱʡֵ20¡£

Ò²¿ÉÒÔÀûÓÃÒ»¸öÓï¾äÀ´Í¬Ê±ÉèÖÃÁ½¸ö²ÎÊýPopulationSizeºÍPlotFcns£º

options = gaoptimset('PopulationSize',100,'PlotFcns',@plotbestf)

164

8.3.2.3 ʹÓÃÒÅ´«Ëã·¨¹¤¾ßµÄ²ÎÊýºÍÎÊÌâ½á¹¹

ÀûÓú¯Êýgaoptimset´´½¨Ò»¸ö²ÎÊý½á¹¹Ì壬ÔÚÒÅ´«Ëã·¨¹¤¾ßÖÐÉèÖòÎÊýµÄÖµ£¬È»ºóÔÚMATLAB¹¤×÷´°ÖÐÊä³ö²ÎÊý¸ø½á¹¹Ìå¡£Èç¹ûÏëÔÚÒÅ´«Ëã·¨¹¤¾ßÖÐÊä³öȱʡֵ£¬Ôòµ¼³öµÄ½á¹¹ÌåµÄ²ÎÊýÓëÓÉÃüÁîÐеõ½µÄȱʡ½á¹¹ÌåµÄ²ÎÊýÒ»Ö¡£

options = gaoptimset

Èç¹ûÏë´ÓÒÅ´«Ëã·¨¹¤¾ßÊä³öÒ»¸öÎÊÌâ½á¹¹Ìåga_problem£¬¿ÉÓÃÏÂÃæµÄÓï¾äµ÷Óú¯Êýga

[x fval] = ga(ga_problem)

ÎÊÌâ½á¹¹Ìå°üº¬£º

? fitnessfcn ¡ª ÊÊÓ¦¶Èº¯Êý¡£ ? nvars ¡ª ÎÊÌâµÄ±äÁ¿Êý¡£ ? options ¡ª ²ÎÊý½á¹¹Ìå¡£ 8.3.2.4 ¸´ÏÖÔËÐнá¹û

ÒòΪÒÅ´«Ëã·¨ÊÇËæ»úÐÔ·½·¨£¬Ò²¾ÍÊÇ˵£¬²úÉúËæ»ú»úÂÊ£¬¼´Ã¿´ÎÔËÐÐÒÅ´«Ëã·¨µÃµ½µÄ½á¹û¶¼»áÂÔÓв»Í¬¡£Ëã·¨ÀûÓÃMATLABËæ»úÊý²úÉúÆ÷º¯ÊýrandºÍrandn£¬ÔÚÿһ´Îµü´úÖУ¬²úÉúËæ»ú»úÂÊ¡£Ã¿Ò»´Îº¯Êýgaµ÷ÓÃrandºÍrandn£¬ËüÃǵÄ״̬¶¼¿ÉÄÜ·¢Éú¸Ä±ä£¬ÒÔ±ãÏÂÒ»´ÎÔÙ±»µ÷ÓÃʱ£¬ËüÃÇ·µ»Ø²»Í¬µÄËæ»úÊý¡£Õâ¾ÍÊÇΪʲôÿ´ÎÔËÐкógaÊä³öµÄ½á¹û»áÂÔÓв»Í¬¡£

Èç¹ûÐèҪ׼ȷ¸´ÏÖÔËÐнá¹û£¬¿ÉÒÔÔÚµ÷Óú¯Êýgaʱ°üº¬randºÍrandnµÄµ±Ç°×´Ì¬¡£ÔÚÓÖÒ»´ÎÔËÐÐga֮ǰ£¬ÖØÐÂÉèÖÃÕâЩֵµÄ״̬¡£ÀýÈ磬Ҫ¸´ÏÖRastriginº¯ÊýµÄgaµÄÊä³ö£¬¿ÉÒÔÀûÓÃÏÂÃæµÄÓï¾äµ÷ÓÃga

[x fval reason output] = ga(@rastriginsfcn,2)£»

¼ÙÉèij´ÎÔËÐеķµ»Ø½á¹ûΪ

x =

0.0027 -0.0052 fval =

0.0068

ÔòËæ»úº¯ÊýrandºÍrandnÁ½ÕßµÄ״̬±»±£´æÔÚoutput½á¹¹ÖС£

output =

randstate£º [35x1 double] randnstate£º [2x1 double] generations£º 100 funccount£º 2000

message£º [1x64 char]

È»ºó£¬ÖØÐÂÉèÖÃ״̬£¬ÊäÈë

rand('state',output.randstate)£» randn('state',output.randnstate)£»

Èç¹ûÏÖÔÚÔÙ´ÎÔËÐÐga£¬¾Í»áµÃµ½ÏàͬµÄ½á¹û¡£

×¢Ò⣺Èç¹ûûÓбØÒª¸´ÏÖÔËÐнá¹û£¬×îºÃ²»ÒªÉèÖÃrandºÍrandnµÄ״̬£¬ÒÔ±ãÄܹ»µÃµ½ÒÅ´«Ëã·¨Ëæ»úËÑË÷µÄÒæ´¦¡£

8.3.2.5 ÒÔǰһ´ÎÔËÐеÄ×îºóÖÖÈºÖØÐµ÷Óú¯Êýga

ȱʡÇé¿öÏ£¬Ã¿´ÎÔËÐÐgaʱ¶¼Éú³ÉÒ»¸ö³õʼÖÖȺ¡£È»¶ø£¬¿ÉÒÔ½«Ç°Ò»´ÎÔËÐеõ½µÄ×îºóÖÖȺ×÷ΪÏÂÒ»´ÎÔËÐеijõʼÖÖȺ£¬ÕâÑù×öÄܹ»µÃµ½¸üºÃµÄ½á¹û¡£Õâ¿ÉÒÔÀûÓÃÏÂÃæÓï¾äʵÏÖ£º

[x,fval,reason,output,final_pop] = ga(@fitnessfcn,nvars)£»

×îºóÒ»¸öÊä³ö±äÁ¿final_pop·µ»ØµÄ¾ÍÊDZ¾´ÎÔËÐеõ½µÄ×îºóÖÖȺ¡£½«final_popÔÙ×÷Ϊ³õʼÖÖȺÔËÐÐga£¬Óï¾äΪ£º

165

options = gaoptimset('InitialPop',final_pop)£»

[x,fval,reason,output,final_pop2] = ga(@fitnessfcn,nvars)£»

»¹¿ÉÒÔ½«µÚ¶þ´ÎÔËÐÐgaµÃµ½µÄ×îºóÖÖȺfinal_pop2×÷ΪµÚÈý´ÎÔËÐÐgaµÄ³õʼÖÖȺ¡£ 8.3.2.6 ´ÓMÎļþÔËÐÐga

ÀûÓÃÃüÁîÐпÉÒÔÔËÐÐÒÅ´«Ëã·¨¡£Ê¹ÓÃMÎļþ¿ÉÒÔÓв»Í¬µÄ²ÎÊýÉèÖá£ÀýÈ磬¿ÉÒÔÉèÖò»Í¬µÄ½»²æ¸ÅÂÊÀ´ÔËÐÐÒÅ´«Ëã·¨£¬¹Û²ì¡¢±È½Ïÿ´ÎÔËÐеĽá¹û¡£ÏÂÃæµÄ´úÂëÊÇÔËÐÐgaº¯Êý21´Î£¬±äÁ¿options.CrossoverFraction´Ó0µ½1£¬¼ä¸ôΪ0.05£¬Ëù¼Ç¼µÄÔËÐнá¹û¡£

options = gaoptimset('Generations',300)£»

rand('state',71)£» % These two commands are only included to randn('state',59)£» % make the results reproducible. record=[ ]£» for n=0 : .05 : 1

options = gaoptimset(options,'CrossoverFraction',n)£» [x fval]=ga(@rastriginsfcn,10,options)£» record = [record£»fval]£» end

¿ÉÒÔÀûÓÃÏÂÁÐÓï¾ä£¬ÒÔ²»Í¬¸ÅÂÊ»­³öfvalÖµµÄÇúÏßͼÐΣº

plot(0 : .05 : 1,record)£»

xlabel('Crossover Fraction')£» ylabel('fval')

ÏÔʾ½á¹û²Î¼ûͼ8.34Ëùʾ¡£

ͼ8.34 ´ÓMÎļþÔËÐÐÒÅ´«Ë㷨ʱfvalÖµµÄÇúÏßͼÐÎ

´ÓͼÐÎÏÔʾ¿ÉÒÔ¿´³ö£¬options.CrossoverFractionµÄֵΪ0.6~ 0.95ʱ£¬¿ÉµÃµ½×îºÃ½á¹û¡£ ȡÿ´ÎÔËÐеõ½µÄfvalµÄƽ¾ùÖµ£¬¾Í¿ÉÒÔ»­³öfvalµÄ¹â»¬ÇúÏߣ¬Èçͼ8.35Ëùʾ¡£

166

ͼ8.35 ´ÓMÎļþÔËÐÐÒÅ´«Ë㷨ʱfvalƽ¾ùÖµµÄÇúÏßͼÐÎ

ÇúÏß×î°¼µÄ²¿·Ö¶ÔÓ¦options.CrossoverFractionµÄֵΪ0.7~ 0.9¡£

8.3.3 ÒÅ´«Ëã·¨¾ÙÀý

ΪÁ˵õ½ÒÅ´«Ëã·¨µÄ×îºÃ½á¹û£¬Ò»°ãÐèÒªÒÔ²»Í¬µÄ²ÎÊýʵÑ顣ͨ¹ý²»¶ÏʵÑ飬ѡÔñÕë¶ÔÎÊÌâµÄ×î¼Ñ²ÎÊý¡£ÓÐЧ²ÎÊýµÄÍêÕûÃèÊö¿É²Î¼û ¡°8.4.1 ÒÅ´«Ëã·¨²ÎÊý¡±Ò»½Ú¡£

±¾½Ú½éÉܼ¸ÖÖÄܹ»Ìá¸ßÔËËãЧ¹ûµÄ²ÎÊý¸Ä±ä·½·¨£¬ÄÚÈݰüÀ¨£ºÖÖȺ¶àÑùÐÔ£»ÊÊÓ¦¶È²âÁ¿£»Ñ¡Ôñ£»¸´ÖƲÎÊý£»±äÒìÓë½»²æ£»ÉèÖñäÒì´óС£»ÉèÖý»²æ¸ÅÂÊ£»Ïà¶ÔÓÚÈ«¾ÖµÄ¾Ö²¿×îСֵ£»Ê¹ÓûìºÏº¯Êý£»ÉèÖÃ×î´ó´úÊý£»ÏòÁ¿»¯ÊÊÓ¦¶Èº¯Êý¡£ 8.3.3.1 ÖÖȺµÄ¶àÑùÐÔ

¾ö¶¨ÒÅ´«Ëã·¨µÄÒ»¸öÖØÒªÐÔÄÜÊÇÖÖȺµÄ¶àÑùÐÔ¡£¸öÌåÖ®¼äµÄ¾àÀëÔ½´ó£¬Ôò¶àÑùÐÔÔ½¸ß£»·´Ö®£¬¸öÌåÖ®¼äµÄ¾àÀëԽС£¬Ôò¶àÑùÐÔÔ½µÍ¡£ÓÉÊÔÑéµÃµ½ÖÖȺµÄÊʵ±¶àÑùÐÔ¡£Èç¹û¶àÑùÐÔ¹ý¸ß»òÕß¹ýµÍ£¬ÒÅ´«Ëã·¨¶¼¿ÉÄÜÔËÐв»ºÃ¡£ÕâÀï½éÉÜÈçºÎÉèÖÃÖÖȺµÄ³õʼ·¶Î§À´¿ØÖÆÖÖȺµÄ¶àÑùÐÔ£¬²¢½éÉÜÈçºÎÉèÖÃÖÖȺ³ß¶È¡£

? ¾ÙÀý¡ª¡ªÉèÖóõʼ·¶Î§

ÒÅ´«Ëã·¨¹¤¾ßÔÚĬÈÏÇé¿öÏÂÀûÓÃÉú³Éº¯ÊýËæ»úÉú³ÉÒ»¸ö³õʼÖÖȺ¡£Ê¹ÓÃÕß¿ÉÒÔÔÚ¡°Population¡±µÄ¡°Initial range¡±Îı¾¿òÖÐÖ¸¶¨³õʼÖÖȺµÄÏòÁ¿·¶Î§¡£

×¢Ò⣺³õʼ·¶Î§½ö½öÏÞÖÆÔÚ³õʼÖÖȺÖеĵãµÄ·¶Î§¡£ºóÐø¸÷´ú°üº¬µÄµã¿ÉÒÔ²»ÔÚ³õʼÖÖȺµÄ·¶Î§Ö®ÄÚ¡£

Èç¹ûÖªµÀÎÊÌâ½âµÄ´ó¸Å·¶Î§£¬¼ÆËãʱ¾Í¿ÉÒÔÖ¸¶¨°üº¬ÎÊÌâ½âµÄ³õʼ·¶Î§¡£µ«ÊÇ£¬¼ÙÉèÖÖȺ¾ßÓÐ×ã¹»µÄ¶àÑùÐÔ£¬ÒÅ´«Ëã·¨¾Í¿ÉÒÔÕÒµ½²»ÔÚ³õʼ·¶Î§µÄ½â¡£ÏÂÃæµÄÀý×ÓÏÔʾ³õʼ·¶Î§¶ÔÒÅ´«Ëã·¨ÐÔÄܵÄÓ°Ïì¡£Õâ¸öÀý×ÓÀûÓÃRastriginº¯Êý£¬º¯ÊýÔÚÔ­µãÈ¡µÃ×îСֵΪ0¡£ÔËÐÐ֮ǰÔÚÒÅ´«Ëã·¨¹¤¾ßÖÐÉèÖÃÏÂÁвÎÊý£º

? ÉèÖÃÊÊÓ¦¶Èº¯ÊýΪ @Rastriginsfcn¡£

167

? ÉèÖá°Number of variables¡±Îª 2¡£

? ÔÚ¡°Plots¡±´°¸ñÑ¡Ôñ¡°Best fitness£¨×î¼ÑÊÊÓ¦¶È£©¡±¡£ ? ÔÚ¡°Plots¡±´°¸ñÑ¡Ôñ¡°Range¡±¡£ ? ÉèÖá°Initial range¡±Îª [1£»1.1]¡£

È»ºó£¬µ¥»÷Start°´Å¥¡£ÒÅ´«Ëã·¨·µ»Ø×î¼ÑÊÊÓ¦¶ÈֵΪ2£¬ÆäÏÔʾͼÐÎÈçͼ8.36Ëùʾ¡£

ͼ8.36 ³õʼ·¶Î§Îª[1; 1.1]ʱ×î¼ÑÊÊÓ¦¶ÈÖµºÍƽ¾ù¾àÀë

ͼ8.38ÉÏÃæÎªÃ¿´ú×î¼ÑÊÊÓ¦¶ÈÖµ±ä»¯Í¼£¬ÏÂÃæÎªÃ¿´ú¸öÌåÖ®¼äƽ¾ù¾àÀëͼ£¬Ëü¿ÉÒԺܺõØÓÃÀ´ºâÁ¿ÖÖȺµÄ¶àÑùÐÔ¡£¶ÔÓÚ³õʼ·¶Î§µÄÉèÖã¬ÓÉÓÚ¶àÑùÐÔ̫С£¬Ëã·¨½øÕ¹ºÜС¡£

µÚ¶þ´Î£¬³¢ÊÔÉèÖá°Initial range¡±Îª [1; 100] £¬ÔËÐÐËã·¨£¬µÃµ½×î¼ÑÊÊÓ¦¶ÈÖµ´óԼΪ3.9£¬Èçͼͼ8.37Ëùʾ¡£

168

ͼ8.37 ³õʼ·¶Î§Îª[1; 100]ʱ×î¼ÑÊÊÓ¦¶ÈÖµºÍƽ¾ù¾àÀë

Õâ´Î£¬Ëã·¨½øÕ¹½Ï¿ì¡£µ«ÊÇ£¬ÓÉÓÚ¸öÌåÖ®¼äµÄƽ¾ù¾àÀëÌ«´ó£¬×î¼Ñ¸öÌåÔ¶Àë×îÓŽ⡣ µÚÈý´Î£¬ÉèÖá°Initial range¡±Îª [1; 2] £¬ÔËÐÐËã·¨¡£µÃµ½×î¼ÑÊÊÓ¦¶ÈÖµ´óԼΪ0.012£¬Èçͼ8.38Ëùʾ¡£

169

ͼ8.38 ³õʼ·¶Î§Îª[1; 2]ʱ×î¼ÑÊÊÓ¦¶ÈÖµºÍƽ¾ù¾àÀë

Õâ´ÎÓÉÓÚ¶àÑùÐԱȽÏÊʺÏÕâ¸öÎÊÌ⣬ËùÒÔËã·¨µÃµ½µÄ½á¹û±ÈǰÁ½´Î¶¼ºÃ¡£ £¨2£©ÉèÖÃÖÖȺ³ß¶È

ÔÚ¡°ÖÖȺ£¨Population£©¡±²ÎÊýÓòÖС°Size¡±¾ö¶¨Ã¿´úÖÖȺµÄ´óС¡£Ôö¼ÓÖÖȺµÄ´óС£¬ÒÅ´«Ëã·¨Äܹ»ËÑË÷¸ü¶àµÄµã£¬Òò´Ë£¬Äܹ»µÃµ½½ÏºÃ½á¹û¡£µ«ÊÇ£¬ÖÖȺԽ´ó£¬ÒÅ´«Ë㷨ÿ´úÔËÐÐʱ¼äÔ½³¤¡£

×¢Ò⣺ÖÁÉÙÓ¦¸ÃÉèÖᰳ߶ȣ¨Size£©¡±µÄֵΪ¡°Number of variables¡±£¬ÒÔ±ãÔÚÿһÖÖȺÖÐʹ¸öÌ峬³öËÑË÷·¶Î§¡£

½øÐÐʵÑéʱ£¬¿ÉÒÔÉèÖò»Í¬µÄÖÖȺ³ß¶È£¬²»ÏÞÖÆÔËÐÐʱ¼ä£¬ÒÔÆÚµÃµ½×îºÃ½á¹û¡£ 8.3.3.2 ÊÊÓ¦¶È²âÁ¿

ÊÊÓ¦¶È²âÁ¿°ÑÊÊÓ¦¶Èº¯Êý·µ»ØµÄԭʼÊÊÓ¦¶ÈµÃ·Öֵת»»ÎªÊʺÏÑ¡Ôñº¯ÊýµÄ·¶Î§ÄÚµÄÖµ¡£Ñ¡Ôñº¯Êý¸ù¾ÝÊÊÓ¦¶ÈÖµµÄ´óС£¬Ñ¡ÔñÏÂÒ»´úµÄ¸¸Ì塣ѡÔñº¯Êý·ÖÅä´óÑ¡Ôñ¸ÅÂʸøÊÊÓ¦¶ÈÖµ´óµÄ¸öÌå¡£ÊÊÓ¦¶È²âÁ¿ÖµµÄ·¶Î§Ó°ÏìÒÅ´«Ëã·¨µÄÐÔÄÜ¡£Èç¹û²âÁ¿Öµ±ä»¯·¶Î§Ì«´ó£¬Ôò¾ßÓи߲âÁ¿ÖµµÄ¸öÌ叴֯µÄËٶȺܿ죬ȡ´úÖÖȺ»ùÒò³ØµÄËٶȺܿ죬·À°­ÁËÒÅ´«Ëã·¨ËÑË÷½â¿Õ¼äµÄÆäËüÇøÓò¡£Ïà·´£¬Èç¹û²âÁ¿Öµ±ä»¯Ì«Ð¡£¬ËùÓиöÌ叴֯»ú»á»ù±¾Ïàͬ£¬ÔòËÑË÷¹ý³Ì½øÕ¹»ºÂý¡£

ȱʡµÄÊÊÓ¦¶È³ß¶È±ä»»º¯ÊýΪRank£¨ÅÅÐò£©£¬¸ù¾Ýÿ¸ö¸öÌåµÄ˳Ðò¶ø²»ÊÇËüµÄµÃ·ÖÖµÀ´±ä»»Ô­Ê¼µÃ·ÖÖµ¡£¸öÌåµÄ˳ÐòÊÇËüÔÚ·ÖÀàºóµÄλÖá£×îÊÊÓ¦µÄ¸öÌåµÄÐòºÅΪ1£¬´Î֮Ϊ2£¬ÒÀ´ÎÀàÍÆ¡£ÅÅÐò³ß¶È±ä»»º¯Êý·ÖÅä³ß¶ÈÖµÓÐÏÂÁÐÄ¿µÄ£º

? ¸öÌåµÄ³ß¶ÈÖµÓën³ÉÕý±È¡£

? Õû¸öÖÖȺµÄ³ß¶ÈÖµµÄºÍµÈÓÚÒªÇóÉú³ÉÏÂÒ»´ú¸¸ÌåµÄÊýÄ¿¡£ ÅÅÐòÊÊÓ¦¶È³ß¶È±ä»»º¯Êý±ÜÃâÁ˳õʼֵµÄ½çÏÞµÄÓ°Ïì¡£

ͼ8.39ËùʾΪ¾ßÓÐ20¸ö¸öÌåµÄÒ»¸öµäÐÍÖÖȺµÄ³õʼµÃ·ÖÖµ£¬°´ÉýÐòÅÅÐò¡£

170

ͼ8.39 ¾ßÓÐ20¸ö¸öÌåµÄÒ»¸öµäÐÍÖÖȺµÄ³õʼµÃ·ÖÖµ

ͼ8.40ËùʾΪʹÓó߶ȱ任º¯ÊýµÄ³õʼ³ß¶ÈÖµ¡£

ͼ8.40 ʹÓó߶ȱ任º¯ÊýµÄ³õʼ³ß¶ÈÖµ

ÒòΪËã·¨°´ÊÊÓ¦¶Èº¯ÊýµÄ×îС»¯´¦Àí£¬ËùÒԵ͵ijõʼֵ¾ßÓиߵij߶ÈÖµ¡£ÓÖÒòΪÅÅÐò³ß¶È±ä»»Ö»¸ù¾Ý¸öÌåµÄ˳Ðò·ÖÅäÖµµÄ´óС£¬¶ÔÓÚÒ»¸ö´óСΪ20¡¢¸¸±²ÊýµÈÓÚ32µÄȺÌ壬ÏÔʾµÄ

171

³ß¶ÈÖµ¿ÉÒÔÊÇÏàͬµÄ¡£

¿ÉÒÔ°ÑÅÅÐò³ß¶È±ä»»£¨Rank scaling£©Óë¶¥¼¶³ß¶È±ä»»£¨Top scaling£©½øÐбȽϡ£ÎªÁ˹۲ì³ß¶È±ä»»µÄЧ¹û£¬¿ÉÒÔ°ÑÒÅ´«Ëã·¨ÀûÓÃÅÅÐò³ß¶È±ä»»µÃµ½µÄ½á¹ûÓëÀûÓÃÆäËüº¯Êý£¨Èç¶¥¼¶±ä»»£©µÃµ½µÄ½á¹ûÏà±È½Ï¡£Ä¬ÈÏÇé¿öÏ£¬¶¥¼¶³ß¶È±ä»»·ÖÅä4¸ö×î¼ÑÊÊÓ¦¶È¸öÌåÏàͬµÄ³ß¶ÈÖµ£¬µÈÓÚ¸¸±²Êý³ýÒÔ4£¬¶ø·ÖÅäÆäËü¸öÌåµÄ³ß¶ÈֵΪ0¡£ÀûÓÃĬÈϵÄÑ¡Ôñº¯Êý£¬Ö»ÓÐ4¸ö×î¼ÑÊÊÓ¦¶È¸öÌåÄܱ»Ñ¡Îª¸¸±²¡£Í¼8.41Ϊ±È½ÏÅÅÐò³ß¶È±ä»»Óë¶¥¼¶³ß¶È±ä»»µÃµ½µÄ³ß¶ÈÖµ£¬ÖÖȺ³ß¶ÈΪ20£¬¸¸±²ÊýΪ32¡£

ͼ8.41 ±È½ÏÅÅÐò³ß¶È±ä»»Óë¶¥¼¶³ß¶È±ä»»µÃµ½µÄ³ß¶ÈÖµ

ÒòΪTop scalingÏÞÖÆ¸¸±²Îª×î¼ÑÊÊÓ¦¶È¸öÌ壬Ëü²úÉúµÄÖÖȺÀàÐͱÈRank scaling²úÉúµÄÖÖȺÀàÐÍÉÙ¡£Í¼8.42ËùʾΪÿһ´úRank scalingÓëTop scalingµÃµ½µÄ¸öÌåÖ®¼äµÄ¾àÀë±ä»¯µÄ±È½Ï¡£

172

ͼ8.42 ÅÅÐòÓë¶¥¼¶³ß¶È±ä»»¸÷´ú¸öÌåÖ®¼ä¾àÀë±ä»¯Ö®±È½Ï

8.3.3.3 Ñ¡Ôñ

Ñ¡Ôñº¯Êý¸ù¾Ý¸öÌåÓÉÊÊÓ¦¶È³ß¶È±ä»»º¯ÊýµÃµ½µÄ³ß¶ÈÖµ£¬ÎªÏÂÒ»´úÑ¡Ôñ¸¸±²¡£µ±Ò»¸ö¸öÌåΪ¶à¸ö×Ó±²¹±Ï×ËüµÄ»ùÒòʱ£¬Ëü¾Í¿ÉÄܶà´Î±»Ñ¡×ö¸¸±²¡£Ä¬ÈϵÄÑ¡Ôñº¯ÊýΪStochastic uniform£¨Ëæ»ú¾ùÔȺ¯Êý£©¡ª¡ªÔÚÿһ¸¸±²»­³öÒ»ÌõÓëÑ¡ÔñÏß¶ÔÓ¦µÄÖ±Ïߣ¬³¤¶ÈÓëËüµÄ³ß¶ÈÖµ³É±ÈÀý¡£Ëã·¨ÒԵȲ½³¤ÔÚÏßÉÏÒÆ¶¯¡£ÔÚÿһ²½£¬Ëã·¨´ÓÂäÈëÏßÉϵIJ¿·Ö·ÖÅ丸±²¡£

Ò»¸ö±È½ÏÈ·¶¨µÄÑ¡Ôñº¯ÊýÊÇRemainder£¬ÓÉÏÂÁÐÁ½²½ÔËÐУº

Ê×ÏÈ£¬º¯Êý°´Õճ߶ÈÖµµÄÕûÊý²¿·ÖΪÿ¸ö¸öÌåÑ¡Ôñ¸¸±²¡£ÀýÈ磬¼ÙÉèÒ»¸ö¸öÌåµÄ³ß¶ÈÖµÊÇ2.3£¬º¯ÊýÑ¡ÔñÕâ¸ö¸öÌåÁ½´Î×÷Ϊ¸¸±²¡£

Æä´Î£¬ÔÚËæ»ú¾ùÔÈÑ¡Ôñʱ£¬Ñ¡Ôñº¯ÊýÀûÓó߶ÈÖµµÄСÊý²¿·ÖÑ¡ÔñÊ£ÓàµÄ¸¸±²¡£º¯ÊýÂäÈëÑ¡ÔñÏßÄÚ£¬¼´³¤¶ÈÓë¸öÌå³ß¶ÈÖµµÄСÊý²¿·Ö³É±ÈÀý£¬ÔÚÏßÉϰ´µÈ²½³¤Òƶ¯À´Ñ¡Ôñ¸¸±²¡£×¢Ò⣬Èç¹û³ß¶ÈÖµµÄСÊý²¿·Ö¶¼µÈÓÚ0£¬¾ÍÏó¶¥¼¶³ß¶È±ä»»Ò»Ñù£¬Ñ¡ÔñÊÇÍêȫȷ¶¨µÄ¡£ 8.3.3.4 ¸´ÖƲÎÊý

¸´ÖƲÎÊý¿ØÖÆÒÅ´«Ëã·¨ÔõÑùÉú³ÉÏÂÒ»´ú¡£ÕâЩ²ÎÊýÓУº

elite count£¨ÓÅÁ¼¼ÆÊý£©¡ª ÔÚµ±Ç°ÖÖȺÖУ¬¾ßÓÐ×î¼ÑÊÊÓ¦¶ÈÖµµÄ¸öÌåÒÅ´«µ½ÏÂÒ»´úµÄ¸öÌåÊý¡£ÕâЩ¸öÌå³ÆÎªÓÅÁ¼×Ó±²£¨elite children£©¡£elite countµÄĬÈÏֵΪ2¡£

µ±ÓÅÁ¼¼ÆÊýÖÁÉÙΪ1ʱ£¬×î¼ÑÊÊÓ¦¶ÈÖµ¿ÉÄÜ´ÓÒ»´úµ½ÏÂÒ»´ú¼õÉÙ¡£ÕâÊÇÈËÃÇÏ£ÍûµÄ£¬ÒòΪÒÅ´«Ë㷨ʹÊÊÓ¦¶Èº¯Êý×îС»¯¡£ÉèÖÃelite countΪһ¸ö´óÊý£¬¿ÉÒÔʹµÃ×îÊÊÓ¦¸öÌå¿ØÖÆÖÖȺ£¬µ«¿ÉÄܼõСËÑË÷µÄÓÐЧÐÔ¡£

Crossover fraction£¨½»²æ¸ÅÂÊ£©¡ª ÏÂÒ»´ú¸öÌåµÄһС²¿·Ö£¬Ëü²»ÊÇelite children£¨ÓÅÁ¼×Ó±²£©£¬¶øÊÇÓɽ»²æ²úÉúµÄ²¿·Ö¡£²Î¼û¡°8.3.3.7 ÉèÖý»²æ¸ÅÂÊ¡±Ò»½Ú¡£ 8.3.3.5 ±äÒìÓë½»²æ

ÒÅ´«Ëã·¨ÔËÓõ±Ç°´úµÄ¸öÌåÉú³É×Ó´ú¸öÌ壬¹¹³ÉÏÂÒ»´ú¡£³ýÁËelite childrenÍ⣬Ëã·¨»¹Éú³ÉÏÂÁÐ×Ó´ú¸öÌ壺

173

? ´Óµ±Ç°´úÖÐÑ¡ÔñÁ½¸ö¸öÌ壬½»»»Á½¸ö¸öÌåµÄij¸ö»òijЩ루»ùÒò£©£¬½áºÏºóÐγɽ»²æ×Ó¸öÌå¡£

? Ëæ»ú¸Ä±äµ±Ç°´úµÄµ¥¸ö¸öÌåÐγɱäÒì×Ó¸öÌå¡£

ÕâÁ½¸ö¹ý³ÌÊÇÒÅ´«Ëã·¨µÄÖ÷Òª¹ý³Ì¡£½»²æÄܹ»Ê¹ÒÅ´«Ëã·¨´Ó²»Í¬µÄ¸öÌåÖÐÌáÈ¡¸üºÃµÄ»ùÒò£¬½áºÏµ½¾ßÓÐÓÅÊÆµÄ×Ó¸öÌåÖС£±äÒìÔö¼ÓÁËÖÖȺµÄ¶àÑùÐÔ£¬Òò¶øÔö´óÁËËã·¨Éú³É¸ü¸ßÊÊÓ¦¶ÈÖµµÄ¸öÌåµÄ¿ÉÄÜÐÔ¡£Ã»ÓбäÒ죬Ëã·¨Ö»ÄܲúÉúÓɳõʼÖÖȺ½áºÏ»ùÒòµÄ×Ó¼¯¹¹³ÉµÄ¸öÌå¡£

Ëã·¨Éú³ÉµÄ×Ó¸öÌåÀàÐÍÈçÏ£º

? Elite count£¬ÔÚ¡°Reproduction¡±Îı¾¿ò£¬Ö¸¶¨elite childrenµÄÊýÄ¿¡£

? Crossover fraction£¬ÔÚReproductionÎı¾¿ò£¬Ö¸¶¨ÖÖȺÖн»²æ×Ó¸öÌåµÄ¸ÅÂÊ£¬Ëü²»Í¬ÓÚelite children¡£ÀýÈ磬¼ÙÉèPopulation size£¨ÖÖȺ³ß¶È£©Îª20£¬ Elite countΪ 2£¬Crossover fractionΪ 0.8£¬ÔòÏÂÒ»´ú×Ó¸öÌåÀàÐÍÈçÏ£º ? ÓÐ2¸öÓÅÁ¼×Ó±²¡£

? ³ýÓÅÁ¼×Ó±²ÒÔÍ⣬»¹ÓÐ18¸ö¸öÌå¡£ËùÒÔ¼ÆËã 0.8*18 = 14.4È¡ÕûµÃ14£¬µÃµ½14¸ö½»²æ

×Ó¸öÌå¡£

? »¹ÓÐ4¸ö¸öÌ壬ËüÃDz»ÊÇelite children£¬¶øÊDZäÒì×Ó¸öÌå¡£ 8.3.3.6 ÉèÖñäÒì´óС

ÒÅ´«Ëã·¨Ó¦ÓñäÒ캯Êý£¨Mutation function£©×Ö¶ÎÖÐÖ¸¶¨µÄº¯Êý½øÐбäÒì²Ù×÷¡£Ä¬ÈϵıäÒ캯ÊýΪ¸ß˹º¯ÊýGaussian£¬Ëü°ÑÒ»¸ö´Ó¸ß˹·Ö²¼Ñ¡ÔñµÄËæ»úÊý£¬¼´mutation£¬¼Óµ½¸¸±²ÏòÁ¿µÄÿһ¸öÏîÉÏ¡£µäÐÍÇé¿öÏ£¬Óë·Ö²¼µÄ±ê×¼²î³É±ÈÀýµÄ±äÒì´óС£¬ÔÚÿһºó´úÖж¼ÊǼõСµÄ¡£Í¨¹ý²ÎÊý³ß¶È£¨Scale£©ºÍѹËõ£¨Shrink£©£¬¿ÉÒÔ¿ØÖÆÃ¿Ò»´ú±äÒìµÄƽ¾ùÊýÁ¿¡£

Scale¿ØÖƵÚÒ»´ú±äÒìµÄ±ê×¼²î¡£±ê×¼²îÊÇScale³ËÒÔ³õʼÖÖȺµÄ·¶Î§¡ª¡ª¸Ã·¶Î§ÊÇʹÓÃÕßÓÉInitial range²ÎÊýÖ¸¶¨µÄ¡£

ѹËõ£¨Shrink£©¿ØÖƱäÒìµÄƽ¾ùÊýÁ¿µÄ¼õÉÙÂÊ¡£±ê×¼²îÏßÐÔ¼õС£¬ÒÔ±ã±ê×¼²îµÈÓÚ1 ¨C Shrink³ËÒÔËüÔÚµÚÒ»´úµÄÖµ¡£ÀýÈ磬¼ÙÉèShrinkȱʡֵΪ1£¬Ôò±äÒìÊýÔÚ×îºóÒ»²½¼õСµ½0¡£Í¨¹ýÑ¡Ôñ»æÍ¼º¯ÊýDistance£¨¾àÀ룩ºÍRangeÄܹ»¹Û²ìµ½±äÒìµÄЧ¹û¡£Rastriginº¯ÊýµÄÒÅ´«Ëã·¨µÄÔËÐнá¹ûÈçͼ8.43Ëùʾ¡£

ͼ8.43 ѹËõֵΪ1ʱRastriginº¯ÊýµÄ¾àÀëºÍ·¶Î§

ͼ8.45µÄÉϲ¿Í¼ÐÎÏÔʾÿһ´ú¸÷µãÖ®¼äµÄƽ¾ù¾àÀë¡£µ±±äÒìÊý¼õСʱ£¬¸öÌåÖ®¼äµÄƽ¾ù¾àÀëÒ²¼õС£¬ÔÚ×îºóÒ»´ú´óÔ¼¼õСµ½0¡£Í¼8.45ϲ¿Í¼ÐÎÖеĴ¹Ö±Ïß±íʾÿһ´úÊÊÓ¦¶ÈÖµÓÉ×îС

174

µ½×î´óµÄ·¶Î§ÒÔ¼°ÊÊÓ¦¶ÈÖµµÄƽ¾ùÖµ¡£µ±±äÒìÊý¼õСʱ£¬ÊÊÓ¦¶ÈÖµµÄ·¶Î§Ò²¼õС¡£ÕâЩͼÐÎÏÔʾ¼õÉÙ±äÒìÊý£¬Ò²¾Í¼õСÁË×Ó±²µÄ¶àÑùÐÔ¡£

×÷Ϊ±È½Ï£¬Í¼8.44ÏÔʾµ±ShrinkȡΪ0.5ʱµÄDistanceºÍRangeµÄͼÐΡ£

ͼ8.44 ѹËõֵΪ0.5ʱRastriginº¯ÊýµÄ¾àÀëÓ뷶Χ

µ±ShrinkÉèÖÃΪ0.5ʱ£¬×îºóÒ»´úµÄƽ¾ù±äÒìÊý¼õСÁËÒ»°ë¡£Í¬Ñù£¬¸öÌåÖ®¼äµÄƽ¾ù¾àÀëÒ²´óÔ¼¼õСÁËÒ»°ë¡£ 8.3.3.7 ÉèÖý»²æ¸ÅÂÊ

ÔÚReproductionÑ¡ÏîÖУ¬ÓÉCrossover fractionÎı¾¿òÖ¸¶¨Ã¿Ò»ÖÖȺµÄÒ»²¿·Ö£¬ËüÃDz»ÊÇelite children£¬¶øÊÇ×é³ÉµÄ½»²æ×Ó¸öÌ塣ȡ½»²æ¸ÅÂʵÈÓÚ1£¬Òâζ×ÅËùÓÐ×Ó¸öÌå¶¼Êǽ»²æ×Ó¸öÌ壻ȡ½»²æ¸ÅÂʵÈÓÚ0£¬Òâζ×ÅËùÓÐ×Ó¸öÌå¶¼ÊDZäÒì×Ó¸öÌå¡£ÏÂÃæµÄÀý×Ó˵Ã÷£¬ÕâÁ½¸ö¼«¶ËÉèÖ㬶¼²»ÊÇÓÐЧµÄº¯ÊýÓÅ»¯²ßÂÔ¡£

ÔÚÕâ¸öÀý×ÓÖУ¬¶¨ÒåÊÊÓ¦¶Èº¯ÊýΪ£º

f(x1,x2,,xn)?x1?x2??xn

¼´µãµÄÊÊÓ¦¶Èº¯ÊýֵΪËùÓеãµÄ×ø±êµÄ¾ø¶ÔÖµÖ®ºÍ¡£

ͨ¹ýÉèÖÃFitness function Ϊ@(x) sum(abs(x))£¬¾Í¿ÉÒÔ¶¨ÒåΪһ¸öÎÞÃûº¯Êý¡£ ÔËÐÐÕâ¸öÀý×Óʱ£¬ÓйزÎÊýÉèÖÃÈçÏ£º

? ÉèÖÃFitness functionΪ @(x) sum(abs(x))¡£ ? ÉèÖÃNumber of variablesΪ10¡£ ? ÉèÖÃInitial rangeΪ[-1; 1]¡£

? ÔÚPlots´°¸ñ£¬Ñ¡ÔñBest fitnessºÍDistance¡£ Ê×ÏÈÉèÖÃCrossover fractionΪȱʡֵ0.8£¬ÔËÐÐËã·¨£¬µÃµ½×î¼ÑÊÊÓ¦¶ÈÖµ´óԼΪ0.2£¬Èçͼ8.45Ëùʾ¡£

175

ͼ8.45 ½»²æ¸ÅÂÊΪ0.8ʱº¯ÊýµÄÊÊÓ¦¶ÈÖµÓëÆ½¾ù¾àÀë

£¨1£©ÎÞ±äÒìµÄ½»²æ

ΪÁ˹۲ìûÓбäÒìʱÒÅ´«Ëã·¨ÔõÑùÔËÐУ¬ÉèÖÃCrossover fractionΪ1.0£¬²¢µ¥»÷Start°´Å¥£¬µÃµ½µÄ×î¼ÑÊÊÓ¦¶ÈÖµÔ¼µÈÓÚ1.3£¬Èçͼ8.46Ëùʾ¡£

×î¼Ñ¸öÌåÔÚµÚ8´ú²úÉú ËùÓиöÌå¶¼ÊÇÏàͬµÄ

ͼ8.46 ÎÞ±äÒìµÄ½»²æÏº¯ÊýµÄÊÊÓ¦¶ÈÖµÓëÆ½¾ù¾àÀë

ÔÚÕâÖÖÇé¿öÏ£¬Ë㷨ѡÔñ³õʼÖÖȺÖеĸöÌå»ùÒò£¬²¢°ÑËüÃÇÖØÐ½áºÏÆðÀ´¡£ÒòΪûÓбä

176

Ò죬ËùÒÔËã·¨²»ÄܲúÉúÈκÎеĻùÒò¡£Ëã·¨ÀûÓÃÕâЩµÚ8´úµÄ»ùÒòÀ´²úÉú×îºÃµÄ¸öÌ壬Õâʱ×î¼ÑÊÊÓ¦¶ÈͼÐγÊÏÖΪˮƽ¡£´Ëºó£¬Ëü´Ó½ô½Ó×ŵÄÒ»´úÑ¡Ôñ×î¼Ñ¸öÌ壬²úÉúеÄ×î¼Ñ¸öÌåµÄ¸±±¾¡£µ½Á˵Ú17´ú£¬ÖÖȺÖеÄËùÓиöÌå¶¼Ïàͬ£¬Ò²¾ÍÊÇ˵£¬¶¼±ä³ÉÁË×î¼Ñ¸öÌå¡£µ±ÕâÖÖÇéÐγöÏÖʱ£¬¸öÌåÖ®¼äµÄƽ¾ù¾àÀëΪ0¡£ÓÉÓÚËã·¨ÔÚµÚ8´úÖ®ºó²»ÄܸÄÉÆ×î¼ÑÊÊÓ¦¶ÈÖµ£¬ËüÔÚ50´ú¹ýºó¾ÍÏÝÓÚÍ£ÖÍ£¬ÒòΪStall generations£¨Í£ÖÍ´úÊý£©ÉèÖÃΪ50¡£

£¨2£©ÎÞ½»²æµÄ±äÒì

ΪÁ˲鿴ÒÅ´«Ëã·¨ÔÚûÓн»²æµÄÇéÐÎÏÂÊÇÈçºÎ¹¤×÷µÄ£¬ÉèÖÃCrossover fractionΪ0£¬²¢µ¥»÷Start°´Å¥£¬µÃµ½µÄ×î¼ÑÊÊÓ¦¶ÈÖµÔ¼µÈÓÚ3.5£¬Èçͼ8.47Ëùʾ¡£

ͼ8.47 ÎÞ½»²æµÄ±äÒìϺ¯ÊýµÄÊÊÓ¦¶ÈÖµÓëÆ½¾ù¾àÀë

ÔÚÕâÖÖÇé¿öÏ£¬Ëã·¨Ó¦ÓõÄËæ»ú±ä»¯Ã»ÓиÄÉÆµÚÒ»´ú×î¼Ñ¸öÌåµÄÊÊÓ¦¶Èº¯ÊýÖµ¡£µ«ÊÇ£¬Ëü¸ÄÉÆÁËÆäËü¸öÌåµÄ¸öÌå»ùÒò£¬¿ÉÒÔÓÉͼ8.49ÖеÄÉϲ¿Í¼Ðο´µ½ÊÊÓ¦¶Èº¯ÊýµÄƽ¾ùÖµÖð½¥¼õÉÙ£¬ÕâЩ¸ÄÉÆµÄ»ùÒòûÓкÍ×î¼Ñ¸öÌå»ùÒò½áºÏ£¬ÒòΪûÓн»²æ¡£½á¹û£¬×î¼ÑÊÊÓ¦¶ÈͼÐÎÊÇˮƽµÄ£¬²¢ÇÒËã·¨ÔÚ50´úÍ£ÖÍ¡£

£¨3£©±È½ÏÒÅ´«Ë㷨ȡ²»Í¬½»²æ¸ÅÂÊʱµÄÔËÐнá¹û

ÔÚ¹¤¾ßÏäÓÐÒ»¸öÑÝʾº¯Êýdeterministicstudy.m£¬Crossover fraction·Ö±ðÉèÖÃΪ0¡¢0.2¡¢0.4¡¢0.6¡¢0.8¡¢1£¬°ÑÒÅ´«Ëã·¨Ó¦Óõ½Rastriginº¯Êý£¬±È½Ï²»Í¬µÄÔËÐнá¹û¡£ÒÅ´«Ëã·¨ÔËÐÐ10´ú¡£¶ÔÓÚ½»²æ¸ÅÂʵÄÿһ¸öÖµ£¬»­³öÿһ´ú֮ǰµÄËùÓдúµÄ×î¼ÑÊÊÓ¦¶ÈÖµµÄ¾ùÖµºÍ±ê×¼²î¡£ÔÚMATLAB ÃüÁî´°¿Ú£¬ÊäÈëdeterministicstudy£¬µ±ÑÝʾ½áÊøÊ±£¬»­³öͼÐΣ¬Èçͼ8.48Ëùʾ¡£

177

ͼ8.48 ²»Í¬½»²æ¸ÅÂÊÏÂ×î¼ÑÊÊÓ¦¶ÈÖµµÄ¾ùÖµºÍ±ê×¼²î

ͼ8.48ÖÐÏÂÃæµÄͼÐÎÏÔʾ10´ú²»Í¬µÄ½»²æ¸ÅÂÊÏÂ×î¼ÑÊÊÓ¦¶ÈÖµµÄ¾ùÖµºÍ±ê×¼²î£¬ÉϱßͼÐεÄÑÕÉ«ÏÔʾÿһ´úµÄ×î¼ÑÊÊÓ¦¶ÈÖµ¡£¶ÔÓÚÕâ¸öÊÊÓ¦¶Èº¯Êý£¬µ±Crossover fractionµÈÓÚ0.8ʱµÃµ½×îºÃ½á¹û¡£µ«ÊÇ£¬¶ÔÓÚÆäËüÊÊÓ¦¶Èº¯Êý£¬½»²æ¸ÅÂÊ¿ÉÄÜÈ¡ÁíÍâµÄÖµ£¬²ÅÄܵõ½×îºÃ½á¹û¡£ 8.3.3.8 ¾ÙÀý¡ª¡ªÏà¶ÔÓÚÈ«¾ÖµÄ¾Ö²¿×îСֵ

ÓÐʱ£¬ÓÅ»¯µÄÄ¿µÄÊÇÒªÕÒµ½º¯ÊýµÄÈ«¾Ö×îСֵ»ò×î´óÖµ¡ª¡ªÒ»¸öµãµÄº¯ÊýÖµ±ÈËÑË÷¿Õ¼äÖÐÆäËûÈκεãÉϵĺ¯ÊýÖµ¶¼ÒªÐ¡»ò¶¼Òª´ó¡£µ«ÊÇ£¬×îÓÅ»¯Ëã·¨ÓÐʱµÃµ½µÄÊǾֲ¿×îСֵ¡ª¡ª¸ÃµãµÄº¯ÊýÖµ±ÈËüµÄ¸½½üµãµÄº¯ÊýֵС£¬µ«ÊÇ¿ÉÄܱÈËÑË÷¿Õ¼äµÄÆäËüµãµÄº¯ÊýÖµ´ó¡£ÎªÁ˿˷þÕâ¸ö²»×㣬ÒÅ´«Ëã·¨µÄ²ÎÊý±ØÐëÉèÖÃÊʵ±¡£ÀýÈ磬¿¼ÂÇÏÂÃæµÄº¯Êý

x2?µ±x?20 ??exp[?()],f(x)??20???exp(?1)?(x?20)(x?22),µ±x?20º¯Êýf (x)µÄͼÐÎÈçͼ8.49Ëùʾ¡£

178

¾Ö²¿×îСֵ

ͼ8.49 º¯Êýf (x)µÄͼÐÎ

Õâ¸öº¯ÊýÓÐÁ½¸ö¾Ö²¿×îСֵ£¬µ±x = 0ʱ£¬º¯ÊýÖµf (x)£½-1£»µ±x = 21ʱ£¬º¯ÊýÖµf (x)Ϊ

f (x)£½-(1+1/e)¡Ö-1.36787944117144

ËùÒÔ£¬È«¾Ö×îСֵÊǵ±x = 21ʱµÄº¯ÊýÖµ¡£

ÒÔÏÂÁв½ÖèÔËÐÐÒÅ´«Ëã·¨£º

(1) ÓÃMATLAB±à¼­Æ÷½«ÏÂÃæµÄ´úÂë¸´ÖÆ¡¢Õ³Ìùµ½Ò»¸öÐÂMÎļþ¡£

function y = two_min(x) if x<20

y = -exp(-(x/20).^2); else

y = -exp(-1)+(x-20)*(x-22); end

(2) ÓÃMATLAB½«Õâ¸öÎļþ±£´æÎªtwo_min.m¡£ (3) ÔÚÒÅ´«Ëã·¨¹¤¾ßÖУ¬½øÐÐÈçÏÂÉèÖ㺠? ÉèÖÃFitness functionΪ@two_min¡£ ? ÉèÖÃNumber of variablesµÈÓÚ1¡£ (4) µ¥»÷Start°´Å¥¡£

ÒÅ´«Ëã·¨·µ»ØµÄÖµ£¬½Ó½ü¾Ö²¿×îСֵµãx = 0£¬Èçͼ8.50Ëùʾ¡£

179

ͼ8.50 º¯Êýf (x)µÄ¾Ö²¿×îÓŽâ

ͼ8.51˵Ã÷ΪʲôËã·¨µÃµ½µÄÊǾֲ¿×îСֵ£¬¶ø²»ÊÇÈ«¾Ö×îСֵ¡£¸Ãͼ»­³öÁËÿ´ú¸öÌåµÄ·¶Î§ÒÔ¼°×îÓŸöÌå¡£

×î¼ÑÖµ 0.00028487

ͼ8.51 ³õʼ·¶Î§Îª[0; 1]ʱÿ´ú¸öÌåµÄ·¶Î§¼°×îÓŸöÌå

×¢Ò⣺ËùÓиöÌåµÄ·¶Î§Îª-2~2.5¡£ÓÉÓÚ±äÒ죬Õâ¸ö·¶Î§±ÈȱʡInitial range [0;1]´ó£¬µ«ÊÇûÓдóµ½ËÑË÷È«¾Ö×îСֵµãx = 21µÄ¸½½ü¡£

ʹÒÅ´«Ëã·¨ËÑË÷¸ü´ó·¶Î§µÄµãµÄÒ»¸ö·½·¨ÊÇÔö¼ÓÖÖȺµÄ¶àÑùÐÔ£¬¼´Ôö´óInitial range¡£³õʼ·¶Î§²»Ò»¶¨°üº¬µãx = 21£¬µ«ÊÇËü±ØÐë×ã¹»´ó£¬ÒÔ±ãËã·¨ÄܲúÉúx = 21¸½½üµÄ¸öÌå¡£ÉèÖÃInitial rangeΪ[0;15] £¬Èçͼ8.52Ëùʾ¡£

180

ͼ8.52 ÉèÖóõʼ·¶Î§Îª[0; 15]

ÉèÖóõʼ·¶Î§Îª[0; 15] È»ºó£¬µ¥»÷Start°´Å¥¡£ÒÅ´«Ëã·¨·µ»ØµÄÖµ·Ç³£½Ó½üÓÚx£½21ʱµÄº¯ÊýÖµ£¬Èçͼ8.53Ëùʾ¡£

ͼ8.53 º¯Êýf (x)µÄÈ«²¿×îÓŽâ

ÕâÒ»´Î£¬Í¼ÐÎÏÔʾ¸öÌå¸ü´óµÄ·¶Î§¡£ÔÚµÚ¶þ´ú£¬ÓдóÓÚ21µÄ¸öÌ壬ÔÚµÚ12´ú£¬Ëã·¨ÕÒµ½´óÔ¼µÈÓÚ21µÄ×îÓŸöÌ壬Èçͼ8.54Ëùʾ¡£

181

×î¼ÑÖµ 20.9876

ͼ8.54 ³õʼ·¶Î§Îª[0; 15]ʱÿ´ú¸öÌåµÄ·¶Î§¼°×îÓŸöÌå

8.3.3.9 ʹÓûìºÏº¯Êý

»ìºÏº¯ÊýÊÇÒ»¸ö×îÓÅ»¯º¯Êý¡£ÔÚÒÅ´«Ë㷨ֹͣºó£¬ÎªÁ˸ÄÉÆÊÊÓ¦¶Èº¯ÊýÖµ£¬¿ÉÒÔʹÓûìºÏº¯Êý¡£»ìºÏº¯Êý½«ÒÅ´«Ëã·¨µÃµ½µÄ×îºóµã×÷ΪËüµÄ³õʼµã¡£¿ÉÒÔÔÚHybrid function£¨»ìºÏº¯Êý£©²ÎÊýÓòÖ¸¶¨»ìºÏº¯Êý¡£

×÷Ϊһ¸öÀý×Ó£¬Rosenbrockº¯Êý¶¨ÒåΪ

22f(x1,x2)?100(x2?x1)?(1?x1)2 ¸Ãº¯ÊýµÄͼÐÎÈçͼ8.55Ëùʾ¡£

182