5.[2018¡¤º£µíһģ] ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖÐ,ÒÑÖªÅ×ÎïÏßy=x-2ax+bµÄ¶¥µãÔÚxÖáÉÏ,P(x1,m),Q(x2,m)(x1 2 ¢Ùµ±m=bʱ,Çóx1,x2µÄÖµ; ¢Ú½«Å×ÎïÏßÑØyÖáÆ½ÒÆ,ʹµÃËüÓëxÖáµÄÁ½¸ö½»µã¼äµÄ¾àÀëΪ4,ÊÔÃèÊö³öÕâÒ»±ä»¯¹ý³Ì; (2)Èô´æÔÚʵÊýc,ʹµÃx1¡Üc-1,ÇÒx2¡Ýc+7³ÉÁ¢,ÔòmµÄȡֵ·¶Î§ÊÇ . 6.[2018¡¤´óÐËһģ] ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖÐ,Å×ÎïÏßy=x-(3m+1)x+2m+m(m>0)ÓëyÖá½»ÓÚµãC,ÓëxÖá½»ÓÚµã 2 2 A(x1,0),B(x2,0),ÇÒx1 (1)Çó2x1-x2+3µÄÖµ; (2)µ±m=2x1-x2+3ʱ,½«´ËÅ×ÎïÏßÑØ¶Ô³ÆÖáÏòÉÏÆ½ÒÆn¸öµ¥Î»,Ê¹Æ½ÒÆºóµÃµ½µÄÅ×ÎïÏß¶¥µãÂäÔÚ¡÷ABCµÄÄÚ²¿(²»°üÀ¨¡÷ABCµÄ±ß),ÇónµÄȡֵ·¶Î§(Ö±½Óд³ö´ð°¸¼´¿É). 5 |ÀàÐÍ4| ÓëͼÏó·ÕÛÏà¹ØµÄȡֵ·¶Î§µÄÈ·¶¨ 7.[2018¡¤»³Èáһģ] ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖÐ,Å×ÎïÏßy=nx-4nx+4n-1(n¡Ù0)ÓëxÖá½»ÓÚµãC,D(µãCÔÚµãDµÄ×ó²à),ÓëyÖá½»ÓÚµãA. 2 ͼT3-4 (1)ÇóÅ×ÎïÏß¶¥µãMµÄ×ø±ê; (2)ÈôµãAµÄ×ø±êΪ(0,3),AB¡ÎxÖá,½»Å×ÎïÏßÓÚµãB,ÇóµãBµÄ×ø±ê; (3)ÔÚ(2)µÄÌõ¼þÏÂ,½«Å×ÎïÏßÔÚB,CÁ½µãÖ®¼äµÄ²¿·ÖÑØyÖá·ÕÛ,·ÕÛºóµÄͼÏó¼ÇΪG,ÈôÖ±Ïßy=x+mÓëͼÏóGÓÐÒ»¸ö½»µã,½áºÏº¯ÊýµÄͼÏó,ÇómµÄȡֵ·¶Î§. 8.[2018¡¤ÃÅÍ·¹µÒ»Ä£] ÓÐÒ»¸ö¶þ´Îº¯ÊýÂú×ãÒÔÏÂÌõ¼þ: 6 ͼT3-5 ¢Ùº¯ÊýͼÏóÓëxÖáµÄ½»µã×ø±ê·Ö±ðΪA(1,0),B(x2,y2)(µãBÔÚµãAµÄÓÒ²à); ¢Ú¶Ô³ÆÖáÊÇÖ±Ïßx=3; ¢Û¸Ãº¯ÊýÓÐ×îСֵ-2. (1)Çë¸ù¾ÝÒÔÉÏÐÅÏ¢Çó³ö¶þ´Îº¯Êý±í´ïʽ; (2)½«¸Ãº¯ÊýͼÏóx>x2µÄ²¿·ÖͼÏóÏòÏ·ÕÛÓëÔͼÏóδ·Õ۵IJ¿·Ö×é³ÉͼÏó¡°G¡±,ƽÐÐÓÚxÖáµÄÖ±ÏßÓëͼÏó¡°G¡±ÏཻÓÚµãC(x3,y3),D(x4,y4),E(x5,y5)(x3 9.[2018¡¤Æ½¹Èһģ] ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖÐ,Å×ÎïÏßy=-x2 +2bx-3µÄ¶Ô³ÆÖáΪֱÏßx=2. ͼT3-6 7 (1)ÇóbµÄÖµ; (2)ÔÚyÖáÉÏÓÐÒ»¶¯µãP(0,m),¹ýµãP×÷´¹Ö±ÓÚyÖáµÄÖ±Ïß½»Å×ÎïÏßÓÚµãA(x1,y1),B(x2,y2),ÆäÖÐx1 ¢Ùµ±x2-x1=3ʱ,½áºÏº¯ÊýͼÏó,Çó³ömµÄÖµ; ¢Ú°ÑÖ±ÏßPBÏ·½µÄº¯ÊýͼÏóÑØÖ±ÏßPBÏòÉÏ·ÕÛ,ͼÏóµÄÆäÓಿ·Ö±£³Ö²»±ä,µÃµ½Ò»¸öеÄͼÏóW,ÐÂͼÏóWÔÚ0¡Üx¡Ü5 ʱ,-4¡Üy¡Ü4,ÇómµÄȡֵ·¶Î§. 8