铜电解槽设计-冶金工程 下载本文

辽宁科技大学本科生毕业设计 第5页

SnSO4+0.5O2+H2SO4=Sn(SO4)2+H2O,

Sn(SO4)2+2H2O=Sn(OH)2SO4+H2SO4

阳极含氧量对镍的溶解有很大影响:阳极含氧低,则镍绝大部分溶解进入电解液;阳极含氧高,则由于生成难溶化合物,镍很大一部分进入阳极泥。 3、电位与铜相近的砷、锑、铋

电解时,它们可能在阴极上析出。它们还生成极细的絮状SbAsO4和BiAsO4砷酸盐,漂浮在电解液中,机械地粘附在阴极上,其粘附量相当于砷锑放电析出的两倍,而且锑进入阴极的数量比砷大,因此锑的危害更为突出。

1.7电解铜的工艺流程

火法精炼产出的阴极铜品位一般为99.2~99.7%,其中还含有0.3~0.8%的杂质。为了提高铜的性能,使其达到各种应用的要求,同时回收其中的有价金属,特别是贵金属、铂族金属和稀散金属,必须对其进行电解精炼。

粗铜电解精炼是以铜阳极板为阳极,纯铜始极片或不锈钢板为阴极,以硫酸铜和硫酸溶液为电解液,将极板按一定的极距相间排列于电解槽内,通入直流电,阳极不断溶解,便在阴极上析出电解铜。电解过程中,阳极铜中的贵金属和硒、碲等有价元素进入阳极泥,沉积于电解槽底,定期排出,送阳极泥车间提取贵金属。镍、砷、锑、铋等杂质大部分进入电解液,需从循环液中抽取一部分进行净化处理。工艺流程包括电解精炼和电解液净化两部分。

以纯铜始极片为阴极,电源为恒向直流电,电流密度为220~280A/m2。该法在世界各国均已有多年生产历史,工艺成熟可靠,电耗低。特别是采用了机械化、自动化水平高的阴阳极加工机组,并采用新技术适当提高了阴阳极板的垂直度以后,阴极铜产品质量得到显著的改善。

是传统法的始极片制作工艺复杂,不仅需要独立的生产系统,而且制作过程中劳动强度过大。除此之外,这种工艺流程自身还存在两个难以克服的缺点:(l)电解精炼过程中存在“极限电流密度”,电解精炼时的实际电流密度必须低于极限电流密度,否则就会使阴极铜沉积表面粗糙,甚至形成“枝晶”,造成电解槽短路,使电解过程能耗大大增加,并且影响正常生产过程和产品质量。(2)容易形成“阳极钝化”,在正常电压下阳极不能溶解,必须提高电压使钝化膜在更高的电压下被破坏并溶解,不仅影响正常生产,还会造成电能浪费和阴极铜的化学成分不稳定,进而影响产品的质量和物理

辽宁科技大学本科生毕业设计 第6页

性能。

图1-1 电解铜的工艺流程

1.8本设计的内容及意义

1.8.1本设计的内容

本设计的内容包括电解工艺的确定,铜电解精炼冶金计算,主要设备结构图的绘制等。铜电解精炼工艺流程的确定通过比较,选择先进、经济、合理的铜电解精炼的工艺流程。冶金计算:铜电解精炼冶金计算包括:电解过程金属平衡和物料平衡。重要设备尺寸计算及选择:根据工艺流程各个主要过程,合理地选择主要冶炼设备和确定个数、容量、对其主要尺寸加以计算。主要设备结构图的绘制:铜电解精炼车间设计的图纸主

辽宁科技大学本科生毕业设计 第7页

要为电解槽构造图。 1.8.2本设计的意义

本设计通过电解槽主体设计和冶金计算,结合实际情况提高对知识的运用以及生产中的各项技术条件及经济技术指标。了解铜电解精炼的工艺流程,以及对铜电解槽的物料平衡、有害杂质在电解液中的允许含量以及净化过程中杂质的脱除效率及热平衡等内容的计算,对主体设备进行设计和绘图。最终得到完整的设计方案,对于建设新铜电解车间及提高铜电解的效率有很大的帮助。

2.技术条件及经济技术指标的选择

2.1操作技术条件

铜电解精炼技术条件的控制,对操作过程的正常进行,技术经济指标的改善和保证电铜的质量都具有决定性的意义。 2.1.1电流密度

提高电流密度可以提高电解槽的生产能力。随着电流密度的提高,电解过程中电流产生的热量增加,因而用来加热电解液的蒸汽耗量可相对减少。然而,随着电流密度的提高,槽电压上升,电能消耗也相应增大。如果电流密度过高,有可能引起电流效率下降、贵金属损失增加一级影响电铜质量。

电流密度的大小可根据具体情况加以确定,电流密度范围为200~360A/m2。随着生产技术和管理水平的提高,各厂家采用的电流密度有提供的趋势。周期反向电流电解,有效地解决了由于高电流密度而出现的阳极钝化问题,因而,采用周期反向电流电解技术的厂家都选用较高的电流密度。 2.1.2电解液成分

电解液成分主要由硫酸和硫酸铜水溶液组成。一般含铜40~50g/L,含硫酸180~240g/L。实际电解液中铜和硫酸的含量应视电流密度,阳极成分和电解液的纯净度

辽宁科技大学本科生毕业设计 第8页

等条件而定。由于电解液的电阻随着酸度的增加而降低,随含铜量的增加而升高,所以,为了降低电耗,一般采用高酸低铜电解液组分比较有利。然而,由于硫酸铜的溶液浓度随着硫酸浓度的增加而降低,如果硫酸含量过高,硫酸铜含量过高,硫酸铜容易从电解液中结晶析出,同事加剧了阳极钝化。随着阳极的溶解,电解液中的杂质不断积累,杂质的积累使硫酸铜的溶解度降低。因此在杂质含量高的电解液中,硫酸含量也应适当减小。

电解液中铜含量的不断上升和下降,都是不希望的现象。含铜量不断上升,电解液的电阻不断增加。当铜量超过其溶解度时,或因电解液的温度下降是,硫酸铜会从溶液中结晶析出,从而使电解作业不能正常进行。电解液的含铜量不断下降,则杂质可能在阴极上析出,故必须根据各种具体条件加以掌握,以控制电解液的含铜量处于规定的范围。

镍、铁、砷、锑、铋等杂质浓度过高会增大电解液的电阻和浓度,降低硫酸铜的溶解度,且砷、锑和铋浓度过高造成的漂浮阳极泥会严重影响阴极铜的质量。 元素 含量/(g/L) Ni <15 As Sb Bi <7 <0.6 <0.5 表2-1铜电解液中有害杂质允许含量 Fe <3 2.1.3电解液温度

电解液温度是影响电解过程技术经济指标和产品质量的因素。实验证明,提高电解液的温度可使电解液粘度大幅度下降,电解液中悬浮的微粒得以沉降,保证不和阴极铜机械吸附。同时电解液的温度越高Cu2+的迁移速度大大增加;有利于Cu2+的传质,使阳极钝化和阴极区Cu2+浓度的贫化明显消除,从而使铜在阴极上均匀析出(如图2-2)。 温度(℃) 45 50 55 60 65 70 百分电阻 108.2 103.8 100.0 96.6 94.0 91.4 表2-2温度对电解液百分电阻的影响(硫酸200g/L) 但温度过高,蒸汽的耗量却异常地增加。累计总能偏高,从而使经济效益降低。更重要的是,车间酸的蒸发量增加,使操作环境恶化。同时铜的化学溶解速度显著增加Cu2+浓度增大,影响Cu2+和Cu+的平衡,相应铜粒子的数量增加。其次,对设备、厂房的腐蚀加重,对塑料设备的老化影响更大。我国一般将电解液温度控制在58~60℃。 2.1.4电解液循环

电解液的循环可使电解液的组成和温度均匀一致,降低浓差极化,改善阴极铜质量。