基本门电路逻辑功能的测试数电实验报告 下载本文

三、实验设备与器件

1、+5V直流电源 2、逻辑电平开关 3、逻辑电平显示器 4、直流数字电压表 5、直流毫安表 6、直流微安表

7、74LS20×2、1K、10K电位器,200Ω电阻器(0.5W) 四、实验内容

在合适的位置选取一个14P插座,按定位标记插好74LS20集成块。

1、验证TTL集成与非门74LS20的逻辑功能

按图2-6接线,门的四个输入端接逻辑开关输出插口,以提供“0”与 “1”电平信号,开关向上,输出逻辑“1”,向下为逻辑“0”。门的输出端接由 LED发光二极管组成的逻辑电平显示器(又称0-1指示器)的显示插口,LED亮为逻辑“1”, 不亮为逻辑“0”。按表2-2的真值表逐个测试集成块中两个与非门的逻辑功能。74LS20有4个输入端,有16个最小项,在实际测试时,只要通过对输入1111、0111、1011、1101、1110五项进行检测就可判断其逻辑功能是否正常。

表2-2 输 入 An 1 0 1 1 1

2、74LS20主要参数的测试

(1)分别按图2-2、2-3、2-5(b)接线并进行测试,将测试结果记入表2-3中。

表2-3

输 出 Dn 1 1 1 1 0 Y1 Y2 Bn 1 1 0 1 1 Cn 1 1 1 0 1 ICCL (mA) ICCH (mA) IiL (mA) IOL (mA) NO?IOLIiL tpd = T/6 (ns) (2)接图2-4接线,调节电位器RW,使vi从OV向高电平变化,逐点测量vi和vO的对应值,记入表2-4中。 表2-4 Vi(V) 0 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 3.5 4.0 ? VO(V) 五、实验报告

1、记录、整理实验结果,并对结果进行分析。

2、画出实测的电压传输特性曲线,并从中读出各有关参数值。

六、集成电路芯片简介

数字电路实验中所用到的集成芯片都是双列直插式的,其引脚排列规则如图2-1所示。识别方法是:正对集成电路型号(如74LS20)或看标记(左边的缺口或小圆点标记),从左下角开始按逆时针方向以1,2,3,?依次排列到最后一脚(在左上角)。在标准形TTL集成电路中,电源端VCC一般排在左上端,接地端GND一般排在右下端。如74LS20为14脚芯片,14脚为VCC,7脚为GND。若集成芯片引脚上的功能标号为NC,则表示该引脚为空脚,与内部电路不连接。

七、TTL集成电路使用规则

1、接插集成块时,要认清定位标记,不得插反。

2、电源电压使用范围为+4.5V~+5.5V之间,实验中要求使用Vcc=+5V。电源极性绝对不允许接错。 3、闲置输入端处理方法

(1) 悬空,相当于正逻辑“1”,对于一般小规模集成电路的数据输入端,实验时允许悬空处理。但易受外界干扰,导致电路的逻辑功能不正常。因此,对于接有长线的输入端,中规模以上的集成电路和使用集成电路较多的复杂电路,所有控制输入端必须按逻辑要求接入电路,不允许悬空。

(2) 直接接电源电压VCC(也可以串入一只1~10KΩ的固定电阻)或接至某一固定电压(+2.4≤V≤4.5V)的电源上, 或与输入端为接地的多余与非门的输出端相接。

(3) 若前级驱动能力允许,可以与使用的输入端并联。

4、输入端通过电阻接地,电阻值的大小将直接影响电路所处的状态。当R≤680Ω时,输入端相当于逻辑“0”;当R≥4.7 KΩ时,输入端相当于逻辑“1”。对于不同系列的器件,要求的阻值不同。

5、输出端不允许并联使用(集电极开路门(OC)和三态输出门电路(3S)除外)。否则不仅会使电路逻辑功能混乱,并会导致器件损坏。

6、输出端不允许直接接地或直接接+5V电源,否则将损坏器件,有时为了使后级电路获得较高的输出电平,允许输出端通过电阻R接至Vcc,一般取R=3~5.1 KΩ。

实验二: CMOS集成逻辑门的逻辑功能与参数测试

一、实验目的

1、掌握CMOS集成门电路的逻辑功能和器件的使用规则 2、学会CMOS集成门电路主要参数的测试方法 二、实验原理

1、CMOS集成电路是将N沟道MOS晶体管和P沟道 MOS晶体管同时用于 一个集成电路中,成为组合二种沟道MOS管性能的更优良的集成电路。CMOS集成电路的主要优点是:

(1)功耗低,其静态工作电流在10-9A数量级,是目前所有数字集成电路中最低的,而TTL器件的功耗则大得多。

(2)高输入阻抗,通常大于10Ω,远高于TTL器件的输入阻抗。 (3)接近理想的传输特性,输出高电平可达电源电压的 99.9%以上,低电平可达电源电压的0.1%以下,因此输出逻辑电平的摆幅很大,噪声容限很高。

(4)电源电压范围广,可在+3V~+18V范围内正常运行。

(5)由于有很高的输入阻抗,要求驱动电流很小,约0.1μA,输出电流在+5V电源下约为 500μA,远小于TTL电路,如以此电流来驱动同类门电路,其扇出系数将非常大。在一般低频率时,无需考虑扇出系数,但在高频时,后级门的输入电容将成为主要负载,使其扇出能力下降,所以在较高频率工作时,CMOS电路的扇出系数一般取10~20。 2、CMOS门电路逻辑功能

尽管CMOS与TTL电路内部结构不同,但它们的逻辑功能完全一样。本实验将测定与门CC4081,或门CC4071,与非门CC4011,或非门CC4001的逻辑功能。各集成块的逻辑功能与真值表参阅教材及有关资料。 3、CMOS与非门的主要参数

CMOS与非门主要参数的定义及测试方法与TTL电路相仿,从略。 4、CMOS电路的使用规则

由于CMOS电路有很高的输入阻抗,这给使用者带来一定的麻烦,即外来的干扰信号很容易在一些悬空的输入端上感应出很高的电压,以至损坏器件。CMOS

10