µÚÊ®ÕÂÅÅÐò²Î¿¼´ð°¸ ÏÂÔØ±¾ÎÄ

µÚ

Ò»¡¢Ñ¡ÔñÌâ 1.D 2.D 3.D 4.B 5.B 6.B 10Õ ÅÅÐò£¨²Î¿¼´ð°¸£©

8.A 9.C 10.C,D,F 11.1D,C 11.2A,D,F 7.C,E 11.3B 11.4(A,C,F)(B,D,E) 12.C,D 13.A 14.B,D 15.D 16.D 22.B 23.C 24.C 36.A 37.A 38.C 25.A 26.C 39.B 40.C 27.D 28.C 41.C 42.B 43.A 44.B 17.C 18.A 19.A 20.C 21.C 29.B 30.C,B 31.D 32.D 33.A 34.D 35.A 45.A 46.C 47.B,D 48.D 49.D 59.1C 59.2A 59.3D 59.4B 59.5G 63.A 64.B 65.A 66.A 50.D 51.C 52.E,G 53.B 54.C 55.C 56.B 57.B 58.A 60.1B 60.2C 60.3A 61.1B 61.2D 61.3B 61.4C 61.5F 62.A ²¿·Ö´ð°¸½âÊÍÈçÏ£º 18. ¶ÔÓÚºóÈýÖÖÅÅÐò·½·¨Á½ÌËÅÅÐòºó£¬ÐòÁеÄÊײ¿»òβ²¿µÄÁ½¸öÔªËØÓ¦ÊÇÓÐÐòµÄÁ½¸ö¼«Öµ£¬¶ø¸ø¶¨µÄÐòÁв¢²»Âú×ã¡£

20. ±¾ÌâΪ²½³¤Îª3µÄÒ»ÌËÏ£¶ûÅÅÐò¡£ 24.ÊàÖáÊÇ73¡£

49. С¸ù¶ÑÖУ¬¹Ø¼ü×Ö×î´óµÄ¼Ç¼ֻÄÜÔÚÒ¶½áµãÉÏ£¬¹Ê²»¿ÉÄÜÔÚСÓÚµÈÓÚn/2µÄ½áµãÉÏ¡£ 64. Òò×éÓë×éÖ®¼äÒÑÓÐÐò£¬¹Ê½«n/k¸ö×é·Ö±ðÅÅÐò¼´¿É£¬»ùÓڱȽϵÄÅÅÐò·½·¨Ã¿×éµÄʱ¼äϽçΪO(klog2k),È«²¿Ê±¼äϽçΪO(nlog2k)¡£

¶þ¡¢ÅжÏÌâ 1.¡Ì 2.¡Á 3.¡Á 14.¡Ì 27.¡Ì 15.¡Ì 28.¡Á 16.¡Á 29.¡Á 4.¡Á 5.¡Á 6.¡Á 7.¡Á 8.¡Á 17.¡Á 30.¡Á 18.¡Á 31.¡Ì 19.¡Á 20.¡Á 21.¡Á 9.¡Á 10.¡Á 22.¡Á 23.¡Á 11.¡Á 24.¡Á 12.¡Á 25.¡Ì 13.¡Á 26.¡Á ²¿·Ö´ð°¸½âÊÍÈçÏ£º

5. ´íÎó¡£ÀýÈçðÅÝÅÅÐòÊÇÎȶ¨ÅÅÐò£¬½«4,3,2,1°´Ã°ÅÝÅÅÐòÅųÉÉýÐòÐòÁУ¬µÚÒ»Ì˱ä³É3,2,1,4£¬´Ëʱ3¾Í³¯Ïò×îÖÕλÖõÄÏà·´·½ÏòÒÆ¶¯¡£ 12. ´íÎó¡£¶ÑÊÇn¸öÔªËØµÄÐòÁУ¬¿ÉÒÔ¿´×÷ÊÇÍêÈ«¶þ²æÊ÷£¬µ«Ïà¶ÔÓÚ¸ù²¢ÎÞ×óСÓÒ´óµÄÒªÇó£¬¹ÊÆä¼È²»ÊǶþ²æÅÅÐòÊ÷£¬¸ü²»»áÊÇÆ½ºâ¶þ²æÊ÷¡£ 22. ´íÎó¡£´ýÅÅÐòÐòÁÐΪÕýÐòʱ£¬¼òµ¥²åÈëÅÅÐò±È¹é²¢ÅÅÐò¿ì¡£

Èý¡¢Ìî¿ÕÌâ

1. ±È½Ï,ÒÆ¶¯ 2.Éú³ÉÓÐÐò¹é²¢¶Î£¨Ë³´®£©,¹é²¢ 3.Ï£¶ûÅÅÐò¡¢¼òµ¥Ñ¡ÔñÅÅÐò¡¢¿ìËÙÅÅÐò¡¢¶ÑÅÅÐòµÈ

4. ðÅÝ,¿ìËÙ 5. (1)¼òµ¥Ñ¡ÔñÅÅÐò (2)Ö±½Ó²åÈëÅÅÐò£¨×îСµÄÔªËØÔÚ×îºóʱ£©

6. ÃâÈ¥²éÕÒ¹ý³ÌÖÐÿһ²½¶¼Òª¼ì²âÕû¸ö±íÊÇ·ñ²éÕÒÍê±Ï£¬Ìá¸ßÁ˲éÕÒЧÂÊ¡£ 7. n(n-1)/2 8.ÌâÖÐpÖ¸ÏòÎÞÐòÇøµÚÒ»¸ö¼Ç¼£¬qÖ¸Ïò×îСֵ½áµã£¬Ò»ÌËÅÅÐò½áÊø£¬pºÍqËùÖ¸½áµãÖµ½»»»£¬Í¬Ê±ÏòºóÒÆpÖ¸Õë¡£(1)!=null (2)p->next (3)r!=null (4)r->datadata (5)r->next (6)p->next

9. ÌâÖÐΪ²Ù×÷·½±ã£¬ÏÈÔö¼ÓÍ·½áµã£¨×îºóɾ³ý£©£¬pÖ¸ÏòÎÞÐòÇøµÄǰһ¼Ç¼£¬rÖ¸Ïò×îСֵ½áµãµÄǰÇý£¬Ò»ÌËÅÅÐò½áÊø£¬ÎÞÐòÇøµÚÒ»¸ö¼Ç¼ÓërËùÖ¸½áµãµÄºó¼Ì½»»»Ö¸Õë¡£

(1)q->link!=NULL (2)r!=p (3)p->link (4)p->link=s (5)p=p->link 10.(1)ir[n-i+1]

(3)r[j].key

(4)min!=i

(5)max==i

11.(1)N (2)0 (3)N-1 (4)1 (5)R[P].KEY

(8)N-1 (9)0 (10)O(1)(ÿ¸ö¼Ç¼Ôö¼ÓÒ»¸ö×Ö¶Î) (11)Îȶ¨ £¨Çë×¢ÒâIµÄ²½³¤Îª-1£©

12. 3,(10,7,-9,0,47,23,1,8,98,36) 13.¿ìËÙ 14.(4,1,3,2,6,5,7) 15.×îºÃÿ´Î»®·ÖÄܵõ½Á½¸ö³¤¶ÈÏàµÈµÄ×ÓÎļþ¡£ÉèÎļþ³¤¶Èn=2k-1£¬µÚÒ»±é»®·ÖµÃµ½Á½¸ö³¤¶È?n/2?µÄ×ÓÎļþ£¬µÚ¶þ±é»®·ÖµÃµ½4¸ö³¤¶È?n/4?µÄ×ÓÎļþ£¬ÒÔ´ËÀàÍÆ£¬×ܹ²½øÐÐk=log2(n+1)±é»®·Ö£¬¸÷×ÓÎļþ³¤¶È¾ùΪ1£¬ÅÅÐò½áÊø¡£

16.O(n2) 17. O(nlog2n) 18.(1)2*i (2)r[j].key>r[j+1].key (3)true (4)r[j] (5)2*i

19.(1)2*i (2)j<=r (3)j¡ûj+1 (4)x.key>heap[j].key (5)i¡ûj (6)j¡û2*i (7)x 20.(1)j:=2*i (2)finished:=false (3)(r[j].key>r[j+1].key) (4)r[i]:=r[j] (5)i:=j

(6) j:=2*i (7)r[i]:=t; (8)sift(r,i,n) (9)r[1]:=r[i] (10)sift(r,1,i-1)

21. ¢ÜÊÇ¶Ñ (1)Ñ¡Ôñ (2)ɸѡ·¨ (3)O(nlog2n) (4)O(1)

22. (1) Ñ¡Ôñ (2)ÍêÈ«¶þ²æÊ÷ (3)O(Nlog2N) (4)O(1) (5)Âú×ã¶ÑµÄÐÔÖÊ

23.(1)finish:=false (2)h[i]:=h[j]; i:=j; j:=2*j; (3)h[i]:=x (4)h,k,n (5)sift(h,1,r-1)

24. {D,Q,F,X,A,P,B,N,M,Y,C,W}

25. (1)p[k]:=j (2)i:=i+1 (3)k=0 (4)m:=n (5)m

26. ³ÌÐò(a)(1)true (2)a[i]:=t (3)2 TO n step 2 (4)true (5)NOT flag ³ÌÐò(b)(1)1 (2)a[i]=t (3)(i=2;i<=n;i+=2) (4)1 (5)flag 27.£¨Q,A,C,S,Q,D,F,X,R,H,M,Y£©,(F,H,C,D,Q,A,M,Q,R,S,Y,X) 28. ³õʼ¹é²¢¶Î(˳´®) 29. ³õʼ¹é²¢¶Î,³õʼ¹é²¢¶Î,¼õÉÙÍâ´æÐÅÏ¢¶Áд´ÎÊý£¨¼´¼õÉٹ鲢ÌËÊý£©,Ôö¼Ó¹é²¢Â·ÊýºÍ¼õÉÙ³õʼ¹é²¢¶Î¸öÊý¡£ 30. ?n/m?

31£®(1)m,j-1 (2) m:=j+1 (3)j+1,n (4) n:=j-1 ×î´óÕ»¿Õ¼äÓÃÁ¿ÎªO(logn)¡£

ËÄ¡¢Ó¦ÓÃÌâ

1. ¼ÙÉ躬n¸ö¼Ç¼µÄÐòÁÐΪ{ R1, R2, ?£¬Rn }£¬ÆäÏàÓ¦µÄ¹Ø¼ü×ÖÐòÁÐΪ{ K1, K2, ?£¬Kn }£¬ÕâЩ¹Ø¼ü×ÖÏ໥֮¼ä¿ÉÒÔ½øÐбȽϣ¬¼´ÔÚËüÃÇÖ®¼ä´æÔÚ×ÅÕâÑùÒ»¸ö¹ØÏµKs1¡ÜKs2¡Ü?¡ÜKsn£¬°´´Ë¹ÌÓйØÏµ½«n¸ö¼Ç¼ÐòÁÐÖØÐÂÅÅÁÐΪ{ Rs1, Rs2, ?£¬Rsn }¡£ÈôÕû¸öÅÅÐò¹ý³Ì¶¼ÔÚÄÚ´æÖÐÍê³É£¬Ôò³Æ´ËÀàÅÅÐòÎÊÌâΪÄÚ²¿ÅÅÐò¡£ 2. 2.

ÅÅÐò·½·¨ Ö±½Ó²åÈëÅÅÐò ÕÛ°ë²åÈëÅÅÐò ¶þ·²åÈëÅÅO£¨n£© 2ƽ¾ùʱ¼ä O£¨n2£© O£¨n2£© ×Çé¿ö O£¨n2£© O£¨n2£© O£¨n£© 2¸¨Öú¿Õ¼ä O£¨1£© O£¨1£© O£¨n£© Îȶ¨ÐÔ Îȶ¨ Îȶ¨ Îȶ¨ ²»Îȶ¨ÅÅÐò¾ÙÀý Ðò ±í²åÈëÅÅÐò ÆðÅÝÅÅÐò Ö±½ÓÑ¡ÔñÅÅÐò Ï£¶ûÅÅÐò ¿ìËÙÅÅÐò ¶ÑÅÅÐò 2-·¹é²¢ÅÅÐò »ùÊýÅÅÐò O ( d*(rd+n) ) O ( d*(rd+n) ) O (rd ) Îȶ¨ 3. ÕâÖÖ˵·¨²»¶Ô¡£ÒòΪÅÅÐòµÄ²»Îȶ¨ÐÔÊÇÖ¸Á½¸ö¹Ø¼ü×ÖÖµÏàͬµÄÔªËØµÄÏà¶Ô´ÎÐòÔÚÅÅÐòǰ¡¢ºó·¢ÉúÁ˱仯£¬¶øÌâÖÐÐðÊöºÍÅÅÐòÖÐÎȶ¨ÐԵ͍ÒåÎ޹أ¬ËùÒÔ´Ë˵·¨²»¶Ô¡£¶Ô4£¬3£¬2£¬1ÆðÅÝÅÅÐò¾Í¿É·ñ¶¨±¾Ìâ½áÂÛ¡£

4. ¿ÉÒÔ×öµ½¡£È¡aÓëb½øÐбȽϣ¬cÓëd½øÐбȽϡ£Éèa>b,c>d(ad£¬ÔòÓÐÐòa>b>d£»Èôbd>b£¬´ËʱÒѽøÐÐÁË3´Î±È½Ï¡£ÔÙ°ÑÁíÍâÁ½¸öÔªËØ°´ÕÛ°ë²åÈëÅÅÐò·½·¨£¬²åÈëµ½ÉÏÊöij¸öÐòÁÐÖй²Ðè4´Î±È½Ï£¬´Ó¶ø¹²Ðè7´Î±È½Ï¡£ 5. ±¾Ìâ´ð°¸Ö®Ò»Çë²Î¼ûµÚ9Õµġ°ËÄ¡¢Ó¦ÓÃÌ⡱µÚ70Ì⣬ÕâÀïÓ÷ÖÖη¨Çó½âÔÙ¸ø³öÁíÒ»²Î¿¼´ð°¸¡£

¶ÔÓÚÁ½¸öÊýxºÍy£¬¾­Ò»´Î±È½Ï¿ÉµÃµ½×î´óÖµºÍ×îСֵ£»¶ÔÓÚÈý¸öÊýx,y,z£¬×î¶à¾­3´Î±È½Ï¿ÉµÃ×î´óÖµºÍ×îСֵ£»¶ÔÓÚn(n>3)¸öÊý£¬½«·Ö³É³¤Îªn-2ºÍ2µÄǰºóÁ½²¿·ÖAºÍB£¬·Ö±ðÕÒ³ö×î´óÕߺÍ×îСÕߣºMaxA¡¢MinA¡¢MaxB¡¢MinB£¬×îºóMax={MaxA,MaxB}ºÍMin={MinA,MinB}¡£¶ÔA ʹÓÃͬÑùµÄ·½·¨Çó³ö×î´óÖµºÍ×îСֵ£¬Ö±µ½ÔªËظöÊý²»³¬¹ý3¡£ÉèC(n)ÊÇËùÐèµÄ×î¶à±È½Ï´ÎÊý£¬¸ù¾ÝÉÏÊöÔ­Ôò£¬µ±n>3ʱÓÐÈçϹØÏµÊ½£º

?1??3?C(n?2)?3C(n)=?n?2n?3n?3O£¨n£© 2O£¨n£© O£¨n2£© O£¨n1.3£© O£¨nlog2n£© O£¨nlog2n£© O£¨nlog2n£© 2O£¨n£© 2O£¨n£© O£¨n2£© O£¨n1.3£© O£¨n£© O£¨nlog2n£© O£¨nlog2n£© 22O£¨1£© O£¨1£© O£¨1£© O£¨1£© O£¨log2n£© O£¨1£© O£¨n£© Îȶ¨ Îȶ¨ ²»Îȶ¨ ²»Îȶ¨ ²»Îȶ¨ ²»Îȶ¨ Îȶ¨ 2,2¡¯,1 3,2,2¡¯,1(d=2,d=1) 2,2¡¯,1 2,1,1¡¯(¼«´ó¶Ñ)

ͨ¹ýÖð²½µÝÍÆ£¬¿ÉÒԵõ½£ºC(n)=?3n/2?-2¡£ÏÔÈ»£¬µ±n>=3ʱ£¬2n-3>3n/2-2¡£ÊÂʵÉÏ£¬?3n/2?-2Êǽâ¾öÕâÒ»ÎÊÌâµÄ±È½Ï´ÎÊýµÄÏÂÏÞ¡£

6. ¼Ù¶¨´ýÅÅÐòµÄ¼Ç¼ÓÐn¸ö¡£ÓÉÓÚº¬n¸ö¼Ç¼µÄÐòÁпÉÄܳöÏÖµÄ״̬ÓÐn!¸ö£¬ÔòÃèÊön¸ö¼Ç¼ÅÅÐò¹ý³ÌµÄÅж¨Ê÷±ØÐëÓÐn!¸öÒ¶×Ó½áµã¡£ÒòΪÈôÉÙÒ»¸öÒ¶×Ó£¬Ôò˵Ã÷ÉÐÓÐÁ½ÖÖ״̬ûÓзֱæ³öÀ´¡£ÎÒÃÇÖªµÀ£¬Èô¶þ²æÊ÷¸ß¶ÈÊÇh£¬ÔòÒ¶×Ó½áµã¸öÊý×î¶àΪ2h-1£»·´Ö®£¬ÈôÓÐu¸öÒ¶×Ó½áµã£¬Ôò¶þ²æÊ÷µÄ¸ß¶ÈÖÁÉÙΪ?log2u?+1¡£Õâ¾ÍÊÇ˵£¬ÃèÊön¸ö¼Ç¼ÅÅÐòµÄÅж¨Ê÷±Ø¶¨´æÔÚÒ»Ìõ³¤¶ÈΪ?log2(n!)?µÄ·¾¶¡£¼´ÈκÎÒ»¸ö¼®Öú¡°±È½Ï¡±½øÐÐÅÅÐòµÄËã·¨£¬ÔÚ×Çé¿öÏÂËùÐè½øÐеıȽϴÎÊýÖÁÉÙÊÇ?log2(n!)?¡£¸ù¾ÝË¹ÌØÁÖ¹«Ê½£¬ÓÐ?log2(n!)? =O(nlog2n)¡£¼´¼®ÖúÓÚ¡°±È½Ï¡±½øÐÐÅÅÐòµÄËã·¨ÔÚ×Çé¿öÏÂÄÜ´ïµ½µÄ×îºÃʱ¼ä¸´ÔÓ¶ÈΪO(nlog2n)¡£Ö¤±Ï¡£

7. ´ð£ºÍØÆËÅÅÐò£¬ÊÇÓÐÏòͼµÄ¶¥µãÒÀÕÕ»¡µÄ×ßÏò£¬ÕÒ³öÒ»¸öÈ«Ðò¼¯µÄ¹ý³Ì£¬Ö÷ÒªÊǸù¾ÝÓë¶¥µãÁ¬½ÓµÄ»¡À´È·¶¨¶¥µãÐòÁУ»Ã°ÅÝÅÅÐòÊǽèÖú½»»»Ë¼Ïëͨ¹ý±È½ÏÏàÁÚ½áµã¹Ø¼ü×Ö´óС½øÐÐÅÅÐòµÄËã·¨¡£ 8. Ö±½Ó²åÈëÅÅÐòµÄ»ù±¾Ë¼ÏëÊÇ»ùÓÚ²åÈ룬¿ªÊ¼¼Ù¶¨µÚÒ»¸ö¼Ç¼ÓÐÐò£¬È»ºó´ÓµÚ¶þ¸ö¼Ç¼¿ªÊ¼£¬ÒÀ´Î²åÈëµ½Ç°ÃæÓÐÐòµÄ×ÓÎļþÖС£¼´½«¼Ç¼R[i](2<=i<=n)²åÈëµ½ÓÐÐò×ÓÐòÁÐR[1..i-1]ÖУ¬Ê¹¼Ç¼µÄÓÐÐòÐòÁдÓR[1..i-1]±äΪR[1..i] £¬×îÖÕʹÕû¸öÎļþÓÐÐò¡£¹²½øÐÐn-1Ì˲åÈë¡£×ʱ¼ä¸´ÔÓ¶ÈÊÇ0(n)£¬Æ½¾ùʱ¼ä¸´ÔÓ¶ÈÊÇ0(n)£¬¿Õ¼ä¸´ÔÓ¶ÈÊÇO(1)£¬ÊÇÎȶ¨ÅÅÐò¡£

2

2

¼òµ¥Ñ¡ÔñÅÅÐòµÄ»ù±¾Ë¼ÏëÊÇ»ùÓÚÑ¡Ôñ£¬¿ªÊ¼ÓÐÐòÐòÁ㤶ÈΪÁ㣬µÚi(1<=i

22

´ó£¬×îºóÕû¸öÎļþÓÐÐò¡£¹²½øÐÐn-1ÌËÑ¡Ôñ¡£×ʱ¼ä¸´ÔÓ¶ÈÊÇ0(n)£¬Æ½¾ùʱ¼ä¸´ÔÓ¶ÈÊÇ0(n)£¬¿Õ¼ä¸´ÔÓ¶ÈÊÇO(1)£¬ÊDz»Îȶ¨ÅÅÐò¡£

¶þ·²¢¹éÅÅÐòµÄ»ù±¾Ë¼ÏëÊÇ»ùÓڹ鲢£¬¿ªÊ¼½«¾ßÓÐn¸ö´ýÅÅÐò¼Ç¼µÄÐòÁп´³ÉÊÇn¸ö³¤¶ÈΪ1µÄÓÐÐòÐòÁУ¬È»ºó½øÐÐÁ½Á½¹é²¢£¬µÃµ½?n/2?¸ö³¤¶ÈΪ2µÄÓÐÐòÐòÁУ¬ÔÙ½øÐÐÁ½Á½¹é²¢£¬µÃµ½?n/4?¸ö³¤¶ÈΪ4µÄÓÐÐòÐòÁС£Èç´ËÖØ¸´£¬¾­¹ý?log2n?Ì˹鲢£¬×îÖյõ½Ò»¸ö³¤¶ÈΪnµÄÓÐÐòÐòÁС£×ʱ¼ä¸´ÔÓ¶ÈºÍÆ½¾ùʱ¼ä¸´ÔӶȶ¼ÊÇ0(nlog2n)£¬¿Õ¼ä¸´ÔÓ¶ÈÊÇO(n)£¬ÊÇÎȶ¨ÅÅÐò¡£

9. ´íÎ󡣿ìËÙÅÅÐò£¬¶ÑÅÅÐòºÍÏ£¶ûÅÅÐòÊÇʱ¼äÐÔÄܽϺõÄÅÅÐò·½·¨£¬µ«¶¼ÊDz»Îȶ¨µÄÅÅÐò·½·¨¡£ 10. µÈ¸ÅÂÊ£¨ºó²å£©£¬²åÈëλÖÃ0..n£¬Ôòƽ¾ùÒÆ¶¯¸öÊýΪn/2¡£

n?1 Èô²»µÈ¸ÅÂÊ£¬Ôòƽ¾ùÒÆ¶¯¸öÊýΪi?0?(n-i)/(n*(n?1)/2)*(n-i)2n?1=

3

11. ´Ó½ÚÊ¡´æ´¢¿Õ¼ä¿¼ÂÇ£ºÏÈÑ¡¶ÑÅÅÐò£¬ÔÙÑ¡¿ìËÙÅÅÐò£¬×îºóÑ¡Ôñ¹é²¢ÅÅÐò£»

´ÓÅÅÐò½á¹ûµÄÎȶ¨ÐÔ¿¼ÂÇ£ºÑ¡Ôñ¹é²¢ÅÅÐò¡£¶ÑÅÅÐòºÍ¿ìËÙÅÅÐò¶¼ÊDz»Îȶ¨ÅÅÐò£»

´Óƽ¾ùÇé¿öÏÂÅÅÐò×î¿ì¿¼ÂÇ£ºÏÈÑ¡Ôñ¿ìËÙÅÅÐò¡£

12. (1)¶ÑÅÅÐò£¬¿ìËÙÅÅÐò£¬¹é²¢ÅÅÐò (2)¹é²¢ÅÅÐò (3)¿ìËÙÅÅÐò (4)¶ÑÅÅÐò

13. ƽ¾ù±È½Ï´ÎÊý×îÉÙ: ¿ìËÙÅÅÐò; Õ¼Óÿռä×î¶à: ¹é²¢ÅÅÐò; ²»Îȶ¨ÅÅÐòËã·¨:¿ìËÙÅÅÐò¡¢¶ÑÅÅÐò¡¢Ï£¶ûÅÅÐò¡£

14. Çóǰk¸ö×î´óÔªËØÑ¡¶ÑÅÅÐò½ÏºÃ¡£ÒòΪÔÚ½¨º¬n¸öÔªËØµÄ¶Ñʱ£¬×ܹ²½øÐеĹؼü×ֵıȽϴÎÊý²»³¬¹ý4n ,µ÷Õû½¨Ð¶ÑʱµÄ±È½Ï´ÎÊý²»³¬¹ý2log2n´Î¡£ÔÚn¸öÔªËØÖÐÇóǰk¸ö×î´óÔªËØ£¬ÔÚ¶ÑÅÅÐòÇé¿öϱȽϴÎÊý×î¶à²»³¬¹ý4n+2klog2n¡£

Îȶ¨·ÖÀàÊÇÖ¸£¬ÈôÅÅÐòÐòÁÐÖдæÔÚÁ½¸ö¹Ø¼ü×ÖÖµÏàͬµÄ¼Ç¼RiÓëRj(Ki=Kj,i¡Ùj)ÇÒRiÁìÏÈÓÚRj£¬ÈôÅÅÐòºóRiÓëRjµÄÏà¶Ô´ÎÐò±£³Ö²»±ä,Ôò³ÆÕâÀà·ÖÀàÊÇÎȶ¨·ÖÀࣨÅÅÐò£©£¬·ñÔòΪ²»Îȶ¨·ÖÀà¡£ A£¬CºÍEÊÇÎȶ¨·ÖÀࣨÅÅÐò£©£¬BºÍDÊDz»Îȶ¨·ÖÀࣨÅÅÐò£©¡£

a:b 15. b:c a:c

a,b,c a:c b,a,c b:c

a,c,b c,a,b b,c,a c,b,a

16. (1)´ËΪֱ½Ó²åÈëÅÅÐòËã·¨£¬¸ÃËã·¨Îȶ¨¡£

(2)r[O]µÄ×÷ÓÃÊǼàÊÓÉÚ£¬Ãâȥÿ´Î¼ì²âÎļþÊÇ·ñµ½Î²£¬Ìá¸ßÁËÅÅÐòЧÂÊ¡£

²ÉÓÃx.key<=r[j].keyÃèÊöËã·¨ºó£¬Ëã·¨±äΪ²»Îȶ¨ÅÅÐò£¬µ«ÄÜÕý³£¹¤×÷¡£ 17. (1) ºáÏßÄÚÈÝ:¢Ùm ¢Ú1 ¢Û0 ¢Ü1

(2)flagÆð±êÖ¾×÷Óá£Èôδ·¢Éú½»»»£¬±íÃ÷´ýÅÅÐòÁÐÒÑÓÐÐò£¬ÎÞÐè½øÐÐÏÂÌËÅÅÐò¡£ (3)×î´ó±È½Ï´ÎÊýn(n-1)/2£¬×î´óÒÆ¶¯´ÎÊý3n(n-1)/2 (4)Îȶ¨

18. (1) ¢Ù499 ¢ÚA[j]>A[j+1] ¢Ûb:=true (2)ðÅÝÅÅÐò (3)499´Î±È½Ï,0´Î½»»» (4) n(n-1)/2´Î±È½Ï£¬n(n-1)/2´Î½»»»£¨Ï൱3n(n-1)/2´ÎÒÆ¶¯£©£¬±¾ÌâÖÐn=500,¹ÊÓÐ124750´Î±È½ÏºÍ½»»»£¨Ï൱373250´ÎÒÆ¶¯£©¡£

19. ´ð£º´ËÅÅÐòΪ˫ÏòÆðÅÝÅÅÐò£º´ÓǰÏòºóÒ»ÌËÅÅÐòÏÂÀ´µÃµ½Ò»¸ö×î´óÖµ£¬ÈôÆäÖз¢Éú½»»»£¬ÔòÔÙ´Ó